1qi4 Citations

Roles of catalytic residues in alpha-amylases as evidenced by the structures of the product-complexed mutants of a maltotetraose-forming amylase.

Protein Eng 12 819-24 (1999)
Related entries: 1qi3, 1qi5, 1qpk

Cited: 17 times
EuropePMC logo PMID: 10556241

Abstract

The crystal structures of the four product-complexed single mutants of the catalytic residues of Pseudomonas stutzeri maltotetraose-forming alpha-amylase, E219G, D193N, D193G and D294N, have been determined. Possible roles of the catalytic residues Glu219, Asp193 and Asp294 have been discussed by comparing the structures among the previously determined complexed mutant E219Q and the present mutant enzymes. The results suggested that Asp193 predominantly works as the base catalyst (nucleophile), whose side chain atom lies in close proximity to the C1-atom of Glc4, being involved in the intermediate formation in the hydrolysis reaction. While Asp294 works for tightly binding the substrate to give a twisted and a deformed conformation of the glucose ring at position -1 (Glc4). The hydrogen bond between the side chain atom of Glu219 and the O1-atom of Glc4, that implies the possibility of interaction via hydrogen, consistently present throughout these analyses, supports the generally accepted role of this residue as the acid catalyst (proton donor).

Reviews citing this publication (3)

  1. Engineering yeasts for raw starch conversion. van Zyl WH, Bloom M, Viktor MJ. Appl Microbiol Biotechnol 95 1377-1388 (2012)
  2. Maltooligosaccharide-forming amylase: Characteristics, preparation, and application. Pan S, Ding N, Ren J, Gu Z, Li C, Hong Y, Cheng L, Holler TP, Li Z. Biotechnol Adv 35 619-632 (2017)
  3. Common bean (Phaseolus vulgaris L.) α-amylase inhibitors as safe nutraceutical strategy against diabetes and obesity: An update review. Peddio S, Padiglia A, Cannea FB, Crnjar R, Zam W, Sharifi-Rad J, Rescigno A, Zucca P. Phytother Res 36 2803-2823 (2022)

Articles citing this publication (14)

  1. Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. Yamamoto K, Miyake H, Kusunoki M, Osaki S. FEBS J 277 4205-4214 (2010)
  2. Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. Hondoh H, Kuriki T, Matsuura Y. J Mol Biol 326 177-188 (2003)
  3. Chitobiose phosphorylase from Vibrio proteolyticus, a member of glycosyl transferase family 36, has a clan GH-L-like (alpha/alpha)(6) barrel fold. Hidaka M, Honda Y, Kitaoka M, Nirasawa S, Hayashi K, Wakagi T, Shoun H, Fushinobu S. Structure 12 937-947 (2004)
  4. Substrate recognition mechanism of alpha-1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from Streptococcus mutans. Hondoh H, Saburi W, Mori H, Okuyama M, Nakada T, Matsuura Y, Kimura A. J Mol Biol 378 913-922 (2008)
  5. Structural insights into the substrate specificity and function of Escherichia coli K12 YgjK, a glucosidase belonging to the glycoside hydrolase family 63. Kurakata Y, Uechi A, Yoshida H, Kamitori S, Sakano Y, Nishikawa A, Tonozuka T. J Mol Biol 381 116-128 (2008)
  6. alpha-Glucosidase from a strain of deep-sea Geobacillus: a potential enzyme for the biosynthesis of complex carbohydrates. Hung VS, Hatada Y, Goda S, Lu J, Hidaka Y, Li Z, Akita M, Ohta Y, Watanabe K, Matsui H, Ito S, Horikoshi K. Appl Microbiol Biotechnol 68 757-765 (2005)
  7. A glycosyltransferase with a length-controlling activity as a mechanism to regulate the size of polysaccharides. Ciocchini AE, Guidolin LS, Casabuono AC, Couto AS, de Iannino NI, Ugalde RA. Proc Natl Acad Sci U S A 104 16492-16497 (2007)
  8. Molecular docking, chemo-informatic properties, alpha-amylase, and lipase inhibition studies of benzodioxol derivatives. Hawash M, Jaradat N, Shekfeh S, Abualhasan M, Eid AM, Issa L. BMC Chem 15 40 (2021)
  9. DFT conformation and energies of amylose fragments at atomic resolution. Part 1: Syn forms of alpha-maltotetraose. Schnupf U, Willett JL, Bosma W, Momany FA. Carbohydr Res 344 362-373 (2009)
  10. DFT conformation and energies of amylose fragments at atomic resolution. Part 2: 'Band-flip' and 'kink' forms of alpha-maltotetraose. Schnupf U, Willett JL, Momany FA. Carbohydr Res 344 374-383 (2009)
  11. Analysis of catalytic residues of Thermoactinomyces vulgaris R-47 alpha-amylase II (TVA II) by site-directed mutagenesis. Ichikawa K, Tonozuka T, Yokota T, Shimura Y, Sakano Y. Biosci Biotechnol Biochem 64 2692-2695 (2000)
  12. D-arginine Enhances the Effect of Alpha-Amylase on Disassembling Actinomyces viscosus Biofilm. Li B, Cai Q, Wang Z, Qiao S, Ou Y, Ma R, Luo C, Meng W. Front Bioeng Biotechnol 10 864012 (2022)
  13. Characterization and Investigation of Novel Benzodioxol Derivatives as Antidiabetic Agents: An In Vitro and In Vivo Study in an Animal Model. Hawash M, Al-Smadi D, Kumar A, Olech B, Dominiak PM, Jaradat N, Antari S, Mohammed S, Nasasrh A, Abualhasan M, Musa A, Suboh S, Çapan İ, Qneibi M, Natsheh H. Biomolecules 13 1486 (2023)
  14. Comparative transcriptome analysis of Zea mays upon mechanical wounding. Kumari M, Naidu S, Kumari B, Singh IK, Singh A. Mol Biol Rep 50 5319-5343 (2023)


Related citations provided by authors (2)

  1. Crystal Structures of a Mutant Maltotetraose-Forming Exo-Amylase Cocrystallized with Maltopentaose. Yoshioka Y, Hasegawa K, Matsuura Y, Katsube Y, Kubota M J. Mol. Biol. 271 619- (1997)
  2. Crystal Structure of a Maltotetraose-Forming Exo-Amylase from Pseudomonas Stutzeri. Morishita Y, Hasegawa K, Matsuura Y, Katsube Y, Kubota M, Sakai S J. Mol. Biol. 267 661- (1997)