1rlp Citations

Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions.

Science 266 1241-7 (1994)
Related entries: 1prl, 1prm, 1rlq

Cited: 466 times
EuropePMC logo PMID: 7526465


Solution structures of two Src homology 3 (SH3) domain-ligand complexes have been determined by nuclear magnetic resonance. Each complex consists of the SH3 domain and a nine-residue proline-rich peptide selected from a large library of ligands prepared by combinatorial synthesis. The bound ligands adopt a left-handed polyproline type II (PPII) helix, although the amino to carboxyl directionalities of their helices are opposite. The peptide orientation is determined by a salt bridge formed by the terminal arginine residues of the ligands and the conserved aspartate-99 of the SH3 domain. Residues at positions 3, 4, 6, and 7 of both peptides also intercalate into the ligand-binding site; however, the respective proline and nonproline residues show exchanged binding positions in the two complexes. These structural results led to a model for the interactions of SH3 domains with proline-rich peptides that can be used to predict critical residues in complexes of unknown structure. The model was used to identify correctly both the binding orientation and the contact and noncontact residues of a peptide derived from the nucleotide exchange factor Sos in association with the amino-terminal SH3 domain of the adaptor protein Grb2.

Articles - 1rlp mentioned but not cited (2)

  1. The multiple-specificity landscape of modular peptide recognition domains. Gfeller D, Butty F, Wierzbicka M, Verschueren E, Vanhee P, Huang H, Ernst A, Dar N, Stagljar I, Serrano L, Sidhu SS, Bader GD, Kim PM. Mol. Syst. Biol. 7 484 (2011)
  2. From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors. Zafra Ruano A, Cilia E, Couceiro JR, Ruiz Sanz J, Schymkowitz J, Rousseau F, Luque I, Lenaerts T. PLoS Comput. Biol. 12 e1004938 (2016)

Reviews citing this publication (75)

  1. Conformational landscape of substituted prolines. Ganguly HK, Basu G. Biophys Rev 12 25-39 (2020)
  2. Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Uversky VN. Brief Funct Genomics 19 60-68 (2020)
  3. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Hamid AB, Petreaca RC. Cancers (Basel) 12 (2020)
  4. Dynamic regulatory features of the protein tyrosine kinases. Amatya N, Lin DY, Andreotti AH. Biochem Soc Trans 47 1101-1116 (2019)
  5. The Spectrinome: The Interactome of a Scaffold Protein Creating Nuclear and Cytoplasmic Connectivity and Function. Goodman SR, Johnson D, Youngentob SL, Kakhniashvili D. Exp. Biol. Med. (Maywood) 244 1273-1302 (2019)
  6. Spectrin and its interacting partners in nuclear structure and function. Lambert MW. Exp. Biol. Med. (Maywood) 243 507-524 (2018)
  7. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Shah NH, Amacher JF, Nocka LM, Kuriyan J. Crit. Rev. Biochem. Mol. Biol. 53 535-563 (2018)
  8. Nuclear alpha spectrin: Critical roles in DNA interstrand cross-link repair and genomic stability. Lambert MW. Exp. Biol. Med. (Maywood) 241 1621-1638 (2016)
  9. Structure and function of the Mind bomb E3 ligase in the context of Notch signal transduction. Guo B, McMillan BJ, Blacklow SC. Curr. Opin. Struct. Biol. 41 38-45 (2016)
  10. The discovery of modular binding domains: building blocks of cell signalling. Mayer BJ. Nat. Rev. Mol. Cell Biol. 16 691-698 (2015)
  11. Phage display as a technology delivering on the promise of peptide drug discovery. Hamzeh-Mivehroud M, Alizadeh AA, Morris MB, Church WB, Dastmalchi S. Drug Discov. Today 18 1144-1157 (2013)
  12. Polyproline-II helix in proteins: structure and function. Adzhubei AA, Sternberg MJ, Makarov AA. J. Mol. Biol. 425 2100-2132 (2013)
  13. SH3 domains: modules of protein-protein interactions. Kurochkina N, Guha U. Biophys Rev 5 29-39 (2013)
  14. Deoxyribozymes and bioinformatics: complementary tools to investigate axon regeneration. Grimpe B. Cell Tissue Res. 349 181-200 (2012)
  15. Interfacial water molecules in SH3 interactions: Getting the full picture on polyproline recognition by protein-protein interaction domains. Zafra-Ruano A, Luque I. FEBS Lett. 586 2619-2630 (2012)
  16. SH3 domain ligand binding: What's the consensus and where's the specificity? Saksela K, Permi P. FEBS Lett. 586 2609-2614 (2012)
  17. Uncovering new aspects of protein interactions through analysis of specificity landscapes in peptide recognition domains. Gfeller D. FEBS Lett. 586 2764-2772 (2012)
  18. Conquering the complex world of human septins: implications for health and disease. Peterson EA, Petty EM. Clin. Genet. 77 511-524 (2010)
  19. Diversity of polyproline recognition by EVH1 domains. Peterson FC, Volkman BF. Front Biosci (Landmark Ed) 14 833-846 (2009)
  20. The B-lymphoid Grb2 interaction code. Neumann K, Oellerich T, Urlaub H, Wienands J. Immunol. Rev. 232 135-149 (2009)
  21. Intrinsic disorder in scaffold proteins: getting more from less. Cortese MS, Uversky VN, Dunker AK. Prog. Biophys. Mol. Biol. 98 85-106 (2008)
  22. Hepatitis E virus. Panda SK, Thakral D, Rehman S. Rev. Med. Virol. 17 151-180 (2007)
  23. Pex13p: docking or cargo handling protein? Williams C, Distel B. Biochim. Biophys. Acta 1763 1585-1591 (2006)
  24. Membrane-associated guanylate kinases regulate adhesion and plasticity at cell junctions. Funke L, Dakoji S, Bredt DS. Annu. Rev. Biochem. 74 219-245 (2005)
  25. Recognition of proline-rich motifs by protein-protein-interaction domains. Ball LJ, Kühne R, Schneider-Mergener J, Oschkinat H. Angew. Chem. Int. Ed. Engl. 44 2852-2869 (2005)
  26. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Li SS. Biochem. J. 390 641-653 (2005)
  27. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Horne WC, Sanjay A, Bruzzaniti A, Baron R. Immunol. Rev. 208 106-125 (2005)
  28. The structure of "unstructured" regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Rath A, Davidson AR, Deber CM. Biopolymers 80 179-185 (2005)
  29. Structure and regulation of Src family kinases. Boggon TJ, Eck MJ. Oncogene 23 7918-7927 (2004)
  30. The structure and function of proline recognition domains. Zarrinpar A, Bhattacharyya RP, Lim WA. Sci. STKE 2003 RE8 (2003)
  31. The WW domain: linking cell signalling to the membrane cytoskeleton. Ilsley JL, Sudol M, Winder SJ. Cell. Signal. 14 183-189 (2002)
  32. The gift of Gab. Liu Y, Rohrschneider LR. FEBS Lett. 515 1-7 (2002)
  33. Peptide interactions with G-protein coupled receptors. Marshall GR. Biopolymers 60 246-277 (2001)
  34. SH2 and SH3 domains as targets for anti-proliferative agents. Vidal M, Gigoux V, Garbay C. Crit. Rev. Oncol. Hematol. 40 175-186 (2001)
  35. The hunchback and its neighbours: proline as an environmental modulator. Reiersen H, Rees AR. Trends Biochem. Sci. 26 679-684 (2001)
  36. Intracellular adapter molecules. Norian LA, Koretzky GA. Semin. Immunol. 12 43-54 (2000)
  37. Protein tyrosine kinase structure and function. Hubbard SR, Till JH. Annu. Rev. Biochem. 69 373-398 (2000)
  38. RAFTK/Pyk2-mediated cellular signalling. Avraham H, Park SY, Schinkmann K, Avraham S. Cell. Signal. 12 123-133 (2000)
  39. Searching for specificity in SH domains. Ladbury JE, Arold S. Chem. Biol. 7 R3-8 (2000)
  40. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. Kay BK, Williamson MP, Sudol M. FASEB J. 14 231-241 (2000)
  41. The molecular basis of renal tubular transport disorders. Hamilton KL, Butt AG. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. 126 305-321 (2000)
  42. Adapter molecules in T cell receptor signaling. Boerth NJ, Koretzky GA. Inflamm. Bowel Dis. 5 107-118 (1999)
  43. Ligand recognition by SH3 and WW domains: the role of N-alkylation in PPII helices. Aghazadeh B, Rosen MK. Chem. Biol. 6 R241-6 (1999)
  44. Membrane-targeting of signalling molecules by SH2/SH3 domain-containing adaptor proteins. Buday L. Biochim. Biophys. Acta 1422 187-204 (1999)
  45. Recognition and regulation of primary-sequence motifs by signaling modular domains. Songyang Z. Prog. Biophys. Mol. Biol. 71 359-372 (1999)
  46. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. Dimitratos SD, Woods DF, Stathakis DG, Bryant PJ. Bioessays 21 912-921 (1999)
  47. Phosphoinositide kinases. Fruman DA, Meyers RE, Cantley LC. Annu. Rev. Biochem. 67 481-507 (1998)
  48. Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Byon JC, Kusari AB, Kusari J. Mol. Cell. Biochem. 182 101-108 (1998)
  49. The mode of action of peptidyl prolyl cis/trans isomerases in vivo: binding vs. catalysis. Fischer G, Tradler T, Zarnt T. FEBS Lett. 426 17-20 (1998)
  50. Cellular functions regulated by Src family kinases. Thomas SM, Brugge JS. Annu. Rev. Cell Dev. Biol. 13 513-609 (1997)
  51. Growth factor-dependent phosphoinositide signalling. Hsuan JJ, Tan SH. Int. J. Biochem. Cell Biol. 29 415-435 (1997)
  52. Leukocyte protein tyrosine kinases: potential targets for drug discovery. Bolen JB, Brugge JS. Annu. Rev. Immunol. 15 371-404 (1997)
  53. Modular peptide recognition domains in eukaryotic signaling. Kuriyan J, Cowburn D. Annu Rev Biophys Biomol Struct 26 259-288 (1997)
  54. SH3 domains and drug design: ligands, structure, and biological function. Dalgarno DC, Botfield MC, Rickles RJ. Biopolymers 43 383-400 (1997)
  55. Structural and mechanistic determinants of affinity and specificity of ligands discovered or engineered by phage display. Katz BA. Annu Rev Biophys Biomol Struct 26 27-45 (1997)
  56. Accommodating structurally diverse peptides in proteins. Wilkinson AJ. Chem. Biol. 3 519-524 (1996)
  57. How pathogens exploit interactions mediated by SH3 domains. Bliska J. Chem. Biol. 3 7-11 (1996)
  58. Reading between the lines: SH3 recognition of an intact protein. Lim WA. Structure 4 657-659 (1996)
  59. Regulation, substrates and functions of src. Brown MT, Cooper JA. Biochim. Biophys. Acta 1287 121-149 (1996)
  60. Signal-transducing protein phosphorylation cascades mediated by Ras/Rho proteins in the mammalian cell: the potential for multiplex signalling. Denhardt DT. Biochem. J. 318 ( Pt 3) 729-747 (1996)
  61. Targeting signal transduction in the discovery of antiproliferative drugs. Saltiel AR, Sawyer TK. Chem. Biol. 3 887-893 (1996)
  62. Towards prediction of cognate complexes between the WW domain and proline-rich ligands. Einbond A, Sudol M. FEBS Lett. 384 1-8 (1996)
  63. WW domains. Staub O, Rotin D. Structure 4 495-499 (1996)
  64. X-linked agammaglobulinemia (XLA): a genetic tyrosine kinase (Btk) disease. Mattsson PT, Vihinen M, Smith CI. Bioessays 18 825-834 (1996)
  65. BTKbase: a database of XLA-causing mutations. International Study Group. Vihinen M, Cooper MD, de Saint Basile G, Fischer A, Good RA, Hendriks RW, Kinnon C, Kwan SP, Litman GW, Notarangelo LD. Immunol. Today 16 460-465 (1995)
  66. Characterization of a novel protein-binding module--the WW domain. Sudol M, Chen HI, Bougeret C, Einbond A, Bork P. FEBS Lett. 369 67-71 (1995)
  67. Constrained peptides as binding entities. Ladner RC. Trends Biotechnol. 13 426-430 (1995)
  68. Modular binding domains in signal transduction proteins. Cohen GB, Ren R, Baltimore D. Cell 80 237-248 (1995)
  69. Protein modules and signalling networks. Pawson T. Nature 373 573-580 (1995)
  70. Protein-peptide interactions. Stanfield RL, Wilson IA. Curr. Opin. Struct. Biol. 5 103-113 (1995)
