1rkc Citations

Vinculin activation by talin through helical bundle conversion.

Nature 427 171-5 (2004)
Cited: 136 times
EuropePMC logo PMID: 14702644


Vinculin is a conserved component and an essential regulator of both cell-cell (cadherin-mediated) and cell-matrix (integrin-talin-mediated focal adhesions) junctions, and it anchors these adhesion complexes to the actin cytoskeleton by binding to talin in integrin complexes or to alpha-actinin in cadherin junctions. In its resting state, vinculin is held in a closed conformation through interactions between its head (Vh) and tail (Vt) domains. The binding of vinculin to focal adhesions requires its association with talin. Here we report the crystal structures of human vinculin in its inactive and talin-activated states. Talin binding induces marked conformational changes in Vh, creating a novel helical bundle structure, and this alteration actively displaces Vt from Vh. These results, as well as the ability of alpha-actinin to also bind to Vh and displace Vt from pre-existing Vh-Vt complexes, support a model whereby Vh functions as a domain that undergoes marked structural changes that allow vinculin to direct cytoskeletal assembly in focal adhesions and adherens junctions. Notably, talin's effects on Vh structure establish helical bundle conversion as a signalling mechanism by which proteins direct cellular responses.

Articles - 1rkc mentioned but not cited (10)

  1. Self-chaperoning of the type III secretion system needle tip proteins IpaD and BipD. Johnson S, Roversi P, Espina M, Olive A, Deane JE, Birket S, Field T, Picking WD, Blocker AJ, Galyov EE, Picking WL, Lea SM. J. Biol. Chem. 282 4035-4044 (2007)
  2. The cytoskeletal protein α-catenin unfurls upon binding to vinculin. Rangarajan ES, Izard T. J. Biol. Chem. 287 18492-18499 (2012)
  3. Molecular dynamics study of talin-vinculin binding. Lee SE, Chunsrivirot S, Kamm RD, Mofrad MR. Biophys. J. 95 2027-2036 (2008)
  4. The rickettsia surface cell antigen 4 applies mimicry to bind to and activate vinculin. Park H, Lee JH, Gouin E, Cossart P, Izard T. J. Biol. Chem. 286 35096-35103 (2011)
  5. Structural mimicry for vinculin activation by IpaA, a virulence factor of Shigella flexneri. Hamiaux C, van Eerde A, Parsot C, Broos J, Dijkstra BW. EMBO Rep. 7 794-799 (2006)
  6. Molecular Simulations Suggest a Force-Dependent Mechanism of Vinculin Activation. Sun L, Noel JK, Levine H, Onuchic JN. Biophys. J. 113 1697-1710 (2017)
  7. The Architecture of Talin1 Reveals an Autoinhibition Mechanism. Dedden D, Schumacher S, Kelley CF, Zacharias M, Biertümpfel C, Fässler R, Mizuno N. Cell 179 120-131.e13 (2019)
  8. Cell-cell adhesion in metazoans relies on evolutionarily conserved features of the α-catenin·β-catenin-binding interface. Shao X, Kang H, Loveless T, Lee GR, Seok C, Weis WI, Choi HJ, Hardin J. J. Biol. Chem. 292 16477-16490 (2017)
  9. Chlamydial virulence factor TarP mimics talin to disrupt the talin-vinculin complex. Whitewood AJ, Singh AK, Brown DG, Goult BT. FEBS Lett. 592 1751-1760 (2018)
  10. Vinculin motion modes analysis with elastic network model. Jiao X, Chang S, Yang L, An M, Chen W. Int J Mol Sci 13 208-220 (2012)

