1r9p Citations

Solution NMR structure of the iron-sulfur cluster assembly protein U (IscU) with zinc bound at the active site.

Abstract

IscU is a highly conserved protein that serves as the scaffold for IscS-mediated assembly of iron-sulfur ([Fe-S]) clusters. We report the NMR solution structure of monomeric Haemophilus influenzae IscU with zinc bound at the [Fe-S] cluster assembly site. The compact core of the globular structure has an alpha-beta sandwich architecture with a three-stranded antiparallel beta-sheet and four alpha-helices. A nascent helix is located N-terminal to the core structure. The zinc is ligated by three cysteine residues and one histidine residue that are located in and near conformationally dynamic loops at one end of the IscU structure. Removal of the zinc metal by chelation results in widespread loss of structure in the apo form. The zinc-bound IscU may be a good model for iron-loaded IscU and may demonstrate structural features found in the [Fe-S] cluster bound form. Structural and functional similarities, genomic context in operons containing other homologous genes, and distributions of conserved surface residues support the hypothesis that IscU protein domains are homologous (i.e. derived from a common ancestor) with the SufE/YgdK family of [Fe-S] cluster assembly proteins.

Reviews - 1r9p mentioned but not cited (5)

Articles - 1r9p mentioned but not cited (12)

  1. Structure and dynamics of the iron-sulfur cluster assembly scaffold protein IscU and its interaction with the cochaperone HscB. Kim JH, Füzéry AK, Tonelli M, Ta DT, Westler WM, Vickery LE, Markley JL. Biochemistry 48 6062-6071 (2009)
  2. Prediction of structures of zinc-binding proteins through explicit modeling of metal coordination geometry. Wang C, Vernon R, Lange O, Tyka M, Baker D. Protein Sci 19 494-506 (2010)
  3. Structural studies of the Enterococcus faecalis SufU [Fe-S] cluster protein. Riboldi GP, Verli H, Frazzon J. BMC Biochem. 10 3 (2009)
  4. High-quality homology models derived from NMR and X-ray structures of E. coli proteins YgdK and Suf E suggest that all members of the YgdK/Suf E protein family are enhancers of cysteine desulfurases. Liu G, Li Z, Chiang Y, Acton T, Montelione GT, Murray D, Szyperski T. Protein Sci. 14 1597-1608 (2005)
  5. Three-dimensional structure and determinants of stability of the iron-sulfur cluster scaffold protein IscU from Escherichia coli. Kim JH, Tonelli M, Kim T, Markley JL. Biochemistry 51 5557-5563 (2012)
  6. The role of zinc in the stability of the marginally stable IscU scaffold protein. Iannuzzi C, Adrover M, Puglisi R, Yan R, Temussi PA, Pastore A. Protein Sci. 23 1208-1219 (2014)
  7. Architecture of the Yeast Mitochondrial Iron-Sulfur Cluster Assembly Machinery: THE SUB-COMPLEX FORMED BY THE IRON DONOR, Yfh1 PROTEIN, AND THE SCAFFOLD, Isu1 PROTEIN. Ranatunga W, Gakh O, Galeano BK, Smith DY, Söderberg CA, Al-Karadaghi S, Thompson JR, Isaya G. J. Biol. Chem. 291 10378-10398 (2016)
  8. ISCU(M108I) and ISCU(D39V) Differ from Wild-Type ISCU in Their Failure To Form Cysteine Desulfurase Complexes Containing Both Frataxin and Ferredoxin. Cai K, Frederick RO, Tonelli M, Markley JL. Biochemistry 57 1491-1500 (2018)
  9. Zinc and the iron donor frataxin regulate oligomerization of the scaffold protein to form new Fe-S cluster assembly centers. Galeano BK, Ranatunga W, Gakh O, Smith DY, Thompson JR, Isaya G. Metallomics 9 773-801 (2017)
  10. Expression, crystallization and preliminary crystallographic analysis of SufE (XAC2355) from Xanthomonas axonopodis pv. citri. Guzzo CR, Silva LR, Galvão-Botton LM, Barbosa JA, Farah CS. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62 268-270 (2006)
  11. New Techniques for Ancient Proteins: Direct Coupling Analysis Applied on Proteins Involved in Iron Sulfur Cluster Biogenesis. Fantini M, Malinverni D, De Los Rios P, Pastore A. Front Mol Biosci 4 40 (2017)
  12. The cold denaturation of IscU highlights structure-function dualism in marginally stable proteins. Yan R, Rios PD, Pastore A, Temussi PA. Commun Chem 1 s42004-018-0015-1 (2018)