  71. SH3 domains. Minding your p's and q's. Mayer BJ, Eck MJ. Curr. Biol. 5 364-367 (1995)
  72. Small G proteins and the neutrophil NADPH oxidase. Dagher MC, Fuchs A, Bourmeyster N, Jouan A, Vignais PV. Biochimie 77 651-660 (1995)
  73. Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. Gronenborn AM, Clore GM. Crit. Rev. Biochem. Mol. Biol. 30 351-385 (1995)
  74. The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Robinson JM, Badwey JA. Histochem. Cell Biol. 103 163-180 (1995)
  75. Tyrosine kinases: modular signaling enzymes with tunable specificities. Shokat KM. Chem. Biol. 2 509-514 (1995)

Articles citing this publication (389)

  1. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB. Nature 384 83-87 (1996)
  2. The structural basis for 14-3-3:phosphopeptide binding specificity. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC. Cell 91 961-971 (1997)
  3. Three-dimensional structure of the tyrosine kinase c-Src. Xu W, Harrison SC, Eck MJ. Nature 385 595-602 (1997)
  4. Homer binds a novel proline-rich motif and links group 1 metabotropic glutamate receptors with IP3 receptors. Tu JC, Xiao B, Yuan JP, Lanahan AA, Leoffert K, Li M, Linden DJ, Worley PF. Neuron 21 717-726 (1998)
  5. WW domains of Nedd4 bind to the proline-rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D. EMBO J. 15 2371-2380 (1996)
  6. Mena, a relative of VASP and Drosophila Enabled, is implicated in the control of microfilament dynamics. Gertler FB, Niebuhr K, Reinhard M, Wehland J, Soriano P. Cell 87 227-239 (1996)
  7. Identification of the familial cylindromatosis tumour-suppressor gene. Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR, Jones C, Hansen J, Blair E, Hofmann B, Siebert R, Turner G, Evans DG, Schrander-Stumpel C, Beemer FA, van Den Ouweland A, Halley D, Delpech B, Cleveland MG, Leigh I, Leisti J, Rasmussen S. Nat. Genet. 25 160-165 (2000)
  8. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases. Miki H, Miura K, Takenawa T. EMBO J. 15 5326-5335 (1996)
  9. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT. Nature 385 650-653 (1997)
  10. A Grb2-associated docking protein in EGF- and insulin-receptor signalling. Holgado-Madruga M, Emlet DR, Moscatello DK, Godwin AK, Wong AJ. Nature 379 560-564 (1996)
  11. Crystal structure of the conserved core of HIV-1 Nef complexed with a Src family SH3 domain. Lee CH, Saksela K, Mirza UA, Chait BT, Kuriyan J. Cell 85 931-942 (1996)
  12. The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase. Grzesiek S, Bax A, Clore GM, Gronenborn AM, Hu JS, Kaufman J, Palmer I, Stahl SJ, Wingfield PT. Nat. Struct. Biol. 3 340-345 (1996)
  13. Mammalian Grb2 regulates multiple steps in embryonic development and malignant transformation. Cheng AM, Saxton TM, Sakai R, Kulkarni S, Mbamalu G, Vogel W, Tortorice CG, Cardiff RD, Cross JC, Muller WJ, Pawson T. Cell 95 793-803 (1998)
  14. Coupling of Gab1 to c-Met, Grb2, and Shp2 mediates biological responses. Schaeper U, Gehring NH, Fuchs KP, Sachs M, Kempkes B, Birchmeier W. J. Cell Biol. 149 1419-1432 (2000)
  15. Mouse disabled (mDab1): a Src binding protein implicated in neuronal development. Howell BW, Gertler FB, Cooper JA. EMBO J. 16 121-132 (1997)
  16. Molecular characterization of human and mouse fatty acid amide hydrolases. Giang DK, Cravatt BF. Proc. Natl. Acad. Sci. U.S.A. 94 2238-2242 (1997)
  17. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC. EMBO J. 15 2381-2387 (1996)
  18. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module. Salcini AE, Confalonieri S, Doria M, Santolini E, Tassi E, Minenkova O, Cesareni G, Pelicci PG, Di Fiore PP. Genes Dev. 11 2239-2249 (1997)
  19. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Sparks AB, Rider JE, Hoffman NG, Fowlkes DM, Quillam LA, Kay BK. Proc. Natl. Acad. Sci. U.S.A. 93 1540-1544 (1996)
  20. The hematopoietic-specific adaptor protein gads functions in T-cell signaling via interactions with the SLP-76 and LAT adaptors. Liu SK, Fang N, Koretzky GA, McGlade CJ. Curr. Biol. 9 67-75 (1999)
  21. The quaking gene product necessary in embryogenesis and myelination combines features of RNA binding and signal transduction proteins. Ebersole TA, Chen Q, Justice MJ, Artzt K. Nat. Genet. 12 260-265 (1996)
  22. Association of neuronal calcium channels with modular adaptor proteins. Maximov A, Südhof TC, Bezprozvanny I. J. Biol. Chem. 274 24453-24456 (1999)
  23. The crystal structure of a c-Src complex in an active conformation suggests possible steps in c-Src activation. Cowan-Jacob SW, Fendrich G, Manley PW, Jahnke W, Fabbro D, Liebetanz J, Meyer T. Structure 13 861-871 (2005)
  24. Drosophila photoreceptor axon guidance and targeting requires the dreadlocks SH2/SH3 adapter protein. Garrity PA, Rao Y, Salecker I, McGlade J, Pawson T, Zipursky SL. Cell 85 639-650 (1996)
  25. Functional rapidly folding proteins from simplified amino acid sequences. Riddle DS, Santiago JV, Bray-Hall ST, Doshi N, Grantcharova VP, Yi Q, Baker D. Nat. Struct. Biol. 4 805-809 (1997)
  26. A single amino acid in the SH3 domain of Hck determines its high affinity and specificity in binding to HIV-1 Nef protein. Lee CH, Leung B, Lemmon MA, Zheng J, Cowburn D, Kuriyan J, Saksela K. EMBO J. 14 5006-5015 (1995)
  27. The PAG gene product, a stress-induced protein with antioxidant properties, is an Abl SH3-binding protein and a physiological inhibitor of c-Abl tyrosine kinase activity. Wen ST, Van Etten RA. Genes Dev. 11 2456-2467 (1997)
  28. Optimization of specificity in a cellular protein interaction network by negative selection. Zarrinpar A, Park SH, Lim WA. Nature 426 676-680 (2003)
  29. Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Park H, Wahl MI, Afar DE, Turck CW, Rawlings DJ, Tam C, Scharenberg AM, Kinet JP, Witte ON. Immunity 4 515-525 (1996)
  30. Structure of the enabled/VASP homology 1 domain-peptide complex: a key component in the spatial control of actin assembly. Prehoda KE, Lee DJ, Lim WA. Cell 97 471-480 (1999)
  31. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Alexandropoulos K, Cheng G, Baltimore D. Proc. Natl. Acad. Sci. U.S.A. 92 3110-3114 (1995)
  32. Analysis of osm-6, a gene that affects sensory cilium structure and sensory neuron function in Caenorhabditis elegans. Collet J, Spike CA, Lundquist EA, Shaw JE, Herman RK. Genetics 148 187-200 (1998)
  33. Structural basis for the specific interaction of lysine-containing proline-rich peptides with the N-terminal SH3 domain of c-Crk. Wu X, Knudsen B, Feller SM, Zheng J, Sali A, Cowburn D, Hanafusa H, Kuriyan J. Structure 3 215-226 (1995)
  34. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Du Y, Weed SA, Xiong WC, Marshall TD, Parsons JT. Mol. Cell. Biol. 18 5838-5851 (1998)
  35. Regulatory intramolecular association in a tyrosine kinase of the Tec family. Andreotti AH, Bunnell SC, Feng S, Berg LJ, Schreiber SL. Nature 385 93-97 (1997)
  36. Candidate adaptor protein CED-6 promotes the engulfment of apoptotic cells in C. elegans. Liu QA, Hengartner MO. Cell 93 961-972 (1998)
  37. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Mol. Cell 8 1291-1301 (2001)
  38. Cloning of ligand targets: systematic isolation of SH3 domain-containing proteins. Sparks AB, Hoffman NG, McConnell SJ, Fowlkes DM, Kay BK. Nat. Biotechnol. 14 741-744 (1996)
  39. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Jardetzky TS, Brown JH, Gorga JC, Stern LJ, Urban RG, Strominger JL, Wiley DC. Proc. Natl. Acad. Sci. U.S.A. 93 734-738 (1996)
  40. Formin binding proteins bear WWP/WW domains that bind proline-rich peptides and functionally resemble SH3 domains. Chan DC, Bedford MT, Leder P. EMBO J. 15 1045-1054 (1996)
  41. Stromelysin-1: three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Becker JW, Marcy AI, Rokosz LL, Axel MG, Burbaum JJ, Fitzgerald PM, Cameron PM, Esser CK, Hagmann WK, Hermes JD. Protein Sci. 4 1966-1976 (1995)
  42. Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Feng S, Kasahara C, Rickles RJ, Schreiber SL. Proc. Natl. Acad. Sci. U.S.A. 92 12408-12415 (1995)
  43. A survey of left-handed polyproline II helices. Stapley BJ, Creamer TP. Protein Sci. 8 587-595 (1999)
  44. Structural changes in the carboxyl terminus of the gap junction protein connexin43 indicates signaling between binding domains for c-Src and zonula occludens-1. Sorgen PL, Duffy HS, Sahoo P, Coombs W, Delmar M, Spray DC. J. Biol. Chem. 279 54695-54701 (2004)
  45. Phosphorylation regulates tau interactions with Src homology 3 domains of phosphatidylinositol 3-kinase, phospholipase Cgamma1, Grb2, and Src family kinases. Reynolds CH, Garwood CJ, Wray S, Price C, Kellie S, Perera T, Zvelebil M, Yang A, Sheppard PW, Varndell IM, Hanger DP, Anderton BH. J Biol Chem 283 18177-18186 (2008)
  46. MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. Weskamp G, Krätzschmar J, Reid MS, Blobel CP. J. Cell Biol. 132 717-726 (1996)
  47. Crystal structure of the amphiphysin-2 SH3 domain and its role in the prevention of dynamin ring formation. Owen DJ, Wigge P, Vallis Y, Moore JD, Evans PR, McMahon HT. EMBO J. 17 5273-5285 (1998)
  48. Simplified amino acid alphabets for protein fold recognition and implications for folding. Murphy LR, Wallqvist A, Levy RM. Protein Eng. 13 149-152 (2000)
  49. Phosphoinositide-3 kinase binds to a proline-rich motif in the Na+, K+-ATPase alpha subunit and regulates its trafficking. Yudowski GA, Efendiev R, Pedemonte CH, Katz AI, Berggren PO, Bertorello AM. Proc. Natl. Acad. Sci. U.S.A. 97 6556-6561 (2000)
  50. Structural basis for the recruitment of profilin-actin complexes during filament elongation by Ena/VASP. Ferron F, Rebowski G, Lee SH, Dominguez R. EMBO J. 26 4597-4606 (2007)
  51. Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Brown MC, Cary LA, Jamieson JS, Cooper JA, Turner CE. Mol. Biol. Cell 16 4316-4328 (2005)
  52. Diverse recognition of non-PxxP peptide ligands by the SH3 domains from p67(phox), Grb2 and Pex13p. Kami K, Takeya R, Sumimoto H, Kohda D. EMBO J. 21 4268-4276 (2002)
  53. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Shi J, Ross CR, Leto TL, Blecha F. Proc. Natl. Acad. Sci. U.S.A. 93 6014-6018 (1996)
  54. Structure of the Homer EVH1 domain-peptide complex reveals a new twist in polyproline recognition. Beneken J, Tu JC, Xiao B, Nuriya M, Yuan JP, Worley PF, Leahy DJ. Neuron 26 143-154 (2000)
  55. beta-arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. Role of beta-arrestin1-dependent targeting of c-SRC in receptor endocytosis. Miller WE, Maudsley S, Ahn S, Khan KD, Luttrell LM, Lefkowitz RJ. J. Biol. Chem. 275 11312-11319 (2000)
  56. Phage display selection of ligand residues important for Src homology 3 domain binding specificity. Rickles RJ, Botfield MC, Zhou XM, Henry PA, Brugge JS, Zoller MJ. Proc. Natl. Acad. Sci. U.S.A. 92 10909-10913 (1995)
  57. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. Holdorf AD, Green JM, Levin SD, Denny MF, Straus DB, Link V, Changelian PS, Allen PM, Shaw AS. J. Exp. Med. 190 375-384 (1999)
  58. SH3 domain recognition of a proline-independent tyrosine-based RKxxYxxY motif in immune cell adaptor SKAP55. Kang H, Freund C, Duke-Cohan JS, Musacchio A, Wagner G, Rudd CE. EMBO J. 19 2889-2899 (2000)
  59. Structure of the N-WASP EVH1 domain-WIP complex: insight into the molecular basis of Wiskott-Aldrich Syndrome. Volkman BF, Prehoda KE, Scott JA, Peterson FC, Lim WA. Cell 111 565-576 (2002)
