1qyq Citations

Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures.

Proc Natl Acad Sci U S A 100 12111-6 (2003)
Related entries: 1qxt, 1qy3, 1qyf, 1qyo

Cited: 87 times
EuropePMC logo PMID: 14523232

Abstract

Green fluorescent protein has revolutionized cell labeling and molecular tagging, yet the driving force and mechanism for its spontaneous fluorophore synthesis are not established. Here we discover mutations that substantially slow the rate but not the yield of this posttranslational modification, determine structures of the trapped precyclization intermediate and oxidized postcyclization states, and identify unanticipated features critical to chromophore maturation. The protein architecture contains a dramatic approximately 80 degrees bend in the central helix, which focuses distortions at G67 to promote ring formation from amino acids S65, Y66, and G67. Significantly, these distortions eliminate potential helical hydrogen bonds that would otherwise have to be broken at an energetic cost during peptide cyclization and force the G67 nitrogen and S65 carbonyl oxygen atoms within van der Waals contact in preparation for covalent bond formation. Further, we determine that under aerobic, but not anaerobic, conditions the Gly-Gly-Gly chromophore sequence cyclizes and incorporates an oxygen atom. These results lead directly to a conjugation-trapping mechanism, in which a thermodynamically unfavorable cyclization reaction is coupled to an electronic conjugation trapping step, to drive chromophore maturation. Moreover, we propose primarily electrostatic roles for the R96 and E222 side chains in chromophore formation and suggest that the T62 carbonyl oxygen is the base that initiates the dehydration reaction. Our molecular mechanism provides the basis for understanding and eventually controlling chromophore creation.

Articles - 1qyq mentioned but not cited (2)

  1. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Barondeau DP, Putnam CD, Kassmann CJ, Tainer JA, Getzoff ED. Proc Natl Acad Sci U S A 100 12111-12116 (2003)
  2. Mispacking and the Fitness Landscape of the Green Fluorescent Protein Chromophore Milieu. Banerjee S, Schenkelberg CD, Jordan TB, Reimertz JM, Crone EE, Crone DE, Bystroff C. Biochemistry 56 736-747 (2017)


Reviews citing this publication (24)

  1. Fluorescent proteins and their applications in imaging living cells and tissues. Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Physiol Rev 90 1103-1163 (2010)
  2. Genetically encodable fluorescent biosensors for tracking signaling dynamics in living cells. Newman RH, Fosbrink MD, Zhang J. Chem Rev 111 3614-3666 (2011)
  3. Fluorescent proteins: maturation, photochemistry and photophysics. Remington SJ. Curr Opin Struct Biol 16 714-721 (2006)
  4. Green fluorescent protein: structure, folding and chromophore maturation. Craggs TD. Chem Soc Rev 38 2865-2875 (2009)
  5. GFP family: structural insights into spectral tuning. Pakhomov AA, Martynov VI. Chem Biol 15 755-764 (2008)
  6. Fluorescent proteins as biomarkers and biosensors: throwing color lights on molecular and cellular processes. Stepanenko OV, Verkhusha VV, Kuznetsova IM, Uversky VN, Turoverov KK. Curr Protein Pept Sci 9 338-369 (2008)
  7. Chromophore transformations in red fluorescent proteins. Subach FV, Verkhusha VV. Chem Rev 112 4308-4327 (2012)
  8. GFP-based FRET analysis in live cells. Takanishi CL, Bykova EA, Cheng W, Zheng J. Brain Res 1091 132-139 (2006)
  9. The structure and function of fluorescent proteins. Sample V, Newman RH, Zhang J. Chem Soc Rev 38 2852-2864 (2009)
  10. Split Green Fluorescent Proteins: Scope, Limitations, and Outlook. Romei MG, Boxer SG. Annu Rev Biophys 48 19-44 (2019)
  11. Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. Stepanenko OV, Stepanenko OV, Kuznetsova IM, Verkhusha VV, Turoverov KK. Int Rev Cell Mol Biol 302 221-278 (2013)
  12. Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. Nienhaus GU, Wiedenmann J. Chemphyschem 10 1369-1379 (2009)
  13. The role of the protein matrix in green fluorescent protein fluorescence. Maddalo SL, Zimmer M. Photochem Photobiol 82 367-372 (2006)
  14. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. Niu W, Guo J. Mol Biosyst 9 2961-2970 (2013)
  15. Understanding the folding of GFP using biophysical techniques. Jackson SE, Craggs TD, Huang JR. Expert Rev Proteomics 3 545-559 (2006)
  16. The family of GFP-like proteins: structure, function, photophysics and biosensor applications. Introduction and perspective. Wachter RM. Photochem Photobiol 82 339-344 (2006)
  17. Function and structure of GFP-like proteins in the protein data bank. Ong WJ, Alvarez S, Leroux IE, Shahid RS, Samma AA, Peshkepija P, Morgan AL, Mulcahy S, Zimmer M. Mol Biosyst 7 984-992 (2011)
  18. Archaeal genome guardians give insights into eukaryotic DNA replication and damage response proteins. Shin DS, Pratt AJ, Tainer JA. Archaea 2014 206735 (2014)
  19. Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. Mocz G. Mar Biotechnol (NY) 9 305-328 (2007)
  20. Structure-guided rational design of red fluorescent proteins: towards designer genetically-encoded fluorophores. Eason MG, Damry AM, Chica RA. Curr Opin Struct Biol 45 91-99 (2017)
  21. Intracellular pH Control by Membrane Transport in Mammalian Cells. Insights Into the Selective Advantages of Functional Redundancy. Doyen D, Poët M, Jarretou G, Pisani DF, Tauc M, Cougnon M, Argentina M, Bouret Y, Counillon L. Front Mol Biosci 9 825028 (2022)
  22. Posttranslational chemistry of proteins of the GFP family. Pakhomov AA, Martynov VI. Biochemistry (Mosc) 74 250-259 (2009)
  23. Practical Guidance for Developing Small-Molecule Optical Probes for In Vivo Imaging. Ran C, Mansfield JR, Bai M, Viola NT, Mahajan A, Delikatny EJ. Mol Imaging Biol 25 240-264 (2023)
  24. The past, present and future of fluorescent protein tags in anaerobic protozoan parasites. Morin-Adeline V, Šlapeta J. Parasitology 143 260-275 (2016)

