1qrq

X-ray diffraction
2.8Å resolution

STRUCTURE OF A VOLTAGE-DEPENDENT K+ CHANNEL BETA SUBUNIT

Released:
Source organism: Rattus norvegicus
Primary publication:
Structure of a voltage-dependent K+ channel beta subunit.
Cell 97 943-52 (1999)
PMID: 10399921

Function and Biology Details

Reactions catalysed:
Succinyl-CoA + enzyme N(6)-(dihydrolipoyl)lysine = CoA + enzyme N(6)-(S-succinyldihydrolipoyl)lysine
Cinnamaldehyde + CoA + NADP(+) = cinnamoyl-CoA + NADPH
D-galactose + O(2) = D-galacto-hexodialdose + H(2)O(2)
dUTP + H(2)O = dUMP + diphosphate
Purine deoxynucleoside + phosphate = purine + 2'-deoxy-alpha-D-ribose 1-phosphate
Uridine + phosphate = uracil + alpha-D-ribose 1-phosphate 
1-(5-phospho-beta-D-ribosyl)-ATP + diphosphate = ATP + 5-phospho-alpha-D-ribose 1-diphosphate
(S)-2-(5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamido)succinate = fumarate + 5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide
RH + [reduced NADPH--hemoprotein reductase] + O(2) = ROH + [oxidized NADPH--hemoprotein reductase] + H(2)O
Eliminative cleavage of alginate to give oligosaccharides with 4-deoxy-alpha-L-erythro-hex-4-enuronosyl groups at their non-reducing ends and beta-D-mannuronate at their reducing end.
GTP + H(2)O = GDP + phosphate
A 3'-ribonucleotide + H(2)O = a ribonucleoside + phosphate
A phosphate monoester + H(2)O = an alcohol + phosphate
O-phospho-L(or D)-serine + H(2)O = L(or D)-serine + phosphate
2'-deoxyribonucleoside diphosphate + thioredoxin disulfide + H(2)O = ribonucleoside diphosphate + thioredoxin
Cleavage of peptide bonds with very broad specificity.
ATP-dependent cleavage of peptide bonds with broad specificity.
Selective cleavage of Gln-|-Gly bond in the poliovirus polyprotein. In other picornavirus reactions Glu may be substituted for Gln, and Ser or Thr for Gly.
Diphosphate + H(2)O = 2 phosphate
L-lysine + NADPH + O(2) = N(6)-hydroxy-L-lysine + NADP(+) + H(2)O
An acylphosphate + H(2)O = a carboxylate + phosphate
4 Fe(2+) + 4 H(+) + O(2) = 4 Fe(3+) + 2 H(2)O
3'-end directed exonucleolytic cleavage of viral RNA-DNA hybrid
Hydrolysis of terminal non-reducing N-acetyl-D-hexosamine residues in N-acetyl-beta-D-hexosaminides
ATP + H(2)O + 4 H(+)(Side 1) = ADP + phosphate + 4 H(+)(Side 2)
Hydrolysis of proteins to small peptides in the presence of ATP and magnesium. Alpha-Casein is the usual test substrate. In the absence of ATP, only oligopeptides shorter than five residues are hydrolyzed (such as succinyl-Leu-Tyr-|-NHMec; and Leu-Tyr-Leu-|-Tyr-Trp, in which cleavage of the -Tyr-|-Leu- and -Tyr-|-Trp bonds also occurs).
Chorismate = prephenate
L-asparagine + H(2)O = L-aspartate + NH(3)
2-lysophosphatidylcholine + H(2)O = glycerophosphocholine + a carboxylate
A phenyl acetate + H(2)O = a phenol + acetate
Acts on substrates that are at least partially unfolded. The cleavage site P1 residue is normally between a pair of hydrophobic residues, such as Val-|-Val
CoA-(4'-phosphopantetheine) + apo-[acyl-carrier-protein] = adenosine 3',5'-bisphosphate + holo-[acyl-carrier-protein]
Random endo-hydrolysis of N-acetyl-beta-D-glucosaminide (1->4)-beta-linkages in chitin and chitodextrins