  60. The identification of conserved interactions within the SH3 domain by alignment of sequences and structures. Larson SM, Davidson AR. Protein Sci. 9 2170-2180 (2000)
  61. Structure of rat procathepsin B: model for inhibition of cysteine protease activity by the proregion. Cygler M, Sivaraman J, Grochulski P, Coulombe R, Storer AC, Mort JS. Structure 4 405-416 (1996)
  62. Identification of a human PTS1 receptor docking protein directly required for peroxisomal protein import. Fransen M, Terlecky SR, Subramani S. Proc. Natl. Acad. Sci. U.S.A. 95 8087-8092 (1998)
  63. Characterization of domain-peptide interaction interface: prediction of SH3 domain-mediated protein-protein interaction network in yeast by generic structure-based models. Hou T, Li N, Li Y, Wang W. J. Proteome Res. 11 2982-2995 (2012)
  64. Human skeletal muscle nebulin sequence encodes a blueprint for thin filament architecture. Sequence motifs and affinity profiles of tandem repeats and terminal SH3. Wang K, Knipfer M, Huang QQ, van Heerden A, Hsu LC, Gutierrez G, Quian XL, Stedman H. J. Biol. Chem. 271 4304-4314 (1996)
  65. Identification of a new Pyk2 target protein with Arf-GAP activity. Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J. Mol. Cell. Biol. 19 2338-2350 (1999)
  66. Phosphorylation of TNF-alpha converting enzyme by gastrin-releasing peptide induces amphiregulin release and EGF receptor activation. Zhang Q, Thomas SM, Lui VW, Xi S, Siegfried JM, Fan H, Smithgall TE, Mills GB, Grandis JR. Proc. Natl. Acad. Sci. U.S.A. 103 6901-6906 (2006)
  67. Vav family proteins couple to diverse cell surface receptors. Moores SL, Selfors LM, Fredericks J, Breit T, Fujikawa K, Alt FW, Brugge JS, Swat W. Mol. Cell. Biol. 20 6364-6373 (2000)
  68. Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonal cell proliferation and fate decisions. Kanungo J, Pratt SJ, Marie H, Longmore GD. Mol. Biol. Cell 11 3299-3313 (2000)
  69. SRC catalytic but not scaffolding function is needed for integrin-regulated tyrosine phosphorylation, cell migration, and cell spreading. Cary LA, Klinghoffer RA, Sachsenmaier C, Cooper JA. Mol. Cell. Biol. 22 2427-2440 (2002)
  70. Structure of the profilin-poly-L-proline complex involved in morphogenesis and cytoskeletal regulation. Mahoney NM, Janmey PA, Almo SC. Nat. Struct. Biol. 4 953-960 (1997)
  71. Interaction between PAK and nck: a template for Nck targets and role of PAK autophosphorylation. Zhao ZS, Manser E, Lim L. Mol. Cell. Biol. 20 3906-3917 (2000)
  72. The solution structure of human thioredoxin complexed with its target from Ref-1 reveals peptide chain reversal. Qin J, Clore GM, Kennedy WP, Kuszewski J, Gronenborn AM. Structure 4 613-620 (1996)
  73. Can we infer peptide recognition specificity mediated by SH3 domains? Cesareni G, Panni S, Nardelli G, Castagnoli L. FEBS Lett. 513 38-44 (2002)
  74. Structural and molecular mechanisms of gap junction remodeling in epicardial border zone myocytes following myocardial infarction. Kieken F, Mutsaers N, Dolmatova E, Virgil K, Wit AL, Kellezi A, Hirst-Jensen BJ, Duffy HS, Sorgen PL. Circ. Res. 104 1103-1112 (2009)
  75. p619, a giant protein related to the chromosome condensation regulator RCC1, stimulates guanine nucleotide exchange on ARF1 and Rab proteins. Rosa JL, Casaroli-Marano RP, Buckler AJ, Vilaró S, Barbacid M. EMBO J. 15 4262-4273 (1996)
  76. The Epstein-Barr virus latent membrane protein 2A PY motif recruits WW domain-containing ubiquitin-protein ligases. Ikeda M, Ikeda A, Longan LC, Longnecker R. Virology 268 178-191 (2000)
  77. The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Marion E, Kaisaki PJ, Pouillon V, Gueydan C, Levy JC, Bodson A, Krzentowski G, Daubresse JC, Mockel J, Behrends J, Servais G, Szpirer C, Kruys V, Gauguier D, Schurmans S. Diabetes 51 2012-2017 (2002)
  78. SH3-Domain binding function of HIV-1 Nef is required for association with a PAK-related kinase. Manninen A, Hiipakka M, Vihinen M, Lu W, Mayer BJ, Saksela K. Virology 250 273-282 (1998)
  79. Slob, a novel protein that interacts with the Slowpoke calcium-dependent potassium channel. Schopperle WM, Holmqvist MH, Zhou Y, Wang J, Wang Z, Griffith LC, Keselman I, Kusinitz F, Dagan D, Levitan IB. Neuron 20 565-573 (1998)
  80. ERF: an ETS domain protein with strong transcriptional repressor activity, can suppress ets-associated tumorigenesis and is regulated by phosphorylation during cell cycle and mitogenic stimulation. Sgouras DN, Athanasiou MA, Beal GJ, Fisher RJ, Blair DG, Mavrothalassitis GJ. EMBO J. 14 4781-4793 (1995)
  81. Structural basis for specific binding of the Gads SH3 domain to an RxxK motif-containing SLP-76 peptide: a novel mode of peptide recognition. Liu Q, Berry D, Nash P, Pawson T, McGlade CJ, Li SS. Mol. Cell 11 471-481 (2003)
  82. A family of phosphoinositide 3-kinases in Drosophila identifies a new mediator of signal transduction. MacDougall LK, Domin J, Waterfield MD. Curr. Biol. 5 1404-1415 (1995)
  83. A novel mechanism of modulation of hyperpolarization-activated cyclic nucleotide-gated channels by Src kinase. Zong X, Eckert C, Yuan H, Wahl-Schott C, Abicht H, Fang L, Li R, Mistrik P, Gerstner A, Much B, Baumann L, Michalakis S, Zeng R, Chen Z, Biel M. J Biol Chem 280 34224-34232 (2005)
  84. Improving SH3 domain ligand selectivity using a non-natural scaffold. Nguyen JT, Porter M, Amoui M, Miller WT, Zuckermann RN, Lim WA. Chem. Biol. 7 463-473 (2000)
  85. Activation of the c-Jun N-terminal kinase pathway by a novel protein kinase related to human germinal center kinase. Diener K, Wang XS, Chen C, Meyer CF, Keesler G, Zukowski M, Tan TH, Yao Z. Proc. Natl. Acad. Sci. U.S.A. 94 9687-9692 (1997)
  86. Structure, expression, and chromosome mapping of LATS2, a mammalian homologue of the Drosophila tumor suppressor gene lats/warts. Yabuta N, Fujii T, Copeland NG, Gilbert DJ, Jenkins NA, Nishiguchi H, Endo Y, Toji S, Tanaka H, Nishimune Y, Nojima H. Genomics 63 263-270 (2000)
  87. EEN encodes for a member of a new family of proteins containing an Src homology 3 domain and is the third gene located on chromosome 19p13 that fuses to MLL in human leukemia. So CW, Caldas C, Liu MM, Chen SJ, Huang QH, Gu LJ, Sham MH, Wiedemann LM, Chan LC. Proc. Natl. Acad. Sci. U.S.A. 94 2563-2568 (1997)
  88. Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP protein. Ren XR, Du QS, Huang YZ, Ao SZ, Mei L, Xiong WC. J. Cell Biol. 152 971-984 (2001)
  89. The protein product of the c-cbl protooncogene is phosphorylated after B cell receptor stimulation and binds the SH3 domain of Bruton's tyrosine kinase. Cory GO, Lovering RC, Hinshelwood S, MacCarthy-Morrogh L, Levinsky RJ, Kinnon C. J. Exp. Med. 182 611-615 (1995)
  90. Novel recognition mode between Vav and Grb2 SH3 domains. Nishida M, Nagata K, Hachimori Y, Horiuchi M, Ogura K, Mandiyan V, Schlessinger J, Inagaki F. EMBO J. 20 2995-3007 (2001)
  91. Patellin1, a novel Sec14-like protein, localizes to the cell plate and binds phosphoinositides. Peterman TK, Ohol YM, McReynolds LJ, Luna EJ. Plant Physiol. 136 3080-94; discussion 3001-2 (2004)
  92. Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions. Weng Z, Rickles RJ, Feng S, Richard S, Shaw AS, Schreiber SL, Brugge JS. Mol. Cell. Biol. 15 5627-5634 (1995)
  93. The SH3 domain of Eps8 exists as a novel intertwined dimer. Kishan KV, Scita G, Wong WT, Di Fiore PP, Newcomer ME. Nat. Struct. Biol. 4 739-743 (1997)
  94. Ajuba, a novel LIM protein, interacts with Grb2, augments mitogen-activated protein kinase activity in fibroblasts, and promotes meiotic maturation of Xenopus oocytes in a Grb2- and Ras-dependent manner. Goyal RK, Lin P, Kanungo J, Payne AS, Muslin AJ, Longmore GD. Mol. Cell. Biol. 19 4379-4389 (1999)
  95. Synthetic ligands discovered by in vitro selection. Wrenn SJ, Weisinger RM, Halpin DR, Harbury PB. J. Am. Chem. Soc. 129 13137-13143 (2007)
  96. The Dictyostelium discoideum family of Rho-related proteins. Rivero F, Dislich H, Glöckner G, Noegel AA. Nucleic Acids Res. 29 1068-1079 (2001)
  97. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. Hou T, Chen K, McLaughlin WA, Lu B, Wang W. PLoS Comput. Biol. 2 e1 (2006)
  98. Crystal structure of the abl-SH3 domain complexed with a designed high-affinity peptide ligand: implications for SH3-ligand interactions. Pisabarro MT, Serrano L, Wilmanns M. J. Mol. Biol. 281 513-521 (1998)
  99. PNRC: a proline-rich nuclear receptor coregulatory protein that modulates transcriptional activation of multiple nuclear receptors including orphan receptors SF1 (steroidogenic factor 1) and ERRalpha1 (estrogen related receptor alpha-1). Zhou D, Quach KM, Yang C, Lee SY, Pohajdak B, Chen S. Mol Endocrinol 14 986-998 (2000)
  100. The peroxisomal membrane protein Pex13p shows a novel mode of SH3 interaction. Barnett P, Bottger G, Klein AT, Tabak HF, Distel B. EMBO J. 19 6382-6391 (2000)
  101. Insulin-stimulated trafficking of ENaC in renal cells requires PI 3-kinase activity. Blazer-Yost BL, Esterman MA, Vlahos CJ. Am. J. Physiol., Cell Physiol. 284 C1645-53 (2003)
  102. Pex14p is a member of the protein linkage map of Pex5p. Brocard C, Lametschwandtner G, Koudelka R, Hartig A. EMBO J. 16 5491-5500 (1997)
  103. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Wahl MI, Fluckiger AC, Kato RM, Park H, Witte ON, Rawlings DJ. Proc. Natl. Acad. Sci. U.S.A. 94 11526-11533 (1997)
  104. A novel SH3-containing human gene family preferentially expressed in the central nervous system. Giachino C, Lantelme E, Lanzetti L, Saccone S, Bella Valle G, Migone N. Genomics 41 427-434 (1997)
  105. Characterization of the beta-dystroglycan-growth factor receptor 2 (Grb2) interaction. Russo K, Di Stasio E, Macchia G, Rosa G, Brancaccio A, Petrucci TC. Biochem. Biophys. Res. Commun. 274 93-98 (2000)
  106. Scaffolding protein Gab2 mediates differentiation signaling downstream of Fms receptor tyrosine kinase. Liu Y, Jenkins B, Shin JL, Rohrschneider LR. Mol. Cell. Biol. 21 3047-3056 (2001)
  107. The SH2/SH3 adaptor protein dock interacts with the Ste20-like kinase misshapen in controlling growth cone motility. Ruan W, Pang P, Rao Y. Neuron 24 595-605 (1999)
  108. The role of protein-tyrosine phosphatase 1B in integrin signaling. Liang F, Lee SY, Liang J, Lawrence DS, Zhang ZY. J. Biol. Chem. 280 24857-24863 (2005)
  109. Role of the SH3-ligand domain of simian immunodeficiency virus Nef in interaction with Nef-associated kinase and simian AIDS in rhesus macaques. Khan IH, Sawai ET, Antonio E, Weber CJ, Mandell CP, Montbriand P, Luciw PA. J. Virol. 72 5820-5830 (1998)
  110. Solution structure and peptide binding of the SH3 domain from human Fyn. Morton CJ, Pugh DJ, Brown EL, Kahmann JD, Renzoni DA, Campbell ID. Structure 4 705-714 (1996)
  111. Affinity and specificity requirements for the first Src homology 3 domain of the Crk proteins. Knudsen BS, Zheng J, Feller SM, Mayer JP, Burrell SK, Cowburn D, Hanafusa H. EMBO J. 14 2191-2198 (1995)
  112. Tau dephosphorylation at tau-1 site correlates with its association to cell membrane. Arrasate M, Pérez M, Avila J. Neurochem. Res. 25 43-50 (2000)
  113. Tyrosine phosphorylation of Grb2 by Bcr/Abl and epidermal growth factor receptor: a novel regulatory mechanism for tyrosine kinase signaling. Li S, Couvillon AD, Brasher BB, Van Etten RA. EMBO J. 20 6793-6804 (2001)