Reviews citing this publication (30)

  1. Adhesions Assemble!-Autoinhibition as a Major Regulatory Mechanism of Integrin-Mediated Adhesion. Khan RB, Goult BT. Front Mol Biosci 6 144 (2019)
  2. Pulmonary Endothelial Mechanical Sensing and Signaling, a Story of Focal Adhesions and Integrins in Ventilator Induced Lung Injury. Kelly GT, Faraj R, Zhang Y, Maltepe E, Fineman JR, Black SM, Wang T. Front Physiol 10 511 (2019)
  3. Biophysical Tools to Study Cellular Mechanotransduction. Muhamed I, Chowdhury F, Maruthamuthu V. Bioengineering (Basel) 4 (2017)
  4. Vinculin in cell-cell and cell-matrix adhesions. Bays JL, DeMali KA. Cell. Mol. Life Sci. 74 2999-3009 (2017)
  5. Mechanisms and Functions of Vinculin Interactions with Phospholipids at Cell Adhesion Sites. Izard T, Brown DT. J. Biol. Chem. 291 2548-2555 (2016)
  6. Mechanosensitive components of integrin adhesions: Role of vinculin. Atherton P, Stutchbury B, Jethwa D, Ballestrem C. Exp. Cell Res. 343 21-27 (2016)
  7. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion. Li Z, Lee H, Zhu C. Exp. Cell Res. 349 85-94 (2016)
  8. Role of vinculin in cellular mechanotransduction. Goldmann WH. Cell Biol. Int. 40 241-256 (2016)
  9. Talin Dependent Mechanosensitivity of Cell Focal Adhesions. Yan J, Yao M, Goult BT, Sheetz MP. Cell Mol Bioeng 8 151-159 (2015)
  10. A review of the effects of the cell environment physicochemical nanoarchitecture on stem cell commitment. Das RK, Zouani OF. Biomaterials 35 5278-5293 (2014)
  11. Signalling complexes at the cell-matrix interface. Hohenester E. Curr. Opin. Struct. Biol. 29 10-16 (2014)
  12. Vinculin and metavinculin: oligomerization and interactions with F-actin. Thompson PM, Tolbert CE, Campbell SL. FEBS Lett. 587 1220-1229 (2013)
  13. Vinculin, cadherin mechanotransduction and homeostasis of cell-cell junctions. Leerberg JM, Yap AS. Protoplasma 250 817-829 (2013)
  14. Force generation, transmission, and integration during cell and tissue morphogenesis. Lecuit T, Lenne PF, Munro E. Annu. Rev. Cell Dev. Biol. 27 157-184 (2011)
  15. Forcing a connection: impacts of single-molecule force spectroscopy on in vivo tension sensing. Brenner MD, Zhou R, Ha T. Biopolymers 95 332-344 (2011)
  16. New insights into vinculin function and regulation. Peng X, Nelson ES, Maiers JL, DeMali KA. Int Rev Cell Mol Biol 287 191-231 (2011)
  17. The sensors and regulators of cell-matrix surveillance in anoikis resistance of tumors. Nagaprashantha LD, Vatsyayan R, Lelsani PC, Awasthi S, Singhal SS. Int. J. Cancer 128 743-752 (2011)
  18. Vinculin, an adapter protein in control of cell adhesion signalling. Carisey A, Ballestrem C. Eur. J. Cell Biol. 90 157-163 (2011)
  19. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Critchley DR. Annu Rev Biophys 38 235-254 (2009)
  20. Cell fate regulation by coupling mechanical cycles to biochemical signaling pathways. Vogel V, Sheetz MP. Curr. Opin. Cell Biol. 21 38-46 (2009)
  21. The role of vinculin in the regulation of the mechanical properties of cells. Mierke CT. Cell Biochem. Biophys. 53 115-126 (2009)
  22. Vinculin and talin: focus on the myocardium. Zemljic-Harpf A, Manso AM, Ross RS. J. Investig. Med. 57 849-855 (2009)