Reviews citing this publication (16)

  1. Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases. Lill R, Mühlenhoff U. Annu. Rev. Biochem. 77 669-700 (2008)
  2. Iron-sulfur-protein biogenesis in eukaryotes. Lill R, Mühlenhoff U. Trends Biochem. Sci. 30 133-141 (2005)
  3. Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Lill R, Mühlenhoff U. Annu. Rev. Cell Dev. Biol. 22 457-486 (2006)
  4. Fe-S cluster assembly pathways in bacteria. Ayala-Castro C, Saini A, Outten FW. Microbiol. Mol. Biol. Rev. 72 110-25, table of contents (2008)
  5. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Genevaux P, Georgopoulos C, Kelley WL. Mol. Microbiol. 66 840-857 (2007)
  6. Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Biochim. Biophys. Acta 1827 455-469 (2013)
  7. Iron-sulfur cluster biosynthesis in bacteria: Mechanisms of cluster assembly and transfer. Fontecave M, Ollagnier-de-Choudens S. Arch. Biochem. Biophys. 474 226-237 (2008)
  8. Iron-sulfur cluster biosynthesis. Bandyopadhyay S, Chandramouli K, Johnson MK. Biochem. Soc. Trans. 36 1112-1119 (2008)
  9. The structure and function of frataxin. Bencze KZ, Kondapalli KC, Cook JD, McMahon S, Millán-Pacheco C, Pastor N, Stemmler TL. Crit. Rev. Biochem. Mol. Biol. 41 269-291 (2006)
  10. Metal acquisition and availability in the mitochondria. Atkinson A, Winge DR. Chem. Rev. 109 4708-4721 (2009)
  11. Iron-sulfur clusters: biogenesis, molecular mechanisms, and their functional significance. Xu XM, Møller SG. Antioxid. Redox Signal. 15 271-307 (2011)
  12. Alternative FeS cluster ligands: tuning redox potentials and chemistry. Bak DW, Elliott SJ. Curr Opin Chem Biol 19 50-58 (2014)
  13. Hybrid Methods in Iron-Sulfur Cluster Biogenesis. Prischi F, Pastore A. Front Mol Biosci 4 12 (2017)
  14. Molecular Details of the Frataxin-Scaffold Interaction during Mitochondrial Fe-S Cluster Assembly. Campbell CJ, Pall AE, Naik AR, Thompson LN, Stemmler TL. Int J Mol Sci 22 6006 (2021)
  15. The NMR contribution to protein-protein networking in Fe-S protein maturation. Banci L, Camponeschi F, Ciofi-Baffoni S, Piccioli M. J. Biol. Inorg. Chem. 23 665-685 (2018)
  16. The Abc of Phosphonate Breakdown: A Mechanism for Bacterial Survival. Manav MC, Sofos N, Hove-Jensen B, Brodersen DE. Bioessays 40 e1800091 (2018)

Articles citing this publication (57)