  114. Cytoskeletal reorganization induced by engagement of the NG2 proteoglycan leads to cell spreading and migration. Fang X, Burg MA, Barritt D, Dahlin-Huppe K, Nishiyama A, Stallcup WB. Mol. Biol. Cell 10 3373-3387 (1999)
  115. SH3P7 is a cytoskeleton adapter protein and is coupled to signal transduction from lymphocyte antigen receptors. Larbolette O, Wollscheid B, Schweikert J, Nielsen PJ, Wienands J. Mol. Cell. Biol. 19 1539-1546 (1999)
  116. A Sos-derived peptidimer blocks the Ras signaling pathway by binding both Grb2 SH3 domains and displays antiproliferative activity. Cussac D, Vidal M, Leprince C, Liu WQ, Cornille F, Tiraboschi G, Roques BP, Garbay C. FASEB J. 13 31-38 (1999)
  117. SH3 domain-dependent interactions of endophilin with amphiphysin. Micheva KD, Ramjaun AR, Kay BK, McPherson PS. FEBS Lett. 414 308-312 (1997)
  118. The endocytic protein intersectin is a major binding partner for the Ras exchange factor mSos1 in rat brain. Tong XK, Hussain NK, de Heuvel E, Kurakin A, Abi-Jaoude E, Quinn CC, Olson MF, Marais R, Baranes D, Kay BK, McPherson PS. EMBO J. 19 1263-1271 (2000)
  119. Gab3, a new DOS/Gab family member, facilitates macrophage differentiation. Wolf I, Jenkins BJ, Liu Y, Seiffert M, Custodio JM, Young P, Rohrschneider LR. Mol. Cell. Biol. 22 231-244 (2002)
  120. Mapping the domains of interaction of p40phox with both p47phox and p67phox of the neutrophil oxidase complex using the two-hybrid system. Fuchs A, Dagher MC, Vignais PV. J. Biol. Chem. 270 5695-5697 (1995)
  121. Mutations altering the mitochondrial-cytoplasmic distribution of Mod5p implicate the actin cytoskeleton and mRNA 3' ends and/or protein synthesis in mitochondrial delivery. Zoladek T, Vaduva G, Hunter LA, Boguta M, Go BD, Martin NC, Hopper AK. Mol. Cell. Biol. 15 6884-6894 (1995)
  122. Ahi-1, a novel gene encoding a modular protein with WD40-repeat and SH3 domains, is targeted by the Ahi-1 and Mis-2 provirus integrations. Jiang X, Hanna Z, Kaouass M, Girard L, Jolicoeur P. J. Virol. 76 9046-9059 (2002)
  123. The extracellular human melanoma inhibitory activity (MIA) protein adopts an SH3 domain-like fold. Stoll R, Renner C, Zweckstetter M, Brüggert M, Ambrosius D, Palme S, Engh RA, Golob M, Breibach I, Buettner R, Voelter W, Holak TA, Bosserhoff AK. EMBO J. 20 340-349 (2001)
  124. The role of backbone motions in ligand binding to the c-Src SH3 domain. Wang C, Pawley NH, Nicholson LK. J. Mol. Biol. 313 873-887 (2001)
  125. Tight association of GRB2 with receptor protein-tyrosine phosphatase alpha is mediated by the SH2 and C-terminal SH3 domains. den Hertog J, Hunter T. EMBO J. 15 3016-3027 (1996)
  126. NMR identification of the Tom20 binding segment in mitochondrial presequences. Muto T, Obita T, Abe Y, Shodai T, Endo T, Kohda D. J. Mol. Biol. 306 137-143 (2001)
  127. Unraveling principles of lead discovery: from unfrustrated energy landscapes to novel molecular anchors. Rejto PA, Verkhivker GM. Proc. Natl. Acad. Sci. U.S.A. 93 8945-8950 (1996)
  128. Shc contains two Grb2 binding sites needed for efficient formation of complexes with SOS in B lymphocytes. Harmer SL, DeFranco AL. Mol. Cell. Biol. 17 4087-4095 (1997)
  129. Metalloprotease-disintegrin ADAM 12 binds to the SH3 domain of Src and activates Src tyrosine kinase in C2C12 cells. Kang Q, Cao Y, Zolkiewska A. Biochem. J. 352 Pt 3 883-892 (2000)
  130. PACSIN2 is a regulator of the metalloprotease/disintegrin ADAM13. Cousin H, Gaultier A, Bleux C, Darribère T, Alfandari D. Dev. Biol. 227 197-210 (2000)
  131. A specific intermolecular association between the regulatory domains of a Tec family kinase. Brazin KN, Fulton DB, Andreotti AH. J. Mol. Biol. 302 607-623 (2000)
  132. Protein-protein interaction affinity plays a crucial role in controlling the Sho1p-mediated signal transduction pathway in yeast. Marles JA, Dahesh S, Haynes J, Andrews BJ, Davidson AR. Mol. Cell 14 813-823 (2004)
  133. Expanded functions in the apical cell domain to regulate the growth rate of imaginal discs. Boedigheimer MJ, Nguyen KP, Bryant PJ. Dev. Genet. 20 103-110 (1997)
  134. Regulation of epidermal growth factor receptor ubiquitination and trafficking by the USP8·STAM complex. Berlin I, Schwartz H, Nash PD. J. Biol. Chem. 285 34909-34921 (2010)
  135. AMSH interacts with ESCRT-0 to regulate the stability and trafficking of CXCR4. Sierra MI, Wright MH, Nash PD. J. Biol. Chem. 285 13990-14004 (2010)
  136. Biochemical and structural studies of ASPP proteins reveal differential binding to p53, p63, and p73. Robinson RA, Lu X, Jones EY, Siebold C. Structure 16 259-268 (2008)
  137. Characterization of a brain-specific Rho GTPase-activating protein, p200RhoGAP. Moon SY, Zang H, Zheng Y. J. Biol. Chem. 278 4151-4159 (2003)
  138. Dynamin isoform-specific interaction with the shank/ProSAP scaffolding proteins of the postsynaptic density and actin cytoskeleton. Okamoto PM, Gamby C, Wells D, Fallon J, Vallee RB. J. Biol. Chem. 276 48458-48465 (2001)
  139. Grb2 SH3 binding to peptides from Sos: evaluation of a general model for SH3-ligand interactions. Simon JA, Schreiber SL. Chem. Biol. 2 53-60 (1995)
  140. Multiple SH3 domain interactions regulate NADPH oxidase assembly in whole cells. de Mendez I, Adams AG, Sokolic RA, Malech HL, Leto TL. EMBO J. 15 1211-1220 (1996)
  141. Role of SH3 domain-containing proteins in clathrin-mediated vesicle trafficking in Arabidopsis. Lam BC, Sage TL, Bianchi F, Blumwald E. Plant Cell 13 2499-2512 (2001)
  142. Identification of Grb2 as a novel binding partner of tumor necrosis factor (TNF) receptor I. Hildt E, Oess S. J. Exp. Med. 189 1707-1714 (1999)
  143. Novel Src homology 3 domain-binding motifs identified from proteomic screen of a Pro-rich region. Jia CY, Nie J, Wu C, Li C, Li SS. Mol. Cell Proteomics 4 1155-1166 (2005)
  144. Solution structure of the Grb2 N-terminal SH3 domain complexed with a ten-residue peptide derived from SOS: direct refinement against NOEs, J-couplings and 1H and 13C chemical shifts. Wittekind M, Mapelli C, Lee V, Goldfarb V, Friedrichs MS, Meyers CA, Mueller L. J. Mol. Biol. 267 933-952 (1997)
  145. Vinculin proteolysis unmasks an ActA homolog for actin-based Shigella motility. Laine RO, Zeile W, Kang F, Purich DL, Southwick FS. J. Cell Biol. 138 1255-1264 (1997)
  146. Novel rab GAP-like protein, CIP85, interacts with connexin43 and induces its degradation. Lan Z, Kurata WE, Martyn KD, Jin C, Lau AF. Biochemistry 44 2385-2396 (2005)
  147. Synapsin I interacts with c-Src and stimulates its tyrosine kinase activity. Onofri F, Giovedì S, Vaccaro P, Czernik AJ, Valtorta F, De Camilli P, Greengard P, Benfenati F. Proc. Natl. Acad. Sci. U.S.A. 94 12168-12173 (1997)
  148. The Cdc42 binding and scaffolding activities of the fission yeast adaptor protein Scd2. Endo M, Shirouzu M, Yokoyama S. J. Biol. Chem. 278 843-852 (2003)
  149. A molecular mechanism for autoinhibition of the tandem SH3 domains of p47phox, the regulatory subunit of the phagocyte NADPH oxidase. Yuzawa S, Suzuki NN, Fujioka Y, Ogura K, Sumimoto H, Inagaki F. Genes Cells 9 443-456 (2004)
  150. Interaction of nebulin SH3 domain with titin PEVK and myopalladin: implications for the signaling and assembly role of titin and nebulin. Ma K, Wang K. FEBS Lett. 532 273-278 (2002)
  151. Molecular recognition properties of FN3 monobodies that bind the Src SH3 domain. Karatan E, Merguerian M, Han Z, Scholle MD, Koide S, Kay BK. Chem. Biol. 11 835-844 (2004)
  152. Structural characterization of Lyn-SH3 domain in complex with a herpesviral protein reveals an extended recognition motif that enhances binding affinity. Bauer F, Schweimer K, Meiselbach H, Hoffmann S, Rösch P, Sticht H. Protein Sci. 14 2487-2498 (2005)
  153. ABM-1 and ABM-2 homology sequences: consensus docking sites for actin-based motility defined by oligoproline regions in Listeria ActA surface protein and human VASP. Purich DL, Southwick FS. Biochem. Biophys. Res. Commun. 231 686-691 (1997)
  154. Biochemical and genetic analysis of the Drk SH2/SH3 adaptor protein of Drosophila. Raabe T, Olivier JP, Dickson B, Liu X, Gish GD, Pawson T, Hafen E. EMBO J. 14 2509-2518 (1995)
  155. Local structural changes caused by peptidyl-prolyl cis/trans isomerization in the native state of proteins. Reimer U, Fischer G. Biophys. Chem. 96 203-212 (2002)
  156. The myosin-I-binding protein Acan125 binds the SH3 domain and belongs to the superfamily of leucine-rich repeat proteins. Xu P, Mitchelhill KI, Kobe B, Kemp BE, Zot HG. Proc. Natl. Acad. Sci. U.S.A. 94 3685-3690 (1997)
  157. Common mechanism of ligand recognition by group II/III WW domains: redefining their functional classification. Kato Y, Nagata K, Takahashi M, Lian L, Herrero JJ, Sudol M, Tanokura M. J. Biol. Chem. 279 31833-31841 (2004)
  158. Interaction of two proline-rich sequences of cell adhesion kinase beta with SH3 domains of p130Cas-related proteins and a GTPase-activating protein, Graf. Ohba T, Ishino M, Aoto H, Sasaki T. Biochem. J. 330 ( Pt 3) 1249-1254 (1998)
  159. Structural basis for a novel intrapeptidyl H-bond and reverse binding of c-Cbl-TKB domain substrates. Ng C, Jackson RA, Buschdorf JP, Sun Q, Guy GR, Sivaraman J. EMBO J. 27 804-816 (2008)
  160. Structural basis for competitive interactions of Pex14 with the import receptors Pex5 and Pex19. Neufeld C, Filipp FV, Simon B, Neuhaus A, Schüller N, David C, Kooshapur H, Madl T, Erdmann R, Schliebs W, Wilmanns M, Sattler M. EMBO J. 28 745-754 (2009)
  161. The ScPex13p SH3 domain exposes two distinct binding sites for Pex5p and Pex14p. Pires JR, Hong X, Brockmann C, Volkmer-Engert R, Schneider-Mergener J, Oschkinat H, Erdmann R. J. Mol. Biol. 326 1427-1435 (2003)
  162. Cbl promotes clustering of endocytic adaptor proteins. Jozic D, Cárdenes N, Deribe YL, Moncalián G, Hoeller D, Groemping Y, Dikic I, Rittinger K, Bravo J. Nat. Struct. Mol. Biol. 12 972-979 (2005)
  163. Kinetics of Src homology 3 domain association with the proline-rich domain of dynamins: specificity, occlusion, and the effects of phosphorylation. Solomaha E, Szeto FL, Yousef MA, Palfrey HC. J. Biol. Chem. 280 23147-23156 (2005)
  164. Molecular cloning of a 74-kDa regulatory subunit (B" or delta) of human protein phosphatase 2A. Tanabe O, Nagase T, Murakami T, Nozaki H, Usui H, Nishito Y, Hayashi H, Kagamiyama H, Takeda M. FEBS Lett. 379 107-111 (1996)
  165. Specificity of p47phox SH3 domain interactions in NADPH oxidase assembly and activation. de Mendez I, Homayounpour N, Leto TL. Mol. Cell. Biol. 17 2177-2185 (1997)
  166. X-ray crystallographic studies of serotonin N-acetyltransferase catalysis and inhibition. Wolf E, De Angelis J, Khalil EM, Cole PA, Burley SK. J. Mol. Biol. 317 215-224 (2002)
  167. SNX9 as an adaptor for linking synaptojanin-1 to the Cdc42 effector ACK1. Yeow-Fong L, Lim L, Manser E. FEBS Lett. 579 5040-5048 (2005)
  168. Syndapin I and endophilin I bind overlapping proline-rich regions of dynamin I: role in synaptic vesicle endocytosis. Anggono V, Robinson PJ. J. Neurochem. 102 931-943 (2007)
  169. The X-linked lymphoproliferative disease gene product SAP associates with PAK-interacting exchange factor and participates in T cell activation. Gu C, Tangye SG, Sun X, Luo Y, Lin Z, Wu J. Proc. Natl. Acad. Sci. U.S.A. 103 14447-14452 (2006)