  23. Paxillin comes of age. Deakin NO, Turner CE. J. Cell. Sci. 121 2435-2444 (2008)
  24. Regulation of actin assembly associated with protrusion and adhesion in cell migration. Le Clainche C, Carlier MF. Physiol. Rev. 88 489-513 (2008)
  25. Structure and mechanics of integrin-based cell adhesion. Arnaout MA, Goodman SL, Xiong JP. Curr. Opin. Cell Biol. 19 495-507 (2007)
  26. Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize. Bershadsky A, Kozlov M, Geiger B. Curr. Opin. Cell Biol. 18 472-481 (2006)
  27. Focal adhesions: paradigm for a signaling nexus. Romer LH, Birukov KG, Garcia JG. Circ. Res. 98 606-616 (2006)
  28. The structure and regulation of vinculin. Ziegler WH, Liddington RC, Critchley DR. Trends Cell Biol. 16 453-460 (2006)
  29. Alpha-catenin: at the junction of intercellular adhesion and actin dynamics. Kobielak A, Fuchs E. Nat. Rev. Mol. Cell Biol. 5 614-625 (2004)
  30. Paxillin: adapting to change. Brown MC, Turner CE. Physiol. Rev. 84 1315-1339 (2004)

Articles citing this publication (96)

  1. Stretching single talin rod molecules activates vinculin binding. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. Science 323 638-641 (2009)
  2. Structural basis for vinculin activation at sites of cell adhesion. Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW, Liddington RC. Nature 430 583-586 (2004)
  3. RIAM activates integrins by linking talin to ras GTPase membrane-targeting sequences. Lee HS, Lim CJ, Puzon-McLaughlin W, Shattil SJ, Ginsberg MH. J. Biol. Chem. 284 5119-5127 (2009)
  4. Vinculin modulation of paxillin-FAK interactions regulates ERK to control survival and motility. Subauste MC, Pertz O, Adamson ED, Turner CE, Junger S, Hahn KM. J. Cell Biol. 165 371-381 (2004)
  5. Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM, Fütterer K. EMBO J. 24 240-250 (2005)
  6. Focal adhesions as mechanosensors: a physical mechanism. Shemesh T, Geiger B, Bershadsky AD, Kozlov MM. Proc. Natl. Acad. Sci. U.S.A. 102 12383-12388 (2005)
  7. Force-dependent conformational switch of α-catenin controls vinculin binding. Yao M, Qiu W, Liu R, Efremov AK, Cong P, Seddiki R, Payre M, Lim CT, Ladoux B, Mège RM, Yan J. Nat Commun 5 4525 (2014)
  8. Cardiac-myocyte-specific excision of the vinculin gene disrupts cellular junctions, causing sudden death or dilated cardiomyopathy. Zemljic-Harpf AE, Miller JC, Henderson SA, Wright AT, Manso AM, Elsherif L, Dalton ND, Thor AK, Perkins GA, McCulloch AD, Ross RS. Mol. Cell. Biol. 27 7522-7537 (2007)
  9. Spatial distribution and functional significance of activated vinculin in living cells. Chen H, Cohen DM, Choudhury DM, Kioka N, Craig SW. J. Cell Biol. 169 459-470 (2005)
  10. How vinculin regulates force transmission. Dumbauld DW, Lee TT, Singh A, Scrimgeour J, Gersbach CA, Zamir EA, Fu J, Chen CS, Curtis JE, Craig SW, García AJ. Proc. Natl. Acad. Sci. U.S.A. 110 9788-9793 (2013)
  11. Activation of a vinculin-binding site in the talin rod involves rearrangement of a five-helix bundle. Papagrigoriou E, Gingras AR, Barsukov IL, Bate N, Fillingham IJ, Patel B, Frank R, Ziegler WH, Roberts GC, Critchley DR, Emsley J. EMBO J. 23 2942-2951 (2004)