  1. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Netz DJ, Stith CM, Stümpfig M, Köpf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PM, Pierik AJ. Nat. Chem. Biol. 8 125-132 (2011)
  2. Structural basis for Fe-S cluster assembly and tRNA thiolation mediated by IscS protein-protein interactions. Shi R, Proteau A, Villarroya M, Moukadiri I, Zhang L, Trempe JF, Matte A, Armengod ME, Cygler M. PLoS Biol. 8 e1000354 (2010)
  3. MitoNEET is a uniquely folded 2Fe 2S outer mitochondrial membrane protein stabilized by pioglitazone. Paddock ML, Wiley SE, Axelrod HL, Cohen AE, Roy M, Abresch EC, Capraro D, Murphy AN, Nechushtai R, Dixon JE, Jennings PA. Proc. Natl. Acad. Sci. U.S.A. 104 14342-14347 (2007)
  4. HscA and HscB stimulate [2Fe-2S] cluster transfer from IscU to apoferredoxin in an ATP-dependent reaction. Chandramouli K, Johnson MK. Biochemistry 45 11087-11095 (2006)
  5. Structural bases for the interaction of frataxin with the central components of iron-sulphur cluster assembly. Prischi F, Konarev PV, Iannuzzi C, Pastore C, Adinolfi S, Martin SR, Svergun DI, Pastore A. Nat Commun 1 95 (2010)
  6. Controlled expression and functional analysis of iron-sulfur cluster biosynthetic components within Azotobacter vinelandii. Johnson DC, Unciuleac MC, Dean DR. J. Bacteriol. 188 7551-7561 (2006)
  7. Analysis of iron-sulfur protein maturation in eukaryotes. Pierik AJ, Netz DJ, Lill R. Nat Protoc 4 753-766 (2009)
  8. Human frataxin activates Fe-S cluster biosynthesis by facilitating sulfur transfer chemistry. Bridwell-Rabb J, Fox NG, Tsai CL, Winn AM, Barondeau DP. Biochemistry 53 4904-4913 (2014)
  9. The asymmetric trimeric architecture of [2Fe-2S] IscU: implications for its scaffolding during iron-sulfur cluster biosynthesis. Shimomura Y, Wada K, Fukuyama K, Takahashi Y. J. Mol. Biol. 383 133-143 (2008)
  10. Identification of zinc-ligated cysteine residues based on 13Calpha and 13Cbeta chemical shift data. Kornhaber GJ, Snyder D, Moseley HN, Montelione GT. J. Biomol. NMR 34 259-269 (2006)
  11. The CRISPR associated protein Cas4 Is a 5' to 3' DNA exonuclease with an iron-sulfur cluster. Zhang J, Kasciukovic T, White MF. PLoS ONE 7 e47232 (2012)
  12. Augmenter of liver regeneration: substrate specificity of a flavin-dependent oxidoreductase from the mitochondrial intermembrane space. Daithankar VN, Farrell SR, Thorpe C. Biochemistry 48 4828-4837 (2009)
  13. AutoLink: automated sequential resonance assignment of biopolymers from NMR data by relative-hypothesis-prioritization-based simulated logic. Masse JE, Keller R. J. Magn. Reson. 174 133-151 (2005)
  14. Oligomeric yeast frataxin drives assembly of core machinery for mitochondrial iron-sulfur cluster synthesis. Li H, Gakh O, Smith DY, Isaya G. J. Biol. Chem. 284 21971-21980 (2009)
  15. Molecular details of the yeast frataxin-Isu1 interaction during mitochondrial Fe-S cluster assembly. Cook JD, Kondapalli KC, Rawat S, Childs WC, Murugesan Y, Dancis A, Stemmler TL. Biochemistry 49 8756-8765 (2010)
  16. Ferredoxin competes with bacterial frataxin in binding to the desulfurase IscS. Yan R, Konarev PV, Iannuzzi C, Adinolfi S, Roche B, Kelly G, Simon L, Martin SR, Py B, Barras F, Svergun DI, Pastore A. J. Biol. Chem. 288 24777-24787 (2013)
  17. Disordered form of the scaffold protein IscU is the substrate for iron-sulfur cluster assembly on cysteine desulfurase. Kim JH, Tonelli M, Markley JL. Proc. Natl. Acad. Sci. U.S.A. 109 454-459 (2012)
  18. Solution structure of the iron-sulfur cluster cochaperone HscB and its binding surface for the iron-sulfur assembly scaffold protein IscU. Füzéry AK, Tonelli M, Ta DT, Cornilescu G, Vickery LE, Markley JL. Biochemistry 47 9394-9404 (2008)
  19. The SufE sulfur-acceptor protein contains a conserved core structure that mediates interdomain interactions in a variety of redox protein complexes. Goldsmith-Fischman S, Kuzin A, Edstrom WC, Benach J, Shastry R, Xiao R, Acton TB, Honig B, Montelione GT, Hunt JF. J. Mol. Biol. 344 549-565 (2004)