Hydrolysis of (1->4)-beta-linkages between N-acetylmuramic acid and N-acetyl-D-glucosamine residues in a peptidoglycan and between N-acetyl-D-glucosamine residues in chitodextrins
2 glutathione + ROOH = glutathione disulfide + H(2)O + ROH
TSAVLQ-|-SGFRK-NH(2) and SGVTFQ-|-GKFKK the two peptides corresponding to the two self-cleavage sites of the SARS 3C-like proteinase are the two most reactive peptide substrates. The enzyme exhibits a strong preference for substrates containing Gln at P1 position and Leu at P2 position.
GTP + alpha-D-mannose 1-phosphate = diphosphate + GDP-mannose
N-acetyl-O-acetylneuraminate + H(2)O = N-acetylneuraminate + acetate
ATP + H(2)O + cellular protein(Side 1) = ADP + phosphate + cellular protein(Side 2)
(S)-dihydroorotate + fumarate = orotate + succinate
(R)-10-hydroxystearate = oleate + H(2)O
NTP + H(2)O = NDP + phosphate
4 benzenediol + O(2) = 4 benzosemiquinone + 2 H(2)O
ATP + L-glutamate + NH(3) = ADP + phosphate + L-glutamine
6-phospho-D-gluconate + NADP(+) = D-ribulose 5-phosphate + CO(2) + NADPH
5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine
Endohydrolysis of RNA in RNA/DNA hybrids. Three different cleavage modes: 1. sequence-specific internal cleavage of RNA. Human immunodeficiency virus type 1 and Moloney murine leukemia virus enzymes prefer to cleave the RNA strand one nucleotide away from the RNA-DNA junction. 2. RNA 5'-end directed cleavage 13-19 nucleotides from the RNA end. 3. DNA 3'-end directed cleavage 15-20 nucleotides away from the primer terminus.
(3R)-3-hydroxyacyl-[acyl-carrier-protein] + NADP(+) = 3-oxoacyl-[acyl-carrier-protein] + NADPH
A chalcone = a flavanone
A beta-lactam + H(2)O = a substituted beta-amino acid
2 3-phospho-D-glycerate + 2 H(+) = D-ribulose 1,5-bisphosphate + CO(2) + H(2)O
Oleoyl-[acyl-carrier-protein] + H(2)O = [acyl-carrier-protein] + oleate
RX + glutathione = HX + R-S-glutathione
5,10-methylenetetrahydrofolate + dUMP = dihydrofolate + dTMP
D-glucarate = 5-dehydro-4-deoxy-D-glucarate + H(2)O
D-glyceraldehyde 3-phosphate = glycerone phosphate
S-adenosyl 3-(methylthio)propylamine + putrescine = 5'-S-methyl-5'-thioadenosine + spermidine
2-dehydro-3-deoxy-6-phosphate-D-gluconate = pyruvate + D-glyceraldehyde 3-phosphate
(R)-mandelonitrile = cyanide + benzaldehyde
Selective hydrolysis of -Xaa-Xaa-|-Yaa- bonds in which each of the Xaa can be either Arg or Lys and Yaa can be either Ser or Ala.
Nucleoside triphosphate + RNA(n) = diphosphate + RNA(n+1)
Hydrolysis of four peptide bonds in the viral precursor polyprotein, commonly with Asp or Glu in the P6 position, Cys or Thr in P1 and Ser or Ala in P1'.
Autocatalytically cleaves itself from the polyprotein of the foot-and-mouth disease virus by hydrolysis of a Lys-|-Gly bond, but then cleaves host cell initiation factor eIF-4G at bonds -Gly-|-Arg- and -Lys-|-Arg-.
Peptidylproline (omega=180) = peptidylproline (omega=0)
Choline = trimethylamine + acetaldehyde
2 bilirubin + O(2) = 2 biliverdin + 2 H(2)O
S-adenosyl-L-methionine + a 5'-(N(7)-methyl 5'-triphosphoguanosine)-(ribonucleotide)-[mRNA] = S-adenosyl-L-homocysteine + a 5'-(N(7)-methyl 5'-triphosphoguanosine)-(2'-O-methyl-ribonucleotide)-[mRNA]