  170. Thermodynamic dissection of the binding energetics of proline-rich peptides to the Abl-SH3 domain: implications for rational ligand design. Palencia A, Cobos ES, Mateo PL, Martínez JC, Luque I. J. Mol. Biol. 336 527-537 (2004)
  171. Mammalian son of sevenless Guanine nucleotide exchange factors: old concepts and new perspectives. Rojas JM, Oliva JL, Santos E. Genes Cancer 2 298-305 (2011)
  172. Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly. Aitio O, Hellman M, Kazlauskas A, Vingadassalom DF, Leong JM, Saksela K, Permi P. Proc. Natl. Acad. Sci. U.S.A. 107 21743-21748 (2010)
  173. Versatile modes of peptide recognition by the AAA+ adaptor protein SspB. Levchenko I, Grant RA, Flynn JM, Sauer RT, Baker TA. Nat. Struct. Mol. Biol. 12 520-525 (2005)
  174. A novel transmembrane semaphorin can bind c-src. Eckhardt F, Behar O, Calautti E, Yonezawa K, Nishimoto I, Fishman MC. Mol. Cell. Neurosci. 9 409-419 (1997)
  175. Mutational analysis of the regulatory function of the c-Abl Src homology 3 domain. Brasher BB, Roumiantsev S, Van Etten RA. Oncogene 20 7744-7752 (2001)
  176. SH3 domains with high affinity and engineered ligand specificities targeted to HIV-1 Nef. Hiipakka M, Poikonen K, Saksela K. J. Mol. Biol. 293 1097-1106 (1999)
  177. Thermal unfolding of small proteins with SH3 domain folding pattern. Knapp S, Mattson PT, Christova P, Berndt KD, Karshikoff A, Vihinen M, Smith CI, Ladenstein R. Proteins 31 309-319 (1998)
  178. Anti-microbial activity and cell binding are controlled by sequence determinants in the anti-microbial peptide PR-39. Chan YR, Zanetti M, Gennaro R, Gallo RL. J. Invest. Dermatol. 116 230-235 (2001)
  179. Identification of profilin and src homology 3 domains as binding partners for Drosophila enabled. Ahern-Djamali SM, Bachmann C, Hua P, Reddy SK, Kastenmeier AS, Walter U, Hoffmann FM. Proc. Natl. Acad. Sci. U.S.A. 96 4977-4982 (1999)
  180. Meltrin alpha cytoplasmic domain interacts with SH3 domains of Src and Grb2 and is phosphorylated by v-Src. Suzuki A, Kadota N, Hara T, Nakagami Y, Izumi T, Takenawa T, Sabe H, Endo T. Oncogene 19 5842-5850 (2000)
  181. The tryptophan switch: changing ligand-binding specificity from type I to type II in SH3 domains. Fernandez-Ballester G, Blanes-Mira C, Serrano L. J. Mol. Biol. 335 619-629 (2004)
  182. The v-Src SH3 domain facilitates a cell adhesion-independent association with focal adhesion kinase. Hauck CR, Hunter T, Schlaepfer DD. J. Biol. Chem. 276 17653-17662 (2001)
  183. Interaction of peptides derived from the Fas ligand with the Fyn-SH3 domain. Hane M, Lowin B, Peitsch M, Becker K, Tschopp J. FEBS Lett. 373 265-268 (1995)
  184. Posttransition state desolvation of the hydrophobic core of the src-SH3 protein domain. Guo W, Lampoudi S, Shea JE. Biophys. J. 85 61-69 (2003)
  185. The kinase, SH3, and SH2 domains of Lck play critical roles in T-cell activation after ZAP-70 membrane localization. Yamasaki S, Takamatsu M, Iwashima M. Mol. Cell. Biol. 16 7151-7160 (1996)
  186. Evolution of binding affinity in a WW domain probed by phage display. Dalby PA, Hoess RH, DeGrado WF. Protein Sci. 9 2366-2376 (2000)
  187. Genetic evidence for a role of centrin-associated proteins in the organization and dynamics of the infraciliary lattice in Paramecium. Klotz C, Garreau de Loubresse N, Ruiz F, Beisson J. Cell Motil. Cytoskeleton 38 172-186 (1997)
  188. Ligand-induced strain in hydrogen bonds of the c-Src SH3 domain detected by NMR. Cordier F, Wang C, Grzesiek S, Nicholson LK. J. Mol. Biol. 304 497-505 (2000)
  189. Structural basis for polyproline recognition by the FE65 WW domain. Meiyappan M, Birrane G, Ladias JAA. J. Mol. Biol. 372 970-980 (2007)
  190. The N-terminal domain of Homer/Vesl is a new class II EVH1 domain. Barzik M, Carl UD, Schubert WD, Frank R, Wehland J, Heinz DW. J. Mol. Biol. 309 155-169 (2001)
  191. The Saccharomyces cerevisiae actin patch protein App1p is a phosphatidate phosphatase enzyme. Chae M, Han GS, Carman GM. J. Biol. Chem. 287 40186-40196 (2012)
  192. The functions of the actin nucleator Cobl in cellular morphogenesis critically depend on syndapin I. Schwintzer L, Koch N, Ahuja R, Grimm J, Kessels MM, Qualmann B. EMBO J. 30 3147-3159 (2011)
  193. Complete nucleotide sequence, expression, and chromosomal localisation of human mixed-lineage kinase 2. Dorow DS, Devereux L, Tu GF, Price G, Nicholl JK, Sutherland GR, Simpson RJ. Eur. J. Biochem. 234 492-500 (1995)
  194. Structural basis of beta-catenin recognition by Tax-interacting protein-1. Zhang J, Yan X, Shi C, Yang X, Guo Y, Tian C, Long J, Shen Y. J. Mol. Biol. 384 255-263 (2008)
  195. The properties of the protein tyrosine phosphatase PTPMEG. Gu M, Majerus PW. J. Biol. Chem. 271 27751-27759 (1996)
  196. Two-hybrid analysis of human salivary mucin MUC7 interactions. Bruno LS, Li X, Wang L, Soares RV, Siqueira CC, Oppenheim FG, Troxler RF, Offner GD. Biochim. Biophys. Acta 1746 65-72 (2005)
  197. ADAM12 localizes with c-Src to actin-rich structures at the cell periphery and regulates Src kinase activity. Stautz D, Sanjay A, Hansen MT, Albrechtsen R, Wewer UM, Kveiborg M. Exp. Cell Res. 316 55-67 (2010)
  198. Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles. Mochizuki Y, Takenawa T. J. Biol. Chem. 274 36790-36795 (1999)
  199. Pichia pastoris Pex14p, a phosphorylated peroxisomal membrane protein, is part of a PTS-receptor docking complex and interacts with many peroxins. Johnson MA, Snyder WB, Cereghino JL, Veenhuis M, Subramani S, Cregg JM. Yeast 18 621-641 (2001)
  200. Solution structures of two FHA1-phosphothreonine peptide complexes provide insight into the structural basis of the ligand specificity of FHA1 from yeast Rad53. Yuan C, Yongkiettrakul S, Byeon IJ, Zhou S, Tsai MD. J. Mol. Biol. 314 563-575 (2001)
  201. The interaction between EEN and Abi-1, two MLL fusion partners, and synaptojanin and dynamin: implications for leukaemogenesis. So CW, So CK, Cheung N, Chew SL, Sham MH, Chan LC. Leukemia 14 594-601 (2000)
  202. A new family of intrinsically disordered proteins: structural characterization of the major phasin PhaF from Pseudomonas putida KT2440. Maestro B, Galán B, Alfonso C, Rivas G, Prieto MA, Sanz JM. PLoS ONE 8 e56904 (2013)
  203. Molecular basis for the binding of SH3 ligands with non-peptide elements identified by combinatorial synthesis. Feng S, Kapoor TM, Shirai F, Combs AP, Schreiber SL. Chem. Biol. 3 661-670 (1996)
  204. An unexpected binding mode for a Pol II CTD peptide phosphorylated at Ser7 in the active site of the CTD phosphatase Ssu72. Xiang K, Manley JL, Tong L. Genes Dev. 26 2265-2270 (2012)
  205. Effect of pH and salt bridges on structural assembly: molecular structures of the monomer and intertwined dimer of the Eps8 SH3 domain. Kishan KV, Newcomer ME, Rhodes TH, Guilliot SD. Protein Sci. 10 1046-1055 (2001)
  206. Heterogeneous nuclear ribonucleoprotein k interacts with Abi-1 at postsynaptic sites and modulates dendritic spine morphology. Proepper C, Steinestel K, Schmeisser MJ, Heinrich J, Steinestel J, Bockmann J, Liebau S, Boeckers TM. PLoS ONE 6 e27045 (2011)
  207. Proline isomerization preorganizes the Itk SH2 domain for binding to the Itk SH3 domain. Severin A, Joseph RE, Boyken S, Fulton DB, Andreotti AH. J. Mol. Biol. 387 726-743 (2009)
  208. SH3 domains of Grb2 adaptor bind to PXpsiPXR motifs within the Sos1 nucleotide exchange factor in a discriminate manner. McDonald CB, Seldeen KL, Deegan BJ, Farooq A. Biochemistry 48 4074-4085 (2009)
  209. Structural and functional evidence that Nck interaction with CD3epsilon regulates T-cell receptor activity. Takeuchi K, Yang H, Ng E, Park SY, Sun ZY, Reinherz EL, Wagner G. J. Mol. Biol. 380 704-716 (2008)
  210. Deciphering the cross talk between hnRNP K and c-Src: the c-Src activation domain in hnRNP K is distinct from a second interaction site. Adolph D, Flach N, Mueller K, Ostareck DH, Ostareck-Lederer A. Mol. Cell. Biol. 27 1758-1770 (2007)
  211. Collagen type I selectively activates ectodomain shedding of the discoidin domain receptor 1: involvement of Src tyrosine kinase. Slack BE, Siniaia MS, Blusztajn JK. J. Cell. Biochem. 98 672-684 (2006)
  212. Structural basis for the interaction between focal adhesion kinase and CD4. Garron ML, Arthos J, Guichou JF, McNally J, Cicala C, Arold ST. J. Mol. Biol. 375 1320-1328 (2008)
  213. Titin as a giant scaffold for integrating stress and Src homology domain 3-mediated signaling pathways: the clustering of novel overlap ligand motifs in the elastic PEVK segment. Ma K, Forbes JG, Gutierrez-Cruz G, Wang K. J Biol Chem 281 27539-27556 (2006)
  214. A new potent antigen from Echinococcus granulosus associated with muscles and tegument. Fu Y, Martinez C, Chalar C, Craig PS, Ehrlich R, Petavy AF, Bosquet G. Mol. Biochem. Parasitol. 102 43-52 (1999)
  215. Characterization of CMIX, a chicken homeobox gene related to the Xenopus gene mix.1. Peale FV, Sugden L, Bothwell M. Mech. Dev. 75 167-170 (1998)
  216. Competing modes of self-association in the regulatory domains of Bruton's tyrosine kinase: intramolecular contact versus asymmetric homodimerization. Laederach A, Cradic KW, Brazin KN, Zamoon J, Fulton DB, Huang XY, Andreotti AH. Protein Sci. 11 36-45 (2002)
  217. Determinants of intra versus intermolecular self-association within the regulatory domains of Rlk and Itk. Laederach A, Cradic KW, Fulton DB, Andreotti AH. J. Mol. Biol. 329 1011-1020 (2003)
  218. Isolation and characterization of a novel HS1 SH3 domain binding protein, HS1BP3. Takemoto Y, Furuta M, Sato M, Kubo M, Hashimoto Y. Int. Immunol. 11 1957-1964 (1999)
  219. Recognition of non-canonical peptides by the yeast Fus1p SH3 domain: elucidation of a common mechanism for diverse SH3 domain specificities. Kim J, Lee CD, Rath A, Davidson AR. J. Mol. Biol. 377 889-901 (2008)
  220. Structural determinants of nuclear export signal orientation in binding to exportin CRM1. Fung HY, Fu SC, Brautigam CA, Chook YM. Elife 4 (2015)
  221. Deletion of a proline-rich region and a transmembrane domain in fatty acid amide hydrolase. Arreaza G, Deutsch DG. FEBS Lett. 454 57-60 (1999)
  222. Hydrogen exchange and ligand binding: ligand-dependent and ligand-independent protection in the Src SH3 domain. Wildes D, Marqusee S. Protein Sci. 14 81-88 (2005)
  223. Missense mutations affecting a conserved cysteine pair in the TH domain of Btk. Vihinen M, Nore BF, Mattsson PT, Bäckesjö CM, Nars M, Koutaniemi S, Watanabe C, Lester T, Jones A, Ochs HD, Smith CI. FEBS Lett. 413 205-210 (1997)
  224. Pharbin, a novel inositol polyphosphate 5-phosphatase, induces dendritic appearances in fibroblasts. Asano T, Mochizuki Y, Matsumoto K, Takenawa T, Endo T. Biochem. Biophys. Res. Commun. 261 188-195 (1999)
  225. A novel structure-based encoding for machine-learning applied to the inference of SH3 domain specificity. Ferraro E, Via A, Ausiello G, Helmer-Citterich M. Bioinformatics 22 2333-2339 (2006)
  226. Enhanced SH3/linker interaction overcomes Abl kinase activation by gatekeeper and myristic acid binding pocket mutations and increases sensitivity to small molecule inhibitors. Panjarian S, Iacob RE, Chen S, Wales TE, Engen JR, Smithgall TE. J. Biol. Chem. 288 6116-6129 (2013)
  227. Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). Li X, Ji W, Zhang R, Folta-Stogniew E, Min W, Boggon TJ. J. Biol. Chem. 286 26138-26147 (2011)