  20. Structural characterization of an iron-sulfur cluster assembly protein IscU in a zinc-bound form. Liu J, Oganesyan N, Shin DH, Jancarik J, Yokota H, Kim R, Kim SH. Proteins 59 875-881 (2005)
  21. Structure of human J-type co-chaperone HscB reveals a tetracysteine metal-binding domain. Bitto E, Bingman CA, Bittova L, Kondrashov DA, Bannen RM, Fox BG, Markley JL, Phillips GN. J. Biol. Chem. 283 30184-30192 (2008)
  22. Specialized Hsp70 chaperone (HscA) binds preferentially to the disordered form, whereas J-protein (HscB) binds preferentially to the structured form of the iron-sulfur cluster scaffold protein (IscU). Kim JH, Tonelli M, Frederick RO, Chow DC, Markley JL. J. Biol. Chem. 287 31406-31413 (2012)
  23. On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on Earth. Mulkidjanian AY, Galperin MY. Biol. Direct 4 27 (2009)
  24. Reprint of: Iron/sulfur proteins biogenesis in prokaryotes: formation, regulation and diversity. Roche B, Aussel L, Ezraty B, Mandin P, Py B, Barras F. Biochim. Biophys. Acta 1827 923-937 (2013)
  25. Fe-S cluster biogenesis in Gram-positive bacteria: SufU is a zinc-dependent sulfur transfer protein. Selbach BP, Chung AH, Scott AD, George SJ, Cramer SP, Dos Santos PC. Biochemistry 53 152-160 (2014)
  26. Role of IscX in iron-sulfur cluster biogenesis in Escherichia coli. Kim JH, Bothe JR, Frederick RO, Holder JC, Markley JL. J. Am. Chem. Soc. 136 7933-7942 (2014)
  27. Cysteine desulfurase Nfs1 and Pim1 protease control levels of Isu, the Fe-S cluster biogenesis scaffold. Song JY, Marszalek J, Craig EA. Proc. Natl. Acad. Sci. U.S.A. 109 10370-10375 (2012)
  28. Role of conserved cysteines in mediating sulfur transfer from IscS to IscU. Smith AD, Frazzon J, Dean DR, Johnson MK. FEBS Lett. 579 5236-5240 (2005)
  29. Of the vulnerability of orphan complex proteins: the case study of the E. coli IscU and IscS proteins. Prischi F, Pastore C, Carroni M, Iannuzzi C, Adinolfi S, Temussi P, Pastore A. Protein Expr. Purif. 73 161-166 (2010)
  30. Structural, Mechanistic and Coordination Chemistry of Relevance to the Biosynthesis of Iron-Sulfur and Related Iron Cofactors. Qi W, Cowan JA. Coord Chem Rev 255 688-699 (2011)
  31. Structural analysis of Arabidopsis CnfU protein: an iron-sulfur cluster biosynthetic scaffold in chloroplasts. Yabe T, Yamashita E, Kikuchi A, Morimoto K, Nakagawa A, Tsukihara T, Nakai M. J. Mol. Biol. 381 160-173 (2008)
  32. Studies of the molten globule state of ferredoxin: structural characterization and implications on protein folding and iron-sulfur center assembly. Leal SS, Gomes CM. Proteins 68 606-616 (2007)
  33. A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins. Barraud P, Schubert M, Allain FH. J. Biomol. NMR 53 93-101 (2012)
  34. Accessory NUMM (NDUFS6) subunit harbors a Zn-binding site and is essential for biogenesis of mitochondrial complex I. Kmita K, Wirth C, Warnau J, Guerrero-Castillo S, Hunte C, Hummer G, Kaila VR, Zwicker K, Brandt U, Zickermann V. Proc. Natl. Acad. Sci. U.S.A. 112 5685-5690 (2015)
  35. Architecture of the Human Mitochondrial Iron-Sulfur Cluster Assembly Machinery. Gakh O, Ranatunga W, Smith DY, Ahlgren EC, Al-Karadaghi S, Thompson JR, Isaya G. J. Biol. Chem. 291 21296-21321 (2016)
  36. Iron-sulfur cluster biosynthesis: characterization of a molten globule domain in human NFU. Liu Y, Cowan JA. Biochemistry 48 7512-7518 (2009)
  37. Crystal structure of atypical cytoplasmic ABC-ATPase SufC from Thermus thermophilus HB8. Watanabe S, Kita A, Miki K. J. Mol. Biol. 353 1043-1054 (2005)
  38. The scaffold protein IscU retains a structured conformation in the Fe-S cluster assembly complex. Yan R, Kelly G, Pastore A. Chembiochem 15 1682-1686 (2014)
  39. Insights into the function of YciM, a heat shock membrane protein required to maintain envelope integrity in Escherichia coli. Nicolaes V, El Hajjaji H, Davis RM, Van der Henst C, Depuydt M, Leverrier P, Aertsen A, Haufroid V, Ollagnier de Choudens S, De Bolle X, Ruiz N, Collet JF. J. Bacteriol. 196 300-309 (2014)