S-adenosyl-L-methionine + a 5'-(5'-triphosphoguanosine)-[mRNA] = S-adenosyl-L-homocysteine + a 5'-(N(7)-methyl 5'-triphosphoguanosine)-[mRNA]
Succinate + a quinone = fumarate + a quinol
Endohydrolysis of (1->4)-beta-D-glucosidic linkages in cellulose, lichenin and cereal beta-D-glucans
Endohydrolysis of (1->4)-alpha-D-glucosidic linkages in polysaccharides containing three or more (1->4)-alpha-linked D-glucose units
(S)-3-hydroxyacyl-CoA + NAD(+) = 3-oxoacyl-CoA + NADH
N-carbamoylputrescine + H(2)O = putrescine + CO(2) + NH(3)
Succinate semialdehyde + NAD(P)(+) + H(2)O = succinate + NAD(P)H
RH + Cl(-) + H(2)O(2) = RCl + 2 H(2)O
ADP-alpha-D-glucose + D-glucose 6-phosphate = ADP + alpha,alpha-trehalose 6-phosphate
Acetyl-CoA + phosphate = CoA + acetyl phosphate
Arsenate + glutathione + glutaredoxin = arsenite + a glutaredoxin-glutathione disulfide + H(2)O
S-methyl-5'-thioadenosine + phosphate = adenine + S-methyl-5-thio-alpha-D-ribose 1-phosphate
Hydrolysis of alpha-(2->3)-, alpha-(2->6)-, alpha-(2->8)- glycosidic linkages of terminal sialic acid residues in oligosaccharides, glycoproteins, glycolipids, colominic acid and synthetic substrates.
ATP + thymidine = ADP + thymidine 5'-phosphate
ATP + adenylyl sulfate = ADP + 3'-phosphoadenylyl sulfate
Thiol-dependent hydrolysis of ester, thioester, amide, peptide and isopeptide bonds formed by the C-terminal Gly of ubiquitin (a 76-residue protein attached to proteins as an intracellular targeting signal).
(R)-pantoate + NADP(+) = 2-dehydropantoate + NADPH
Preferential cleavage at the carboxyl of hydrophobic amino acids, but fails to cleave 15-Leu-|-Tyr-16, 16-Tyr-|-Leu-17 and 24-Phe-|-Phe-25 of insulin B chain. Activates trypsinogen, and degrades keratin.
Deoxynucleoside triphosphate + DNA(n) = diphosphate + DNA(n+1)
Hydrolyzes single-stranded DNA or mismatched double-stranded DNA and polynucleotides, releasing free uracil
Hydrolysis of (1->4)-beta-D-glucosidic linkages in cellulose and similar substrates, releasing cellobiose from the reducing ends of the chains.
Endohydrolysis of the N-glycosidic bond at one specific adenosine on the 28S rRNA.
L-arginine + 2-oxoglutarate + O(2) = (3S)-3-hydroxy-L-arginine + succinate + CO(2)
DNA (containing 4-O-methylthymine) + protein L-cysteine = DNA (without 4-O-methylthymine) + protein S-methyl-L-cysteine
ATP + nucleoside diphosphate = ADP + nucleoside triphosphate
Preferential cleavage: hydrophobic, preferably aromatic, residues in P1 and P1' positions. Cleaves 1-Phe-|-Val-2, 4-Gln-|-His-5, 13-Glu-|-Ala-14, 14-Ala-|-Leu-15, 15-Leu-|-Tyr-16, 16-Tyr-|-Leu-17, 23-Gly-|-Phe-24, 24-Phe-|-Phe-25 and 25-Phe-|-Tyr-26 bonds in the B chain of insulin.
ATP-dependent breakage, passage and rejoining of double-stranded DNA
ATP + AMP = 2 ADP
Exolytic cleavage of the (1->4)-beta-glycosidic linkage between N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc) residues in peptidoglycan, from either the reducing or the non-reducing ends of the peptidoglycan chains, with concomitant formation of a 1,6-anhydrobond in the MurNAc residue.
L-glutamate + H(2)O + NADP(+) = 2-oxoglutarate + NH(3) + NADPH
ATP + protein L-histidine = ADP + protein N-phospho-L-histidine