  228. Regulation and function of SKAP-55 non-canonical motif binding to the SH3c domain of adhesion and degranulation-promoting adaptor protein. Duke-Cohan JS, Kang H, Liu H, Rudd CE. J. Biol. Chem. 281 13743-13750 (2006)
  229. Retro-MoRFs: identifying protein binding sites by normal and reverse alignment and intrinsic disorder prediction. Xue B, Dunker AK, Uversky VN. Int J Mol Sci 11 3725-3747 (2010)
  230. SH3 in muscles: solution structure of the SH3 domain from nebulin. Politou AS, Millevoi S, Gautel M, Kolmerer B, Pastore A. J. Mol. Biol. 276 189-202 (1998)
  231. Solution structure and peptide binding studies of the C-terminal src homology 3-like domain of the diphtheria toxin repressor protein. Wang G, Wylie GP, Twigg PD, Caspar DL, Murphy JR, Logan TM. Proc. Natl. Acad. Sci. U.S.A. 96 6119-6124 (1999)
  232. Solution structure of a Hck SH3 domain ligand complex reveals novel interaction modes. Schmidt H, Hoffmann S, Tran T, Stoldt M, Stangler T, Wiesehan K, Willbold D. J. Mol. Biol. 365 1517-1532 (2007)
  233. Sprouty2 binds Grb2 at two different proline-rich regions, and the mechanism of ERK inhibition is independent of this interaction. Martínez N, García-Domínguez CA, Domingo B, Oliva JL, Zarich N, Sánchez A, Gutiérrez-Eisman S, Llopis J, Rojas JM. Cell. Signal. 19 2277-2285 (2007)
  234. Structural basis of Robo proline-rich motif recognition by the srGAP1 Src homology 3 domain in the Slit-Robo signaling pathway. Li X, Chen Y, Liu Y, Gao J, Gao F, Bartlam M, Wu JY, Rao Z. J. Biol. Chem. 281 28430-28437 (2006)
  235. A miniprotein scaffold used to assemble the polyproline II binding epitope recognized by SH3 domains. Cobos ES, Pisabarro MT, Vega MC, Lacroix E, Serrano L, Ruiz-Sanz J, Martinez JC. J. Mol. Biol. 342 355-365 (2004)
  236. Identification and characterization of PKNbeta, a novel isoform of protein kinase PKN: expression and arachidonic acid dependency are different from those of PKNalpha. Oishi K, Mukai H, Shibata H, Takahashi M, Ona Y. Biochem. Biophys. Res. Commun. 261 808-814 (1999)
  237. Identification and functional characterization of an Src homology domain 3 domain-binding site on Cbl. Sanjay A, Miyazaki T, Itzstein C, Purev E, Horne WC, Baron R. FEBS J. 273 5442-5456 (2006)
  238. Modeling and prediction of binding affinities between the human amphiphysin SH3 domain and its peptide ligands using genetic algorithm-Gaussian processes. Zhou P, Tian F, Chen X, Shang Z. Biopolymers 90 792-802 (2008)
  239. SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn. Ulmer TS, Werner JM, Campbell ID. Structure 10 901-911 (2002)
  240. Structural basis of PxxDY motif recognition in SH3 binding. Aitio O, Hellman M, Kesti T, Kleino I, Samuilova O, Pääkkönen K, Tossavainen H, Saksela K, Permi P. J. Mol. Biol. 382 167-178 (2008)
  241. Structural investigations of a GYF domain covalently linked to a proline-rich peptide. Freund C, Kühne R, Park S, Thiemke K, Reinherz EL, Wagner G. J. Biomol. NMR 27 143-149 (2003)
  242. The extended left-handed helix: a simple nucleic acid-binding motif. Hicks JM, Hsu VL. Proteins 55 330-338 (2004)
  243. CrkIII: a novel and biologically distinct member of the Crk family of adaptor proteins. Prosser S, Sorokina E, Pratt P, Sorokin A. Oncogene 22 4799-4806 (2003)
  244. News How Src exercises self-restraint. Nguyen JT, Lim WA. Nat. Struct. Biol. 4 256-260 (1997)
  245. Human CD6 possesses a large, alternatively spliced cytoplasmic domain. Robinson WH, Neuman de Vegvar HE, Prohaska SS, Rhee JW, Parnes JR. Eur. J. Immunol. 25 2765-2769 (1995)
  246. Structural, functional, and bioinformatic studies demonstrate the crucial role of an extended peptide binding site for the SH3 domain of yeast Abp1p. Stollar EJ, Garcia B, Chong PA, Rath A, Lin H, Forman-Kay JD, Davidson AR. J. Biol. Chem. 284 26918-26927 (2009)
  247. A novel NMR experiment for the sequential assignment of proline residues and proline stretches in 13C/15N-labeled proteins. Bottomley MJ, Macias MJ, Liu Z, Sattler M. J. Biomol. NMR 13 381-385 (1999)
  248. Conformational snapshots of Tec kinases during signaling. Joseph RE, Andreotti AH. Immunol. Rev. 228 74-92 (2009)
  249. Identification and characterization of a new human gene encoding a small protein with high homology to the proline-rich region of the SH3BGR gene. Egeo A, Mazzocco M, Arrigo P, Vidal-Taboada JM, Oliva R, Pirola B, Giglio S, Rasore-Quartino A, Scartezzini P. Biochem. Biophys. Res. Commun. 247 302-306 (1998)
  250. Solution structure of the human Hck SH3 domain and identification of its ligand binding site. Horita DA, Baldisseri DM, Zhang W, Altieri AS, Smithgall TE, Gmeiner WH, Byrd RA. J. Mol. Biol. 278 253-265 (1998)
  251. Stability and folding of the SH3 domain of Bruton's tyrosine kinase. Chen YJ, Lin SC, Tzeng SR, Patel HV, Lyu PC, Cheng JW. Proteins 26 465-471 (1996)
  252. Stimulation of hTAFII68 (NTD)-mediated transactivation by v-Src. Lee HJ, Kim S, Pelletier J, Kim J. FEBS Lett. 564 188-198 (2004)
  253. The tyrosine kinase Csk dimerizes through Its SH3 domain. Levinson NM, Visperas PR, Kuriyan J. PLoS ONE 4 e7683 (2009)
  254. 4-Fluoroproline derivative peptides: effect on PPII conformation and SH3 affinity. Ruzza P, Siligardi G, Donella-Deana A, Calderan A, Hussain R, Rubini C, Cesaro L, Osler A, Guiotto A, Pinna LA, Borin G. J. Pept. Sci. 12 462-471 (2006)
  255. Analysis of the tyrosine phosphorylation and calcium fluxing of human CD6 isoforms with different cytoplasmatic domains. Kobarg J, Whitney GS, Palmer D, Aruffo A, Bowen MA. Eur. J. Immunol. 27 2971-2980 (1997)
  256. Axin and the Axin/Arrow-binding protein DCAP mediate glucose-glycogen metabolism. Yamazaki H, Yanagawa Si. Biochem. Biophys. Res. Commun. 304 229-235 (2003)
  257. Evidence for SH3 domain directed binding and phosphorylation of Sam68 by Src. Shen Z, Batzer A, Koehler JA, Polakis P, Schlessinger J, Lydon NB, Moran MF. Oncogene 18 4647-4653 (1999)
  258. Interactions between the Fyn SH3-domain and adaptor protein Cbp/PAG derived ligands, effects on kinase activity and affinity. Solheim SA, Petsalaki E, Stokka AJ, Russell RB, Russell RB, Taskén K, Berge T. FEBS J. 275 4863-4874 (2008)
  259. Mobility of TOAC spin-labelled peptides binding to the Src SH3 domain studied by paramagnetic NMR. Lindfors HE, de Koning PE, Drijfhout JW, Venezia B, Ubbink M. J. Biomol. NMR 41 157-167 (2008)
  260. Regulation of actin polymerization and adhesion-dependent cell edge protrusion by the Abl-related gene (Arg) tyrosine kinase and N-WASp. Miller MM, Lapetina S, MacGrath SM, Sfakianos MK, Pollard TD, Koleske AJ. Biochemistry 49 2227-2234 (2010)
  261. The SH2B1 obesity locus is associated with myocardial infarction in diabetic patients and with NO synthase activity in endothelial cells. Prudente S, Morini E, Larmon J, Andreozzi F, Di Pietro N, Nigro A, Gervino EV, Mannino GC, Bacci S, Hauser TH, Bellacchio E, Formoso G, Pellegrini F, Proto V, Menzaghi C, Frittitta L, Pandolfi A, Sesti G, Doria A, Trischitta V. Atherosclerosis 219 667-672 (2011)
  262. A novel PF/PN motif inhibits nuclear localization and DNA binding activity of the ESX1 homeoprotein. Yan YT, Stein SM, Ding J, Shen MM, Abate-Shen C. Mol. Cell. Biol. 20 661-671 (2000)
  263. Cloning and mapping of ZNF231, a novel brain-specific gene encoding neuronal double zinc finger protein whose expression is enhanced in a neurodegenerative disorder, multiple system atrophy (MSA). Hashida H, Goto J, Zhao N, Takahashi N, Hirai M, Kanazawa I, Sakaki Y. Genomics 54 50-58 (1998)
  264. Molecular basis for regulation of Src by the docking protein p130Cas. Nasertorabi F, Tars K, Becherer K, Kodandapani R, Liljas L, Vuori K, Ely KR. J. Mol. Recognit. 19 30-38 (2006)
  265. Solution structure of the human BTK SH3 domain complexed with a proline-rich peptide from p120cbl. Tzeng SR, Lou YC, Pai MT, Jain ML, Cheng JW. J. Biomol. NMR 16 303-312 (2000)
  266. Structural analysis of the complex between penta-EF-hand ALG-2 protein and Sec31A peptide reveals a novel target recognition mechanism of ALG-2. Takahashi T, Kojima K, Zhang W, Sasaki K, Ito M, Suzuki H, Kawasaki M, Wakatsuki S, Takahara T, Shibata H, Maki M. Int J Mol Sci 16 3677-3699 (2015)
  267. The E3 ubiquitin ligase Itch regulates sorting nexin 9 through an unconventional substrate recognition domain. Baumann C, Lindholm CK, Rimoldi D, Lévy F. FEBS J. 277 2803-2814 (2010)
  268. The isoform-specific stretch of hSos1 defines a new Grb2-binding domain. Zarich N, Oliva JL, Jorge R, Santos E, Rojas JM. Oncogene 19 5872-5883 (2000)
  269. Determination of the solution structure of the SH3 domain of human p56 Lck tyrosine kinase. Hiroaki H, Klaus W, Senn H. J. Biomol. NMR 8 105-122 (1996)
  270. Immunoinhibitory adapter protein Src homology domain 3 lymphocyte protein 2 (SLy2) regulates actin dynamics and B cell spreading. von Holleben M, Gohla A, Janssen KP, Iritani BM, Beer-Hammer S. J. Biol. Chem. 286 13489-13501 (2011)
  271. Solution structure of N-terminal SH3 domain of Vav and the recognition site for Grb2 C-terminal SH3 domain. Ogura K, Nagata K, Horiuchi M, Ebisui E, Hasuda T, Yuzawa S, Nishida M, Hatanaka H, Inagaki F. J. Biomol. NMR 22 37-46 (2002)
  272. A conserved proline-rich sequence between the N-terminal signal-anchor and catalytic domains is required for assembly of functional cytochrome P450 2C2. Chen CD, Doray B, Kemper B. Arch. Biochem. Biophys. 350 233-238 (1998)
  273. A proline to glycine mutation in the Lck SH3-domain affects conformational sampling and increases ligand binding affinity. Bauer F, Sticht H. FEBS Lett. 581 1555-1560 (2007)
  274. Acquisition of Fyn-selective SH3 domain ligands via a combinatorial library strategy. Li H, Lawrence DS. Chem. Biol. 12 905-912 (2005)
  275. CR16, a novel proline-rich protein expressed in rat brain neurons, binds to SH3 domains and is a MAP kinase substrate. Weiler MC, Smith JL, Masters JN. J. Mol. Neurosci. 7 203-215 (1996)
  276. Centromeric binding and activity of Protein Phosphatase 4. Lipinszki Z, Lefevre S, Savoian MS, Singleton MR, Glover DM, Przewloka MR. Nat Commun 6 5894 (2015)
  277. Domain Interaction Footprint: a multi-classification approach to predict domain-peptide interactions. Schillinger C, Boisguerin P, Krause G. Bioinformatics 25 1632-1639 (2009)
  278. Evolution of the src-related protein tyrosine kinases. Hughes AL. J. Mol. Evol. 42 247-256 (1996)
  279. Identification of DCAP, a drosophila homolog of a glucose transport regulatory complex. Yamazaki H, Nusse R. Mech. Dev. 119 115-119 (2002)
  280. Intertwined dimeric structure for the SH3 domain of the c-Src tyrosine kinase induced by polyethylene glycol binding. Cámara-Artigas A, Martín-García JM, Morel B, Ruiz-Sanz J, Luque I. FEBS Lett. 583 749-753 (2009)
  281. Molecular recognition properties of the C-terminal Sh3 domain of the Cbl associated protein, Cap. Kurakin A, Hoffman NG, Kay BK. J Pept Res 52 331-337 (1998)
  282. Structural invariance of constitutively active and inactive mutants of acanthamoeba myosin IC bound to F-actin in the rigor and ADP-bound states. Carragher BO, Cheng N, Wang ZY, Korn ED, Reilein A, Belnap DM, Hammer JA, Steven AC. Proc. Natl. Acad. Sci. U.S.A. 95 15206-15211 (1998)
  283. Target-assisted iterative screening reveals novel interactors for PSD95, Nedd4, Src, Abl and Crk proteins. Kurakin A, Bredesen D. J. Biomol. Struct. Dyn. 19 1015-1029 (2002)