  40. Competition of zinc ion for the [2Fe-2S] cluster binding site in the diabetes drug target protein mitoNEET. Tan G, Landry AP, Dai R, Wang L, Lu J, Ding H. Biometals 25 1177-1184 (2012)
  41. Key players and their role during mitochondrial iron-sulfur cluster biosynthesis. Rawat S, Stemmler TL. Chemistry 17 746-753 (2011)
  42. Iron and zinc binding activity of Escherichia coli topoisomerase I homolog YrdD. Cheng Z, Tan G, Wang W, Su X, Landry AP, Lu J, Ding H. Biometals 27 229-236 (2014)
  43. Zinc(II) binding on human wild-type ISCU and Met140 variants modulates NFS1 desulfurase activity. Fox NG, Martelli A, Nabhan JF, Janz J, Borkowska O, Bulawa C, Yue WW. Biochimie 152 211-218 (2018)
  44. pH-induced conformational change of IscU at low pH correlates with protonation/deprotonation of two conserved histidine residues. Dai Z, Kim JH, Tonelli M, Ali IK, Markley JL. Biochemistry 53 5290-5297 (2014)
  45. Expression, purification and characterization of an iron-sulfur cluster assembly protein, IscU, from Acidithiobacillus ferrooxidans. Zeng J, Zhao W, Liu Y, Xia L, Liu J, Qiu G. Biotechnol. Lett. 29 1965-1972 (2007)
  46. Iron Insertion at the Assembly Site of the ISCU Scaffold Protein Is a Conserved Process Initiating Fe-S Cluster Biosynthesis. Srour B, Gervason S, Hoock MH, Monfort B, Want K, Larkem D, Trabelsi N, Landrot G, Zitolo A, Fonda E, Etienne E, Gerbaud G, Müller CS, Oltmanns J, Gordon JB, Yadav V, Kleczewska M, Jelen M, Toledano MB, Dutkiewicz R, Goldberg DP, Schünemann V, Guigliarelli B, Burlat B, Sizun C, D'Autréaux B. J Am Chem Soc 144 17496-17515 (2022)
  47. Aberrant coordination geometries discovered in the most abundant metalloproteins. Yao S, Flight RM, Rouchka EC, Moseley HN. Proteins 85 885-907 (2017)
  48. Characteristics of the Isu1 C-terminus in relation to [2Fe-2S] cluster assembly and ISCU Myopathy. Lewis BE, Campbell CJ, Rodrigues A, Thompson L, Pandey AK, Gallagher SN, Pain D, Dancis A, Stemmler TL. J Biol Inorg Chem 27 759-773 (2022)
  49. In silico characterization, docking, and simulations to understand host-pathogen interactions in an effort to enhance crop production in date palms. Alazmi M, Alshammari N, Alanazi NA, Sulieman AME. J Mol Model 27 339 (2021)
  50. Mechanistic Insights into IscU Conformation Regulation for Fe-S Cluster Biogenesis Revealed by Variable Temperature Electrospray Ionization Native Ion Mobility Mass Spectrometry. Lin CW, Oney-Hawthorne SD, Kuo ST, Barondeau DP, Russell DH. Biochemistry 61 2733-2741 (2022)
  51. Molecular Mechanism of ISC Iron-Sulfur Cluster Biogenesis Revealed by High-Resolution Native Mass Spectrometry. Lin CW, McCabe JW, Russell DH, Barondeau DP. J Am Chem Soc 142 6018-6029 (2020)
  52. Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin. Gervason S, Larkem D, Mansour AB, Botzanowski T, Müller CS, Pecqueur L, Le Pavec G, Delaunay-Moisan A, Brun O, Agramunt J, Grandas A, Fontecave M, Schünemann V, Cianférani S, Sizun C, Tolédano MB, D'Autréaux B. Nat Commun 10 3566 (2019)
  53. Structural and Biochemical Characterization of Mycobacterium tuberculosis Zinc SufU-SufS Complex. Elchennawi I, Carpentier P, Caux C, Ponge M, Ollagnier de Choudens S. Biomolecules 13 732 (2023)
  54. Structural diversity of cysteine desulfurases involved in iron-sulfur cluster biosynthesis. Fujishiro T, Nakamura R, Kunichika K, Takahashi Y. Biophys Physicobiol 19 1-18 (2022)
  55. Structure of a putative immature form of a Rieske-type iron-sulfur protein in complex with zinc chloride. Tsutsumi E, Niwa S, Takeda R, Sakamoto N, Okatsu K, Fukai S, Ago H, Nagao S, Sekiguchi H, Takeda K. Commun Chem 6 190 (2023)
  56. Unique roles of iron and zinc binding to the yeast Fe-S cluster scaffold assembly protein "Isu1". Lewis BE, Mason Z, Rodrigues AV, Nuth M, Dizin E, Cowan JA, Stemmler TL. Metallomics 11 1820-1835 (2019)
  57. Zinc Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli. Li J, Ren X, Fan B, Huang Z, Wang W, Zhou H, Lou Z, Ding H, Lyu J, Tan G. Appl. Environ. Microbiol. 85 (2019)