  12. Structural basis for myosin V discrimination between distinct cargoes. Pashkova N, Jin Y, Ramaswamy S, Weisman LS. EMBO J. 25 693-700 (2006)
  13. Crystal structure of human vinculin. Borgon RA, Vonrhein C, Bricogne G, Bois PR, Izard T. Structure 12 1189-1197 (2004)
  14. How force might activate talin's vinculin binding sites: SMD reveals a structural mechanism. Hytönen VP, Vogel V. PLoS Comput. Biol. 4 e24 (2008)
  15. Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. Lee SE, Kamm RD, Mofrad MR. J Biomech 40 2096-2106 (2007)
  16. Vinculin regulates cell-surface E-cadherin expression by binding to beta-catenin. Peng X, Cuff LE, Lawton CD, DeMali KA. J. Cell. Sci. 123 567-577 (2010)
  17. A vinculin binding domain from the talin rod unfolds to form a complex with the vinculin head. Fillingham I, Gingras AR, Papagrigoriou E, Patel B, Emsley J, Critchley DR, Roberts GC, Barsukov IL. Structure 13 65-74 (2005)
  18. αE-catenin is an autoinhibited molecule that coactivates vinculin. Choi HJ, Pokutta S, Cadwell GW, Bobkov AA, Bankston LA, Liddington RC, Weis WI. Proc. Natl. Acad. Sci. U.S.A. 109 8576-8581 (2012)
  19. RIAM and vinculin binding to talin are mutually exclusive and regulate adhesion assembly and turnover. Goult BT, Zacharchenko T, Bate N, Tsang R, Hey F, Gingras AR, Elliott PR, Roberts GC, Ballestrem C, Critchley DR, Barsukov IL. J. Biol. Chem. 288 8238-8249 (2013)
  20. Structural dynamics of alpha-actinin-vinculin interactions. Bois PR, Borgon RA, Vonrhein C, Izard T. Mol. Cell. Biol. 25 6112-6122 (2005)
  21. Shigella applies molecular mimicry to subvert vinculin and invade host cells. Izard T, Tran Van Nhieu G, Bois PR. J. Cell Biol. 175 465-475 (2006)
  22. The phosphorylation of vinculin on tyrosine residues 100 and 1065, mediated by SRC kinases, affects cell spreading. Zhang Z, Izaguirre G, Lin SY, Lee HY, Schaefer E, Haimovich B. Mol. Biol. Cell 15 4234-4247 (2004)
  23. Talin2 is induced during striated muscle differentiation and is targeted to stable adhesion complexes in mature muscle. Senetar MA, Moncman CL, McCann RO. Cell Motil. Cytoskeleton 64 157-173 (2007)
  24. α-Catenin uses a novel mechanism to activate vinculin. Peng X, Maiers JL, Choudhury D, Craig SW, DeMali KA. J. Biol. Chem. 287 7728-7737 (2012)
  25. Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. Hirata H, Tatsumi H, Lim CT, Sokabe M. Am. J. Physiol., Cell Physiol. 306 C607-20 (2014)
  26. Vinculin--a dynamic regulator of cell adhesion. Demali KA. Trends Biochem. Sci. 29 565-567 (2004)
  27. αE-catenin actin-binding domain alters actin filament conformation and regulates binding of nucleation and disassembly factors. Hansen SD, Kwiatkowski AV, Ouyang CY, Liu H, Pokutta S, Watkins SC, Volkmann N, Hanein D, Weis WI, Mullins RD, Nelson WJ. Mol. Biol. Cell 24 3710-3720 (2013)
  28. Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Ciobanasu C, Faivre B, Le Clainche C. Nat Commun 5 3095 (2014)
  29. Lipid binding to the tail domain of vinculin: specificity and the role of the N and C termini. Palmer SM, Playford MP, Craig SW, Schaller MD, Campbell SL. J. Biol. Chem. 284 7223-7231 (2009)
  30. Raver1 interactions with vinculin and RNA suggest a feed-forward pathway in directing mRNA to focal adhesions. Lee JH, Rangarajan ES, Yogesha SD, Izard T. Structure 17 833-842 (2009)