  284. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms. McDonald CB, Seldeen KL, Deegan BJ, Bhat V, Farooq A. J. Mol. Recognit. 24 585-596 (2011)
  285. Characterization of the tyrosine kinase Tnk1 and its binding with phospholipase C-gamma1. Felschow DM, Civin CI, Hoehn GT. Biochem. Biophys. Res. Commun. 273 294-301 (2000)
  286. ERK signaling promotes cell motility by inducing the localization of myosin 1E to lamellipodial tips. Tanimura S, Hashizume J, Arichika N, Watanabe K, Ohyama K, Takeda K, Kohno M. J. Cell Biol. 214 475-489 (2016)
  287. Interaction between Btk TH and SH3 domain. Okoh MP, Vihinen M. Biopolymers 63 325-334 (2002)
  288. Quantifying intramolecular binding in multivalent interactions: a structure-based synergistic study on Grb2-Sos1 complex. Sethi A, Goldstein B, Gnanakaran S. PLoS Comput. Biol. 7 e1002192 (2011)
  289. Structural basis for recognition of the T cell adaptor protein SLP-76 by the SH3 domain of phospholipase Cgamma1. Deng L, Velikovsky CA, Swaminathan CP, Cho S, Mariuzza RA. J. Mol. Biol. 352 1-10 (2005)
  290. BIN1 membrane curvature sensing and generation show autoinhibition regulated by downstream ligands and PI(4,5)P2. Wu T, Baumgart T. Biochemistry 53 7297-7309 (2014)
  291. Coevolution of the domains of cytoplasmic tyrosine kinases. Nars M, Vihinen M. Mol. Biol. Evol. 18 312-321 (2001)
  292. Critical residues involved in tau binding to fyn: implications for tau phosphorylation in Alzheimer's disease. Lau DH, Hogseth M, Phillips EC, O'Neill MJ, Pooler AM, Noble W, Hanger DP. Acta Neuropathol Commun 4 49 (2016)
  293. Metallofullerenol Gd@C₈₂(OH)₂₂ distracts the proline-rich-motif from putative binding on the SH3 domain. Kang SG, Huynh T, Zhou R. Nanoscale 5 2703-2712 (2013)
  294. Molecular cloning and characterization of patellin1, a novel sec14-related protein, from zucchini (Cucurbita pepo). Peterman TK, Sequeira AS, Samia JA, Lunde EE. J. Plant Physiol. 163 1150-1158 (2006)
  295. New approaches to high-throughput structure characterization of SH3 complexes: the example of Myosin-3 and Myosin-5 SH3 domains from S. cerevisiae. Musi V, Birdsall B, Fernandez-Ballester G, Guerrini R, Salvatori S, Serrano L, Pastore A. Protein Sci. 15 795-807 (2006)
  296. Rhodium(II) metallopeptide catalyst design enables fine control in selective functionalization of natural SH3 domains. Vohidov F, Coughlin JM, Ball ZT. Angew. Chem. Int. Ed. Engl. 54 4587-4591 (2015)
  297. A novel six-transmembrane protein hhole functions as a suppressor in MAPK signaling pathways. Zhou J, Li Y, Liang P, Yuan W, Ye X, Zhu C, Cheng Y, Wang Y, Li G, Wu X, Liu M. Biochem. Biophys. Res. Commun. 333 344-352 (2005)
  298. Assembly and Molecular Architecture of the Phosphoinositide 3-Kinase p85α Homodimer. LoPiccolo J, Kim SJ, Shi Y, Wu B, Wu H, Chait BT, Singer RH, Sali A, Brenowitz M, Bresnick AR, Backer JM. J. Biol. Chem. 290 30390-30405 (2015)
  299. Atomic resolution structures of the c-Src SH3 domain in complex with two high-affinity peptides from classes I and II. Bacarizo J, Camara-Artigas A. Acta Crystallogr. D Biol. Crystallogr. 69 756-766 (2013)
  300. SH3 domain of Bruton's tyrosine kinase can bind to proline-rich peptides of TH domain of the kinase and p120cbl. Patel HV, Tzeng SR, Liao CY, Chen SH, Cheng JW. Proteins 29 545-552 (1997)
  301. Sam68 from an immortalised B-cell line associates with a subset of SH3 domains. Finan PM, Hall A, Kellie S. FEBS Lett. 389 141-144 (1996)
  302. Solution structure of the first SH3 domain of human vinexin and its interaction with vinculin peptides. Zhang J, Li X, Yao B, Shen W, Sun H, Xu C, Wu J, Shi Y. Biochem. Biophys. Res. Commun. 357 931-937 (2007)
  303. The murine form of TXK, a novel TEC kinase expressed in thymus maps to chromosome 5. Haire RN, Litman GW. Mamm. Genome 6 476-480 (1995)
  304. A graph kernel approach for alignment-free domain-peptide interaction prediction with an application to human SH3 domains. Kundu K, Costa F, Backofen R. Bioinformatics 29 i335-43 (2013)
  305. A neural strategy for the inference of SH3 domain-peptide interaction specificity. Ferraro E, Via A, Ausiello G, Helmer-Citterich M. BMC Bioinformatics 6 Suppl 4 S13 (2005)
  306. A novel link between a rab GTPase and Rvs proteins: the yeast amphiphysin homologues. Talarek N, Balguerie A, Aigle M, Durrens P. Cell Biochem. Funct. 23 253-266 (2005)
  307. A study on the flexibility of enzyme active sites. Weng YZ, Chang DT, Huang YF, Lin CW. BMC Bioinformatics 12 Suppl 1 S32 (2011)
  308. Cross-reactivity of anti-HIV-1-p17-derivative peptide (P30-52) antibody to Env V3 peptide. Ota A, Tanaka-Taya K, Ueda S. Hybridoma 18 149-157 (1999)
  309. Directed discovery of bivalent peptide ligands to an SH3 domain. Ferguson MR, Fan X, Mukherjee M, Luo J, Khan R, Ferreon JC, Hilser VJ, Shope RE, Fox RO. Protein Sci. 13 626-632 (2004)
  310. Guanosine triphosphatase-activating protein-associated protein, but not src-associated protein p68 in mitosis, is a part of insulin signaling complexes. Sung CK, Choi WS, Sanchez-Margalet V. Endocrinology 139 2392-2398 (1998)
  311. Insulin-like growth factor binding protein-2: NMR analysis and structural characterization of the N-terminal domain. Galea CA, Mobli M, McNeil KA, Mulhern TD, Wallace JC, King GF, Forbes BE, Norton RS. Biochimie 94 608-616 (2012)
  312. Probing the chemical basis of binding activity in an SH3 domain by protein signature analysis. Muir TW, Dawson PE, Fitzgerald MC, Kent SB. Chem. Biol. 3 817-825 (1996)
  313. 4-Fluoroprolines: Conformational Analysis and Effects on the Stability and Folding of Peptides and Proteins. Newberry RW, Raines RT. Top Heterocycl Chem 48 1-25 (2017)
  314. A single PXXP motif in the C-terminal region of srGAP3 mediates binding to multiple SH3 domains. Wuertenberger S, Groemping Y. FEBS Lett. 589 1156-1163 (2015)
  315. Bruton's tyrosine kinase is not essential for Bcr-Abl-mediated transformation of lymphoid or myeloid cells. MacPartlin M, Smith AM, Druker BJ, Honigberg LA, Deininger MW. Leukemia 22 1354-1360 (2008)
  316. Can a polyproline II helical motif be used in the context of sequence-selective major groove recognition of B-DNA? A molecular modelling investigation. Gresh N. J. Biomol. Struct. Dyn. 14 255-273 (1996)
  317. Characterization of a novel weak interaction between MUC1 and Src-SH3 using nuclear magnetic resonance spectroscopy. Gunasekara N, Sykes B, Hugh J. Biochem. Biophys. Res. Commun. 421 832-836 (2012)
  318. Cloning and characterization of a novel serine/threonine protein kinase gene expressed predominantly in developing brain. Nara K, Akasako Y, Matsuda Y, Fukazawa Y, Iwashita S, Kataoka M, Nagai Y. Eur. J. Biochem. 268 2642-2651 (2001)
  319. Corticotropin-releasing factor induces phosphorylation of phospholipase C-gamma at tyrosine residues via its receptor 2beta in human epidermoid A-431 cells. Kiang JG, Ding XZ, Gist ID, Jones RR, Tsokos GC. Eur. J. Pharmacol. 363 203-210 (1998)
  320. Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity. Kelil A, Levy ED, Michnick SW. Proc. Natl. Acad. Sci. U.S.A. 113 E3862-71 (2016)
  321. Identification of a novel splice variant of C3G which shows tissue-specific expression. Shivakrupa, Singh R, Swarup G. DNA Cell Biol. 18 701-708 (1999)
  322. Proteomic analysis of glycine receptor β subunit (GlyRβ)-interacting proteins: evidence for syndapin I regulating synaptic glycine receptors. Del Pino I, Koch D, Schemm R, Qualmann B, Betz H, Paarmann I. J. Biol. Chem. 289 11396-11409 (2014)
  323. Regulation of the interaction between the neuronal BIN1 isoform 1 and Tau proteins - role of the SH3 domain. Malki I, Cantrelle FX, Sottejeau Y, Lippens G, Lambert JC, Landrieu I. FEBS J. 284 3218-3229 (2017)
  324. Scaffold Protein Ahk1, Which Associates with Hkr1, Sho1, Ste11, and Pbs2, Inhibits Cross Talk Signaling from the Hkr1 Osmosensor to the Kss1 Mitogen-Activated Protein Kinase. Nishimura A, Yamamoto K, Oyama M, Kozuka-Hata H, Saito H, Tatebayashi K. Mol. Cell. Biol. 36 1109-1123 (2016)
  325. Structural consensus in ligand-protein docking identifies recognition peptide motifs that bind streptavidin. Shah NK, Rejto PA, Verkhivker GM. Proteins 28 421-433 (1997)
  326. The Binding of Syndapin SH3 Domain to Dynamin Proline-rich Domain Involves Short and Long Distance Elements. Luo L, Xue J, Kwan A, Gamsjaeger R, Wielens J, von Kleist L, Cubeddu L, Guo Z, Stow JL, Parker MW, Mackay JP, Robinson PJ. J. Biol. Chem. 291 9411-9424 (2016)
  327. The SH3 domain of a M7 interacts with its C-terminal proline-rich region. Wang Q, Deloia MA, Kang Y, Litchke C, Zhang N, Titus MA, Walters KJ. Protein Sci. 16 189-196 (2007)
  328. A dipalmitoyl peptide that binds SH3 domain, disturbs intracellular signal transduction, and inhibits tumor growth in vivo. Lee KY, Hyeok Yoon JH, Kim M, Roh S, Lee YS, Seong BL, Kim K. Biochem. Biophys. Res. Commun. 296 434-442 (2002)
  329. A semi-automated method for purification of milligram quantities of proteins on the QIAcube. McGraw J, Tatipelli VK, Feyijinmi O, Traore MC, Eangoor P, Lane S, Stollar EJ. Protein Expr. Purif. 96 48-53 (2014)
  330. Arginine mimetics using α-guanidino acids: introduction of functional groups and stereochemistry adjacent to recognition guanidiniums in peptides. Balakrishnan S, Scheuermann MJ, Zondlo NJ. Chembiochem 13 259-270 (2012)
  331. Competitively selected protein ligands pay their increase in specificity by a decrease in affinity. Hoffmann S, Funke SA, Wiesehan K, Moedder S, Glück JM, Feuerstein S, Gerdts M, Mötter J, Willbold D. Mol Biosyst 6 126-133 (2010)
  332. Crystal structure of the N-terminal SH3 domain of mouse betaPIX, p21-activated kinase-interacting exchange factor. Li X, Liu X, Sun F, Gao J, Zhou H, Gao GF, Bartlam M, Rao Z. Biochem. Biophys. Res. Commun. 339 407-414 (2006)
  333. Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Zhou P, Hou S, Bai Z, Li Z, Wang H, Chen Z, Meng Y. Artif Cells Nanomed Biotechnol 46 1122-1131 (2018)
  334. Enhanced ubiquitination and proteasomal degradation of catalytically deficient human choline acetyltransferase mutants. Morey TM, Albers S, Shilton BH, Rylett RJ. J. Neurochem. 137 630-646 (2016)
  335. Interactions between SH2 and SH3 domains. Vihinen M, Smith CI. Biochem. Biophys. Res. Commun. 242 351-356 (1998)
  336. Interactions of phosphatidylinositol 3-kinase Src homology 3 domain with its ligand peptide studied by absorption, circular dichroism, and UV resonance raman spectroscopies. Okishio N, Nagai M, Fukuda R, Nagatomo S, Kitagawa T. Biopolymers 57 208-217 (2000)
  337. Mouse CD6: sequence of cDNA and expression of mRNA. Pal A, Romain PL, Singer NG, Fox D, Stavnezer J. Immunol. Lett. 49 133-137 (1996)
  338. Overexpression of c-src and n-src in the developing Xenopus retina differentially impairs axonogenesis. Worley TL, Cornel E, Holt CE. Mol. Cell. Neurosci. 9 276-292 (1997)
  339. Structural investigation of the interaction between the tandem SH3 domains of c-Cbl-associated protein and vinculin. Zhao D, Wang X, Peng J, Wang C, Li F, Sun Q, Zhang Y, Zhang J, Cai G, Zuo X, Wu J, Shi Y, Zhang Z, Gong Q. J. Struct. Biol. 187 194-205 (2014)
  340. Competitive binding of UBPY and ubiquitin to the STAM2 SH3 domain revealed by NMR. Lange A, Ismail MB, Rivière G, Hologne M, Lacabanne D, Guillière F, Lancelin JM, Krimm I, Walker O. FEBS Lett. 586 3379-3384 (2012)