Articles citing this publication (61)

  1. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Hochbaum DR, Zhao Y, Farhi SL, Klapoetke N, Werley CA, Kapoor V, Zou P, Kralj JM, Maclaurin D, Smedemark-Margulies N, Saulnier JL, Boulting GL, Straub C, Cho YK, Melkonian M, Wong GK, Harrison DJ, Murthy VN, Sabatini BL, Boyden ES, Campbell RE, Cohen AE. Nat Methods 11 825-833 (2014)
  2. Versatile protein tagging in cells with split fluorescent protein. Kamiyama D, Sekine S, Barsi-Rhyne B, Hu J, Chen B, Gilbert LA, Ishikawa H, Leonetti MD, Marshall WF, Weissman JS, Huang B. Nat Commun 7 11046 (2016)
  3. Structural basis for the entrance into the phenylpropanoid metabolism catalyzed by phenylalanine ammonia-lyase. Ritter H, Schulz GE. Plant Cell 16 3426-3436 (2004)
  4. The photophysics of green fluorescent protein: influence of the key amino acids at positions 65, 203, and 222. Jung G, Wiehler J, Zumbusch A. Biophys J 88 1932-1947 (2005)
  5. Structural basis for phototoxicity of the genetically encoded photosensitizer KillerRed. Pletnev S, Gurskaya NG, Pletneva NV, Lukyanov KA, Chudakov DM, Martynov VI, Popov VO, Kovalchuk MV, Wlodawer A, Dauter Z, Pletnev V. J Biol Chem 284 32028-32039 (2009)
  6. Common pathway for the red chromophore formation in fluorescent proteins and chromoproteins. Verkhusha VV, Chudakov DM, Gurskaya NG, Lukyanov S, Lukyanov KA. Chem Biol 11 845-854 (2004)
  7. A crystallographic study of bright far-red fluorescent protein mKate reveals pH-induced cis-trans isomerization of the chromophore. Pletnev S, Shcherbo D, Chudakov DM, Pletneva N, Merzlyak EM, Wlodawer A, Dauter Z, Pletnev V. J Biol Chem 283 28980-28987 (2008)
  8. Visualization of synaptic inhibition with an optogenetic sensor developed by cell-free protein engineering automation. Grimley JS, Li L, Wang W, Wen L, Beese LS, Hellinga HW, Augustine GJ. J Neurosci 33 16297-16309 (2013)
  9. The rough energy landscape of superfolder GFP is linked to the chromophore. Andrews BT, Schoenfish AR, Roy M, Waldo G, Jennings PA. J Mol Biol 373 476-490 (2007)
  10. Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein. Sniegowski JA, Phail ME, Wachter RM. Biochem Biophys Res Commun 332 657-663 (2005)
  11. The dual-basin landscape in GFP folding. Andrews BT, Gosavi S, Finke JM, Onuchic JN, Jennings PA. Proc Natl Acad Sci U S A 105 12283-12288 (2008)
  12. Retracing evolution of red fluorescence in GFP-like proteins from Faviina corals. Field SF, Matz MV. Mol Biol Evol 27 225-233 (2010)
  13. Spatiotemporal Monitoring of Pseudomonas syringae Effectors via Type III Secretion Using Split Fluorescent Protein Fragments. Park E, Lee HY, Woo J, Choi D, Dinesh-Kumar SP. Plant Cell 29 1571-1584 (2017)
  14. Heat transfer in protein-water interfaces. Lervik A, Bresme F, Kjelstrup S, Bedeaux D, Miguel Rubi J. Phys Chem Chem Phys 12 1610-1617 (2010)
  15. Structural rearrangements near the chromophore influence the maturation speed and brightness of DsRed variants. Strongin DE, Bevis B, Khuong N, Downing ME, Strack RL, Sundaram K, Glick BS, Keenan RJ. Protein Eng Des Sel 20 525-534 (2007)