  31. Expression patterns of microRNAs in porcine endometrium and their potential roles in embryo implantation and placentation. Su L, Liu R, Cheng W, Zhu M, Li X, Zhao S, Yu M. PLoS ONE 9 e87867 (2014)
  32. Identification of caspase-3 degradome by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight analysis. Lee AY, Park BC, Jang M, Cho S, Lee DH, Lee SC, Myung PK, Park SG. Proteomics 4 3429-3436 (2004)
  33. Capping of actin filaments by vinculin activated by the Shigella IpaA carboxyl-terminal domain. Ramarao N, Le Clainche C, Izard T, Bourdet-Sicard R, Ageron E, Sansonetti PJ, Carlier MF, Tran Van Nhieu G. FEBS Lett. 581 853-857 (2007)
  34. A molecular dynamics investigation of vinculin activation. Golji J, Mofrad MR. Biophys. J. 99 1073-1081 (2010)
  35. Structural and biophysical properties of the integrin-associated cytoskeletal protein talin. Roberts GC, Critchley DR. Biophys Rev 1 61-69 (2009)
  36. Vinculin binding in its closed conformation by a helix addition mechanism. Nhieu GT, Izard T. EMBO J. 26 4588-4596 (2007)
  37. Activation of vinculin induced by cholinergic stimulation regulates contraction of tracheal smooth muscle tissue. Huang Y, Zhang W, Gunst SJ. J. Biol. Chem. 286 3630-3644 (2011)
  38. Vinculin is a dually regulated actin filament barbed end-capping and side-binding protein. Le Clainche C, Dwivedi SP, Didry D, Carlier MF. J. Biol. Chem. 285 23420-23432 (2010)
  39. Role of interaction with vinculin in recruitment of vinexins to focal adhesions. Takahashi H, Mitsushima M, Okada N, Ito T, Aizawa S, Akahane R, Umemoto T, Ueda K, Kioka N. Biochem. Biophys. Res. Commun. 336 239-246 (2005)
  40. Direct interaction of the C-terminal domain of alpha-catenin and F-actin is necessary for stabilized cell-cell adhesion. Pappas DJ, Rimm DL. Cell Commun. Adhes. 13 151-170 (2006)
  41. Vinculin activation is necessary for complete talin binding. Golji J, Lam J, Mofrad MR. Biophys. J. 100 332-340 (2011)
  42. Lipid binding promotes oligomerization and focal adhesion activity of vinculin. Chinthalapudi K, Rangarajan ES, Patil DN, George EM, Brown DT, Izard T. J. Cell Biol. 207 643-656 (2014)
  43. Structure of the alpha-actinin-vinculin head domain complex determined by cryo-electron microscopy. Kelly DF, Taylor DW, Bakolitsa C, Bobkov AA, Bankston L, Liddington RC, Taylor KA. J. Mol. Biol. 357 562-573 (2006)
  44. Phosphorylation primes vinculin for activation. Golji J, Wendorff T, Mofrad MR. Biophys. J. 102 2022-2030 (2012)
  45. Resealing of endothelial junctions by focal adhesion kinase. Quadri SK, Bhattacharya J. Am. J. Physiol. Lung Cell Mol. Physiol. 292 L334-42 (2007)
  46. Single and collective cell migration: the mechanics of adhesions. De Pascalis C, Etienne-Manneville S. Mol. Biol. Cell 28 1833-1846 (2017)
  47. The serine-rich domain from Crk-associated substrate (p130cas) is a four-helix bundle. Briknarová K, Nasertorabi F, Havert ML, Eggleston E, Hoyt DW, Li C, Olson AJ, Vuori K, Ely KR. J. Biol. Chem. 280 21908-21914 (2005)
  48. Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. Zemljic-Harpf AE, Godoy JC, Platoshyn O, Asfaw EK, Busija AR, Domenighetti AA, Ross RS. J. Cell. Sci. 127 1104-1116 (2014)