(1a) S-adenosyl-L-methionine + a [histone H3]-L-lysine(27) = S-adenosyl-L-homocysteine + a [histone H3]-N(6)-methyl-L-lysine(27)
Hydrolysis of proteins with broad specificity for peptide bonds, and a preference for a large uncharged residue in P1. Hydrolyzes peptide amides.
4-amino-5-aminomethyl-2-methylpyrimidine + H(2)O = 4-amino-5-hydroxymethyl-2-methylpyrimidine + ammonia
A (3R)-3-hydroxyacyl-[acyl-carrier-protein] + a UDP-3-O-((3R)-hydroxyacyl)-alpha-D-glucosamine = a UDP-2-N,3-O-bis((3R)-3-hydroxyacyl)-alpha-D-glucosamine + a holo-[acyl-carrier-protein]
Nucleoside 2',3'-cyclic phosphate + H(2)O = nucleoside 3'-phosphate
5-hydroxyisourate + H(2)O = 5-hydroxy-2-oxo-4-ureido-2,5-dihydro-1H-imidazole-5-carboxylate
Beta-D-ribopyranose = beta-D-ribofuranose
ATP + glycerol = ADP + sn-glycerol 3-phosphate
ATP + pyridoxal = ADP + pyridoxal 5'-phosphate
GTP + a 5'-diphospho-[mRNA] = diphosphate + a 5'-(5'-triphosphoguanosine)-[mRNA]
GDP-beta-L-fucose + NADP(+) = GDP-4-dehydro-alpha-D-rhamnose + NADPH
ATP + 1D-myo-inositol 1,3,4,5,6-pentakisphosphate = ADP + 1D-myo-inositol hexakisphosphate
Naphthalene + NADH + O(2) = (1R,2S)-1,2-dihydronaphthalene-1,2-diol + NAD(+)
N(2)-acetyl-L-ornithine + L-glutamate = L-ornithine + N-acetyl-L-glutamate
Selective cleavage of Tyr-|-Gly bond in picornavirus polyprotein.
((1->2)-beta-D-glucosyl)(n) + H(2)O = sophorose + ((1->2)-beta-D-glucosyl)(n-2)
(3S)-3-hydroxyacyl-CoA = trans-2(or 3)-enoyl-CoA + H(2)O
Palmitoyl-CoA + H(2)O = CoA + palmitate
AMP + H(2)O = D-ribose 5-phosphate + adenine
ATP + H(2)O + a folded polypeptide = ADP + phosphate + an unfolded polypeptide
ATP + H(2)O = ADP + phosphate
5,6,7,8-tetrahydrofolate + NADP(+) = 7,8-dihydrofolate + NADPH
(GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala))(n)-diphosphoundecaprenol + GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala)-diphosphoundecaprenol = (GlcNAc-(1->4)-Mur2Ac(oyl-L-Ala-gamma-D-Glu-L-Lys-D-Ala-D-Ala))(n+1)-diphosphoundecaprenol + undecaprenyl diphosphate
The C-O-P bond 3' to the apurinic or apyrimidinic site in DNA is broken by a beta-elimination reaction, leaving a 3'-terminal unsaturated sugar and a product with a terminal 5'-phosphate
Biological process:
Cellular component:

Structure analysis Details

Assemblies composition:
homo tetramer (preferred)
homo octamer
Entry contents:
1 distinct polypeptide molecule
Macromolecule:
Voltage-gated potassium channel subunit beta-2 Chains: A, B, C, D
Molecule details ›
Chains: A, B, C, D
Length: 325 amino acids
Theoretical weight: 36.35 KDa
Source organism: Rattus norvegicus
Expression system: unidentified baculovirus
UniProt:
  • Canonical: P62483 (Residues: 36-360; Coverage: 89%)
Gene names: Ckbeta2, Kcnab2, Kcnb3
Sequence domains: Aldo/keto reductase family
Structure domains: NADP-dependent oxidoreductase domain

Ligands and Environments


Cofactor: Ligand NDP 4 x NDP
No bound ligands
No modified residues

Experiments and Validation Details

Entry percentile scores
X-ray source: RIGAKU
Spacegroup: P21212
Unit cell:
a: 156.746Å b: 114.346Å c: 93.05Å
α: 90° β: 90° γ: 90°
R-values:
R R work R free
0.236 0.236 0.242
Expression system: unidentified baculovirus