  341. Discovery of novel interacting partners of PSMD9, a proteasomal chaperone: Role of an Atypical and versatile PDZ-domain motif interaction and identification of putative functional modules. Sangith N, Srinivasaraghavan K, Sahu I, Desai A, Medipally S, Somavarappu AK, Verma C, Venkatraman P. FEBS Open Bio 4 571-583 (2014)
  342. IL-17R-EGFR axis links wound healing to tumorigenesis in Lrig1+ stem cells. Chen X, Cai G, Liu C, Zhao J, Gu C, Wu L, Hamilton TA, Zhang CJ, Ko J, Zhu L, Qin J, Vidimos A, Koyfman S, Gastman BR, Jensen KB, Li X. J. Exp. Med. 216 195-214 (2019)
  343. Ligand-regulated peptides: a general approach for modulating protein-peptide interactions with small molecules. Binkowski BF, Miller RA, Belshaw PJ. Chem. Biol. 12 847-855 (2005)
  344. Monoclonal antibody specific to a subclass of polyproline-Arg motif provides evidence for the presence of an snRNA-free spliceosomal Sm protein complex in vivo: implications for molecular interactions involving proline-rich sequences of Sm B/B' proteins. Filali M, Qiu J, Awasthi S, Fischer U, Monos D, Kamoun M. J. Cell. Biochem. 74 168-180 (1999)
  345. Reexamination of the recognition preference of the specificity pocket of the Abl SH3 domain. Santamaria F, Wu Z, Boulègue C, Pál G, Lu W. J. Mol. Recognit. 16 131-138 (2003)
  346. The SH3 domain of HS1 protein recognizes lysine-rich polyproline motifs. Siligardi G, Ruzza P, Hussain R, Cesaro L, Brunati AM, Pinna LA, Donella-Deana A. Amino Acids 42 1361-1370 (2012)
  347. The SLE variant Ala71Thr of BLK severely decreases protein abundance and binding to BANK1 through impairment of the SH3 domain function. Díaz-Barreiro A, Bernal-Quirós M, Georg I, Marañón C, Alarcón-Riquelme ME, Castillejo-López C. Genes Immun. 17 128-138 (2016)
  348. Association between SNP rs10569304 on the second expressed region of hole gene and the congenital heart disease. Zhang Y, Xu L, Qiu J, Li Z, Li L, Ren G, Dong A, Li B, Ge M, Meng S, Wang J. J. Huazhong Univ. Sci. Technol. Med. Sci. 30 430-436 (2010)
  349. Binding properties of SH3 peptide ligands identified from phage-displayed random peptide libraries. Hoffman NG, Sparks AB, Carter JM, Kay BK. Mol. Divers. 2 5-12 (1996)
  350. Characterization of insulin receptor substrate 3 in rat liver derived cells. Choi WS, Sung CK. Biochem. Biophys. Res. Commun. 272 953-958 (2000)
  351. Cloning and characterization of AASPs: novel axon-associated SH3 binding-like proteins. Dearborn RE, Szaro BG, Lnenicka GA. J. Neurobiol. 38 581-594 (1999)
  352. Crystal structure of the PEG-bound SH3 domain of myosin IB from Entamoeba histolytica reveals its mode of ligand recognition. Gautam G, Rehman SAA, Pandey P, Gourinath S. Acta Crystallogr D Struct Biol 73 672-682 (2017)
  353. Enriching the viral-host interactomes with interactions mediated by SH3 domains. Carducci M, Licata L, Peluso D, Castagnoli L, Cesareni G. Amino Acids 38 1541-1547 (2010)
  354. Inhibition of D-serine accumulation in the Xenopus oocyte by expression of the rat ortholog of human 3'-phosphoadenosine 5'-phosphosulfate transporter gene isolated from the neocortex as D-serine modulator-1. Shimazu D, Yamamoto N, Umino A, Ishii S, Sakurai S, Nishikawa T. J. Neurochem. 96 30-42 (2006)
  355. Structural Basis of Tau Interaction With BIN1 and Regulation by Tau Phosphorylation. Lasorsa A, Malki I, Cantrelle FX, Merzougui H, Boll E, Lambert JC, Landrieu I. Front Mol Neurosci 11 421 (2018)
  356. Structure of the c-Src-SH3 domain in complex with a proline-rich motif of NS5A protein from the hepatitis C virus. Bacarizo J, Martínez-Rodríguez S, Cámara-Artigas A. J. Struct. Biol. 189 67-72 (2015)
  357. Targeting Molecular Recognition: Exploring the Dual Role of Functional Pseudoprolines in the Design of SH3 Ligands This work was supported by the Swiss National Science Foundation. Tuchscherer G, Grell D, Tatsu Y, Durieux P, Fernandez-Carneado J, Hengst B, Kardinal C, Feller S. Angew. Chem. Int. Ed. Engl. 40 2844-2848 (2001)
  358. The SH3 domain of Caskin1 binds to lysophosphatidic acid suggesting a direct role for the lipid in intracellular signaling. Koprivanacz K, Tőke O, Besztercei B, Juhász T, Radnai L, Merő B, Mihály J, Péter M, Balogh G, Vígh L, Buday L, Liliom K. Cell. Signal. 32 66-75 (2017)
  359. The impact of either 4-R-hydroxyproline or 4-R-fluoroproline on the conformation and SH3m-cort binding of HPK1 proline-rich peptide. Borgogno A, Ruzza P. Amino Acids 44 607-614 (2013)
  360. Why ligand cross-reactivity is high within peptide recognition domain families? A case study on human c-Src SH3 domain. He P, Wu W, Wang HD, Liao KL, Zhang W, Lv FL, Yang K. J. Theor. Biol. 340 30-37 (2014)
  361. Actin-based motility of the intracellular pathogen Listeria monocytogenes: assessing the inhibitory specificity of ABM-1 peptide analogues. Purich DL, Southwick FS. Mol. Cell Biol. Res. Commun. 1 176-181 (1999)
  362. Analysis of the CD2 and spliceosomal Sm B/B' polyproline-arginine motifs defined by a monoclonal antibody using a phage-displayed random peptide library. Monos D, Heliopoulos J, Argyris E, Cordopatis P, Zompra A, Kamoun M. J. Mol. Recognit. 19 535-541 (2006)
  363. Anti-P30-52 monoclonal antibody cross-reacted to Env V3 and inhibited the viral multiplication of HIV-1-infected MT-4 cells. Ota A, Bautista AN, Yadav ML, Ueda S. Hybridoma 18 139-147 (1999)
  364. Characterisation of the biochemical and cellular roles of native and pathogenic amelogenesis imperfecta mutants of FAM83H. Tachie-Menson T, Gázquez-Gutiérrez A, Fulcher LJ, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Sapkota GP. Cell Signal 72 109632 (2020)
  365. Directed Evolution of a Highly Specific FN3 Monobody to the SH3 Domain of Human Lyn Tyrosine Kinase. Huang R, Fang P, Hao Z, Kay BK. PLoS ONE 11 e0145872 (2016)
  366. Flexible Tethering of ASPP Proteins Facilitates PP-1c Catalysis. Zhou Y, Millott R, Kim HJ, Peng S, Edwards RA, Skene-Arnold T, Hammel M, Lees-Miller SP, Tainer JA, Holmes CFB, Glover JNM. Structure 27 1485-1496.e4 (2019)
  367. Fusion protein containing SH3 domain of c-Abl induces hepatocarcinoma cells to apoptosis. Yin JK, Liang YM, He XL, Lu JG, Zhang L, Bao GQ, Ma QJ. Hepatol. Res. 37 454-463 (2007)
  368. Machine Learning in Quantitative Protein-peptide Affinity Prediction: Implications for Therapeutic Peptide Design. Li Z, Miao Q, Yan F, Meng Y, Zhou P. Curr Drug Metab 20 170-176 (2019)
  369. Modeling and predicting interactions between the human amphiphysin SH3 domains and their peptide ligands based on amino acid information. Cai J, Ou R, Xu YS, Yang L, Lin Z, Shu M. J. Pept. Sci. 16 627-632 (2010)
  370. Structural insights into the recognition of β3 integrin cytoplasmic tail by the SH3 domain of Src kinase. Katyal P, Puthenveetil R, Vinogradova O. Protein Sci. 22 1358-1365 (2013)
  371. A Chemical Biology View of Bioactive Small Molecules and a Binder-Based Approach to Connect Biology to Precision Medicines. Schreiber SL. Isr. J. Chem. 59 52-59 (2019)
  372. Letter Back to front. Metzger DW, Van Cleave VH. Nature 373 394 (1995)
  373. EhFP10: A FYVE family GEF interacts with myosin IB to regulate cytoskeletal dynamics during endocytosis in Entamoeba histolytica. Gautam G, Ali MS, Bhattacharya A, Gourinath S. PLoS Pathog. 15 e1007573 (2019)
  374. Escape from R-peptide deletion in a γ-retrovirus. Schneider IC, Eckhardt M, Brynza J, Collins MK, Cichutek K, Buchholz CJ. Virology 418 85-92 (2011)
  375. Essential motions and energetic contributions of individual residues in a peptide bound to an SH3 domain. Kolafa J, Perram JW, Bywater RP. Biophys. J. 79 646-655 (2000)
  376. Exhaustive search of linear information encoding protein-peptide recognition. Kelil A, Dubreuil B, Levy ED, Michnick SW. PLoS Comput. Biol. 13 e1005499 (2017)
  377. Expression, purification and crystallization of a human protein SH3BGRL at atomic resolution. Yin L, Zhu DY, Yang N, Huang QH, Zhang Y, Wang DC. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61 384-386 (2005)
  378. Inhibition of N1-Src kinase by a specific SH3 peptide ligand reveals a role for N1-Src in neurite elongation by L1-CAM. Keenan S, Wetherill SJ, Ugbode CI, Chawla S, Brackenbury WJ, Evans GJ. Sci Rep 7 43106 (2017)
  379. Long disordered regions of the C-terminal domain of Abelson tyrosine kinase have specific and additive functions in regulation and axon localization. Cheong HSJ, VanBerkum MFA. PLoS ONE 12 e0189338 (2017)
  380. Modeling ErbB2-p130Cas interaction to design new potential anticancer agents. Costamagna A, Rossi Sebastiano M, Natalini D, Simoni M, Valabrega G, Defilippi P, Visentin S, Ermondi G, Turco E, Caron G, Cabodi S. Sci Rep 9 3089 (2019)
  381. Molecular basis for the interaction between human choline kinase alpha and the SH3 domain of the c-Src tyrosine kinase. Kall SL, Whitlatch K, Smithgall TE, Lavie A. Sci Rep 9 17121 (2019)
  382. Pervanadate induces Mammalian Ste20 Kinase 3 (MST3) tyrosine phosphorylation but not activation. Kan WC, Lu TL, Ling P, Lee TH, Cho CY, Huang CY, Jeng WY, Weng YP, Chiang CY, Wu JB, Lu TJ. J. Inorg. Biochem. 160 33-39 (2016)
  383. Regulation of SH3PX1 by dNedd4-long at the Drosophila neuromuscular junction. Wasserman SS, Shteiman-Kotler A, Harris K, Iliadi KG, Persaud A, Zhong Y, Zhang Y, Fang X, Boulianne GL, Stewart B, Rotin D. J Biol Chem 294 1739-1752 (2019)
  384. Solution NMR Structure of the SH3 Domain of Human Caskin1 Validates the Lack of a Typical Peptide Binding Groove and Supports a Role in Lipid Mediator Binding. Tőke O, Koprivanacz K, Radnai L, Merő B, Juhász T, Liliom K, Buday L. Cells 10 (2021)
  385. Synthesis and evaluation of a (3R,6S,9S)-2-oxo-1-azabicyclo[4.3.0]nonane scaffold as a mimic of Xaa-trans-Pro in poly-L-proline type II helix conformation. Aillard B, Kilburn JD, Blaydes JP, Tizzard GJ, Findlow S, Werner JM, Bloodworth S. Org. Biomol. Chem. 13 4562-4569 (2015)
  386. Targeting the SH3 domain of human osteoclast-stimulating factor with rationally designed peptoid inhibitors. Han S, Liu Q, Wang F, Yuan Z. J. Pept. Sci. 22 533-539 (2016)
  387. The CSN3 subunit of the COP9 signalosome interacts with the HD region of Sos1 regulating stability of this GEF protein. Zarich N, Anta B, Fernández-Medarde A, Ballester A, de Lucas MP, Cámara AB, Anta B, Oliva JL, Rojas-Cabañeros JM, Santos E. Oncogenesis 8 2 (2019)
  388. The SH3 domains of the protein kinases ITK and LCK compete for adjacent sites on T cell-specific adapter protein. Andersen TCB, Kristiansen PE, Huszenicza Z, Johansson MU, Gopalakrishnan RP, Kjelstrup H, Boyken S, Sundvold-Gjerstad V, Granum S, Sørli M, Backe PH, Fulton DB, Karlsson BG, Andreotti AH, Spurkland A. J. Biol. Chem. 294 15480-15494 (2019)
  389. Letter X-ray crystal structure of Escherichia coli HspQ, a protein involved in the retardation of replication initiation. Abe Y, Shioi S, Kita S, Nakata H, Maenaka K, Kohda D, Katayama T, Ueda T. FEBS Lett. 591 3805-3816 (2017)

Related citations provided by authors (2)

  1. Structural basis for the binding of proline-rich peptides to SH3 domains.. Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL Cell 76 933-45 (1994)
  2. Solution structure of the SH3 domain of Src and identification of its ligand-binding site.. Yu H, Rosen MK, Shin TB, Seidel-Dugan C, Brugge JS, Schreiber SL Science 258 1665-8 (1992)