  49. A helix replacement mechanism directs metavinculin functions. Rangarajan ES, Lee JH, Yogesha SD, Izard T. PLoS ONE 5 e10679 (2010)
  50. Proteomic analysis of PBMCs: characterization of potential HIV-associated proteins. Zhang L, Jia X, Zhang X, Sun J, Peng X, Qi T, Ma F, Yin L, Yao Y, Qiu C, Lu H. Proteome Sci 8 12 (2010)
  51. Myosin II activity dependent and independent vinculin recruitment to the sites of E-cadherin-mediated cell-cell adhesion. Sumida GM, Tomita TM, Shih W, Yamada S. BMC Cell Biol. 12 48 (2011)
  52. Novel vinculin binding site of the IpaA invasin of Shigella. Park H, Valencia-Gallardo C, Sharff A, Tran Van Nhieu G, Izard T. J. Biol. Chem. 286 23214-23221 (2011)
  53. Vinculin phosphorylation at residues Y100 and Y1065 is required for cellular force transmission. Auernheimer V, Lautscham LA, Leidenberger M, Friedrich O, Kappes B, Fabry B, Goldmann WH. J. Cell. Sci. 128 3435-3443 (2015)
  54. A molecular trajectory of α-actinin activation. Shams H, Golji J, Mofrad MR. Biophys. J. 103 2050-2059 (2012)
  55. Vinculin phosphorylation at Tyr1065 regulates vinculin conformation and tension development in airway smooth muscle tissues. Huang Y, Day RN, Gunst SJ. J. Biol. Chem. 289 3677-3688 (2014)
  56. Mechano-transduction: from molecules to tissues. Pruitt BL, Dunn AR, Weis WI, Nelson WJ. PLoS Biol. 12 e1001996 (2014)
  57. Defining the functional domain of programmed cell death 10 through its interactions with phosphatidylinositol-3,4,5-trisphosphate. Dibble CF, Horst JA, Malone MH, Park K, Temple B, Cheeseman H, Barbaro JR, Johnson GL, Bencharit S. PLoS ONE 5 e11740 (2010)
  58. Protein-lipid interactions: correlation of a predictive algorithm for lipid-binding sites with three-dimensional structural data. Scott DL, Diez G, Goldmann WH. Theor Biol Med Model 3 17 (2006)
  59. The interaction of vinculin with actin. Golji J, Mofrad MR. PLoS Comput. Biol. 9 e1002995 (2013)
  60. Angiotensin-II and MARCKS: a hydrogen peroxide- and RAC1-dependent signaling pathway in vascular endothelium. Kalwa H, Sartoretto JL, Sartoretto SM, Michel T. J. Biol. Chem. 287 29147-29158 (2012)
  61. The conserved C-terminal I/LWEQ module targets Talin1 to focal adhesions. Franco SJ, Senetar MA, Simonson WT, Huttenlocher A, McCann RO. Cell Motil. Cytoskeleton 63 563-581 (2006)
  62. Actin dynamics associated with focal adhesions. Ciobanasu C, Faivre B, Le Clainche C. Int J Cell Biol 2012 941292 (2012)
  63. Genistein inhibits the growth and regulates the migration and invasion abilities of melanoma cells via the FAK/paxillin and MAPK pathways. Cui S, Wang J, Wu Q, Qian J, Yang C, Bo P. Oncotarget 8 21674-21691 (2017)
  64. Sustained α-catenin Activation at E-cadherin Junctions in the Absence of Mechanical Force. Biswas KH, Hartman KL, Zaidel-Bar R, Groves JT. Biophys. J. 111 1044-1052 (2016)
  65. The C-terminal tail domain of metavinculin, vinculin's splice variant, severs actin filaments. Janssen ME, Liu H, Volkmann N, Hanein D. J. Cell Biol. 197 585-593 (2012)
  66. 2D-difference gel electrophoretic proteomic analysis of a cell culture model of alveolar rhabdomyosarcoma. Pressey JG, Pressey CS, Robinson G, Herring R, Wilson L, Kelly DR, Kim H. J. Proteome Res. 10 624-636 (2011)