  16. Hysteresis as a Marker for Complex, Overlapping Landscapes in Proteins. Andrews BT, Capraro DT, Sulkowska JI, Onuchic JN, Jennings PA. J Phys Chem Lett 4 180-188 (2013)
  17. Understanding blue-to-red conversion in monomeric fluorescent timers and hydrolytic degradation of their chromophores. Pletnev S, Subach FV, Dauter Z, Wlodawer A, Verkhusha VV. J Am Chem Soc 132 2243-2253 (2010)
  18. Photophysics and dihedral freedom of the chromophore in yellow, blue, and green fluorescent protein. Megley CM, Dickson LA, Maddalo SL, Chandler GJ, Zimmer M. J Phys Chem B 113 302-308 (2009)
  19. Chromophore packing leads to hysteresis in GFP. Andrews BT, Roy M, Jennings PA. J Mol Biol 392 218-227 (2009)
  20. Harnessing the hygroscopic and biofluorescent behaviors of genetically tractable microbial cells to design biohybrid wearables. Wang W, Yao L, Cheng CY, Zhang T, Atsumi H, Wang L, Wang G, Anilionyte O, Steiner H, Ou J, Zhou K, Wawrousek C, Petrecca K, Belcher AM, Karnik R, Zhao X, Wang DIC, Ishii H. Sci Adv 3 e1601984 (2017)
  21. Kinetic isotope effect studies on the de novo rate of chromophore formation in fast- and slow-maturing GFP variants. Pouwels LJ, Zhang L, Chan NH, Dorrestein PC, Wachter RM. Biochemistry 47 10111-10122 (2008)
  22. Autocatalytically generated Thr-Gln ester bond cross-links stabilize the repetitive Ig-domain shaft of a bacterial cell surface adhesin. Kwon H, Squire CJ, Young PG, Baker EN. Proc Natl Acad Sci U S A 111 1367-1372 (2014)
  23. Tagging of Weakly Expressed Toxoplasma gondii Calcium-Related Genes with High-Affinity Tags. Hortua Triana MA, Márquez-Nogueras KM, Chang L, Stasic AJ, Li C, Spiegel KA, Sharma A, Li ZH, Moreno SNJ. J Eukaryot Microbiol 65 709-721 (2018)
  24. Advanced in vivo applications of blue light photoreceptors as alternative fluorescent proteins. Drepper T, Gensch T, Pohl M. Photochem Photobiol Sci 12 1125-1134 (2013)
  25. Fluorescent probes for tracking the transfer of iron-sulfur cluster and other metal cofactors in biosynthetic reaction pathways. Vranish JN, Russell WK, Yu LE, Cox RM, Russell DH, Barondeau DP. J Am Chem Soc 137 390-398 (2015)
  26. Probing α-3(10) transitions in a voltage-sensing S4 helix. Kubota T, Lacroix JJ, Bezanilla F, Correa AM. Biophys J 107 1117-1128 (2014)
  27. Structural evidence for a dehydrated intermediate in green fluorescent protein chromophore biosynthesis. Pletneva NV, Pletnev VZ, Lukyanov KA, Gurskaya NG, Goryacheva EA, Martynov VI, Wlodawer A, Dauter Z, Pletnev S. J Biol Chem 285 15978-15984 (2010)
  28. The Role of the Tight-Turn, Broken Hydrogen Bonding, Glu222 and Arg96 in the Post-translational Green Fluorescent Protein Chromophore Formation. Lemay NP, Morgan AL, Archer EJ, Dickson LA, Megley CM, Zimmer M. Chem Phys 348 152-160 (2008)
  29. [Three-dimensional structure of yellow fluorescent protein zYFP538 from Zoanthus sp. at the resolution 1.8 angstrom]. Pletneva NV, Pletnev SV, Chudakov DM, Tikhonova TV, Popov VO, Martynov VI, Wlodawer A, Dauter Z, Pletnev VZ. Bioorg Khim 33 421-430 (2007)
  30. Single-fluorophore biosensors based on conformation-sensitive GFP variants. Bonnot A, Guiot E, Hepp R, Cavellini L, Tricoire L, Lambolez B. FASEB J 28 1375-1385 (2014)