  67. Comment Cell biology: how to build a cell junction. Weis WI. Nature 430 513-515 (2004)
  68. Drosophila vinculin is more harmful when hyperactive than absent, and can circumvent integrin to form adhesion complexes. Maartens AP, Wellmann J, Wictome E, Klapholz B, Green H, Brown NH. J. Cell. Sci. 129 4354-4365 (2016)
  69. Focal adhesion plaque associated cytoskeletons are involved in the invasion and metastasis of human colorectal carcinoma. Yang HJ, Chen JZ, Zhang WL, Ding YQ. Cancer Invest. 28 127-134 (2010)
  70. Gene expression during the development of experimentally induced cerebral aneurysms. Sadamasa N, Nozaki K, Kita-Matsuo H, Saito S, Moriwaki T, Aoki T, Kawarazaki S, Kataoka H, Takagi Y, Ishikawa M, Hashimoto N, Kato K. J. Vasc. Res. 45 343-349 (2008)
  71. Crystal structure of vinculin in complex with vinculin binding site 50 (VBS50), the integrin binding site 2 (IBS2) of talin. Yogesha SD, Rangarajan ES, Vonrhein C, Bricogne G, Izard T. Protein Sci. 21 583-588 (2012)
  72. Intermolecular versus intramolecular interactions of the vinculin binding site 33 of talin. Yogesha SD, Sharff A, Bricogne G, Izard T. Protein Sci. 20 1471-1476 (2011)
  73. Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration. Dingyu W, Fanjie M, Zhengzheng D, Baosheng H, Chao Y, Yi P, Huiwen W, Jun G, Gang H. Mol. Neurobiol. 53 4582-4595 (2016)
  74. Vinculin and Rab5 complex is required [correction of requited]for uptake of Staphylococcus aureus and interleukin-6 expression. Hagiwara M, Kokubu E, Sugiura S, Komatsu T, Tada H, Isoda R, Tanigawa N, Kato Y, Ishida N, Kobayashi K, Nakashima M, Ishihara K, Matsushita K. PLoS ONE 9 e87373 (2014)
  75. Vinculin is indispensable for repopulation by hematopoietic stem cells, independent of integrin function. Ohmori T, Kashiwakura Y, Ishiwata A, Madoiwa S, Mimuro J, Furukawa Y, Sakata Y. J. Biol. Chem. 285 31763-31773 (2010)
  76. CD99 inhibits CD98-mediated β1 integrin signaling through SHP2-mediated FAK dephosphorylation. Lee KJ, Yoo YH, Kim MS, Yadav BK, Kim Y, Lim D, Hwangbo C, Moon KW, Kim D, Jeoung D, Lee H, Lee JH, Hahn JH. Exp. Cell Res. 336 211-222 (2015)
  77. Metavinculin: New insights into functional properties of a muscle adhesion protein. Thoss F, Dietrich F, Punkt K, Illenberger S, Rottner K, Himmel M, Ziegler WH. Biochem. Biophys. Res. Commun. 430 7-13 (2013)
  78. Vinculin head-tail interaction defines multiple early mechanisms for cell substrate rigidity sensing. Liu Z, Bun P, Audugé N, Coppey-Moisan M, Borghi N. Integr Biol (Camb) 8 693-703 (2016)
  79. Aqueous extracts of Tribulus terrestris protects against oxidized low-density lipoprotein-induced endothelial dysfunction. Jiang YH, Yang CH, Li W, Wu S, Meng XQ, Li DN. Chin J Integr Med 22 193-200 (2016)
  80. Pulp Regeneration by 3-dimensional Dental Pulp Stem Cell Constructs. Itoh Y, Sasaki JI, Hashimoto M, Katata C, Hayashi M, Imazato S. J. Dent. Res. 97 1137-1143 (2018)
  81. Vinculin regulates assembly of talin: β3 integrin complexes. Nanda SY, Hoang T, Patel P, Zhang H. J. Cell. Biochem. 115 1206-1216 (2014)
  82. A Structural Model for Vinculin Insertion into PIP2-Containing Membranes and the Effect of Insertion on Vinculin Activation and Localization. Thompson PM, Ramachandran S, Case LB, Tolbert CE, Tandon A, Pershad M, Dokholyan NV, Waterman CM, Campbell SL. Structure 25 264-275 (2017)
  83. Differential lipid binding of vinculin isoforms promotes quasi-equivalent dimerization. Chinthalapudi K, Rangarajan ES, Brown DT, Izard T. Proc. Natl. Acad. Sci. U.S.A. 113 9539-9544 (2016)
  84. Apo raver1 structure reveals distinct RRM domain orientations. Rangarajan ES, Lee JH, Izard T. Protein Sci. 20 1464-1470 (2011)
  85. The metavinculin tail domain directs constitutive interactions with raver1 and vinculin RNA. Lee JH, Rangarajan ES, Vonrhein C, Bricogne G, Izard T. J. Mol. Biol. 422 697-704 (2012)
  86. Vinculin association with actin cytoskeleton is necessary for stiffness-dependent regulation of vinculin behavior. Omachi T, Ichikawa T, Kimura Y, Ueda K, Kioka N. PLoS ONE 12 e0175324 (2017)
  87. An amphipathic helix of vinexin α is necessary for a substrate stiffness-dependent conformational change in vinculin. Hino N, Ichikawa T, Kimura Y, Matsuda M, Ueda K, Kioka N. J. Cell. Sci. 132 (2019)
  88. Analysis of a vinculin homolog in a sponge (phylum Porifera) reveals that vertebrate-like cell adhesions emerged early in animal evolution. Miller PW, Pokutta S, Mitchell JM, Chodaparambil JV, Clarke DN, Nelson WJ, Weis WI, Nichols SA. J. Biol. Chem. 293 11674-11686 (2018)
  89. How far in-silico computing meets real experiments. A study on the structure and dynamics of spin labeled vinculin tail protein by molecular dynamics simulations and EPR spectroscopy. Prasad Gajula MN, Vogel KP, Rai A, Dietrich F, Steinhoff HJ. BMC Genomics 14 Suppl 2 S4 (2013)
  90. A small fluorophore reporter of protein conformation and redox state. Pound GJ, Pletnev AA, Fang X, Pletneva EV. Chem. Commun. (Camb.) 47 5714-5716 (2011)
  91. Direct single-molecule quantification reveals unexpectedly high mechanical stability of vinculin-talin/α-catenin linkages. Le S, Yu M, Yan J. Sci Adv 5 eaav2720 (2019)
  92. Pairing of homologous chromosomes in C. elegans meiosis requires DEB-1 - an orthologue of mammalian vinculin. Rohožková J, Hůlková L, Fukalová J, Flachs P, Hozák P. Nucleus 10 93-115 (2019)
  93. The development of an affinity evaluation and prediction system by using protein-protein docking simulations and parameter tuning. Tsukamoto K, Yoshikawa T, Yokota K, Hourai Y, Fukui K. Adv Appl Bioinform Chem 2 1-15 (2009)
  94. The force-sensing device region of α-catenin is an intrinsically disordered segment in the absence of intramolecular stabilization of the autoinhibitory form. Hirano Y, Amano Y, Yonemura S, Hakoshima T. Genes Cells 23 370-385 (2018)
  95. The interaction of talin with the cell membrane is essential for integrin activation and focal adhesion formation. Chinthalapudi K, Rangarajan ES, Izard T. Proc. Natl. Acad. Sci. U.S.A. 115 10339-10344 (2018)
  96. Vinculin and metavinculin exhibit distinct effects on focal adhesion properties, cell migration, and mechanotransduction. Lee HT, Sharek L, O'Brien ET, Urbina FL, Gupton SL, Superfine R, Burridge K, Campbell SL. PLoS ONE 14 e0221962 (2019)