  31. Genetic targeting of individual cells with a voltage-sensitive dye through enzymatic activation of membrane binding. Hinner MJ, Hübener G, Fromherz P. Chembiochem 7 495-505 (2006)
  32. A novel function for the N-terminal nucleophile hydrolase fold demonstrated by the structure of an archaeal inosine monophosphate cyclohydrolase. Kang YN, Tran A, White RH, Ealick SE. Biochemistry 46 5050-5062 (2007)
  33. Improving autofluorescent proteins: comparative studies of the effective brightness of Green Fluorescent Protein (GFP) mutants. Jung G, Zumbusch A. Microsc Res Tech 69 175-185 (2006)
  34. Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo. Yang J, Yin W, Van R, Yin K, Wang P, Zheng C, Zhu B, Ran K, Zhang C, Kumar M, Shao Y, Ran C. Nat Commun 11 4052 (2020)
  35. Can the fluorescence of green fluorescent protein chromophore be related directly to the nativity of protein structure? Melnik BS, Povarnitsyna TV, Melnik TN. Biochem Biophys Res Commun 390 1167-1170 (2009)
  36. Azatryptophans as tools to study polarity requirements for folding of green fluorescent protein. Hoesl MG, Larregola M, Cui H, Budisa N. J Pept Sci 16 589-595 (2010)
  37. Probing the structural determinants of yellow fluorescence of a protein from Phialidium sp. Pakhomov AA, Martynov VI. Biochem Biophys Res Commun 407 230-235 (2011)
  38. A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus. Dinh PX, Panda D, Das PB, Das SC, Das A, Pattnaik AK. Virology 432 460-469 (2012)
  39. FGCaMP7, an Improved Version of Fungi-Based Ratiometric Calcium Indicator for In Vivo Visualization of Neuronal Activity. Barykina NV, Sotskov VP, Gruzdeva AM, Wu YK, Portugues R, Subach OM, Chefanova ES, Plusnin VV, Ivashkina OI, Anokhin KV, Vlaskina AV, Korzhenevskiy DA, Nikolaeva AY, Boyko KM, Rakitina TV, Varizhuk AM, Pozmogova GE, Subach FV. Int J Mol Sci 21 E3012 (2020)
  40. Understanding the role of Arg96 in structure and stability of green fluorescent protein. Stepanenko OV, Verkhusha VV, Shavlovsky MM, Kuznetsova IM, Uversky VN, Turoverov KK. Proteins 73 539-551 (2008)
  41. Toward Computationally Designed Self-Reporting Biosensors Using Leave-One-Out Green Fluorescent Protein. Huang YM, Banerjee S, Crone DE, Schenkelberg CD, Pitman DJ, Buck PM, Bystroff C. Biochemistry 54 6263-6273 (2015)
  42. A conserved interaction with the chromophore of fluorescent proteins. Choudhary A, Kamer KJ, Raines RT. Protein Sci 21 171-177 (2012)
  43. Efficient knockout of transplanted green fluorescent protein gene in medaka using TALENs. Qiu C, Cheng B, Zhang Y, Huang R, Liao L, Li Y, Luo D, Hu W, Wang Y. Mar Biotechnol (NY) 16 674-683 (2014)
  44. Efficient Gene Transfer and Gene Editing in Sterlet (Acipenser ruthenus). Chen J, Wang W, Tian Z, Dong Y, Dong T, Zhu H, Zhu Z, Hu H, Hu W. Front Genet 9 117 (2018)
  45. Replacement of highly conserved E222 by the photostable non-photoconvertible histidine in GFP. Auerbach D, Klein M, Franz S, Carius Y, Lancaster CR, Jung G. Chembiochem 15 1404-1408 (2014)
  46. The 559-to-600 nm shift observed in red fluorescent protein eqFP611 is attributed to cis-trans isomerization of the chromophore in an anionic protein pocket. Yan W, Xie D, Zeng J. Phys Chem Chem Phys 11 6042-6050 (2009)
  47. Water Diffusion In And Out Of The β-Barrel Of GFP and The Fast Maturing Fluorescent Protein, TurboGFP. Li B, Shahid R, Peshkepija P, Zimmer M. Chem Phys 392 143-148 (2012)
  48. [Posttranslational reactions resulting in a long-wavelength shift in the spectra of asFP595 protein from Anemonia sulcata]. Pakhomov AA, Tret'iakova IuA, Martynov VI. Bioorg Khim 36 117-121 (2010)
  49. Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Hontani Y, Baloban M, Escobar FV, Jansen SA, Shcherbakova DM, Weißenborn J, Kloz M, Mroginski MA, Verkhusha VV, Kennis JTM. Commun Chem 4 3 (2021)
  50. Scaling production of GFP1-10 detector protein in E. coli for secretion screening by split GFP assay. Müller C, Igwe CL, Wiechert W, Oldiges M. Microb Cell Fact 20 191 (2021)
  51. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study. Ma Y, Sun Q, Smith SC. Phys Chem Chem Phys 19 12942-12952 (2017)
  52. Evaluation of GFP tag as a screening reporter in directed evolution of a hyperthermophilic beta-glucosidase. Lima AO, Davis DF, Swiatek G, McCarthy JK, Yernool D, Pizzirani-Kleiner AA, Eveleigh DE. Mol Biotechnol 42 205-215 (2009)
  53. Structural Factors Enabling Successful GFP-Like Proteins with Alanine as the Third Chromophore-Forming Residue. Muslinkina L, Roldán-Salgado A, Gaytán P, Juárez-González VR, Rudiño E, Pletneva N, Pletnev V, Dauter Z, Pletnev S. J Mol Biol 431 1397-1408 (2019)
  54. Structural and spectrophotometric investigation of two unnatural amino-acid altered chromophores in the superfolder green fluorescent protein. Olenginski GM, Piacentini J, Harris DR, Runko NA, Papoutsis BM, Alter JR, Hess KR, Brewer SH, Phillips-Piro CM. Acta Crystallogr D Struct Biol 77 1010-1018 (2021)
  55. Amino acid residue at the 165th position tunes EYFP chromophore maturation. A structure-based design. Pletneva NV, Maksimov EG, Protasova EA, Mamontova AV, Simonyan TR, Ziganshin RH, Lukyanov KA, Muslinkina L, Pletnev S, Bogdanov AM, Pletnev VZ. Comput Struct Biotechnol J 19 2950-2959 (2021)
  56. CUTie2: The Attack of the Cyclic Nucleotide Sensor Clones. Klein F, Sardi F, Machado MR, Ortega C, Comini MA, Pantano S. Front Mol Biosci 8 629773 (2021)
  57. In Vitro Transcription-Translation in an Artificial Biomolecular Condensate. Schoenmakers LLJ, Yewdall NA, Lu T, André AAM, Nelissen FHT, Spruijt E, Huck WTS. ACS Synth Biol 12 2004-2014 (2023)
  58. Peptide bond trans-cis isomerization and acylimine formation in chromophore maturation of the red fluorescent proteins. Ren X, Xie D, Zeng J. J Phys Chem A 115 10129-10135 (2011)
  59. Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Hontani Y, Baloban M, Escobar FV, Jansen SA, Shcherbakova DM, Weißenborn J, Kloz M, Mroginski MA, Verkhusha VV, Kennis JTM. Commun Chem 4 3 (2021)
  60. TReSR: A PCR-compatible DNA sequence design method for engineering proteins containing tandem repeats. Davey JA, Goto NK. PLoS One 18 e0281228 (2023)
  61. Understanding Supramolecular Assembly of Supercharged Proteins. Jacobs MI, Bansal P, Shukla D, Schroeder CM. ACS Cent Sci 8 1350-1361 (2022)