1qa9 Citations

Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counterreceptors.

Cell 97 791-803 (1999)
Cited: 162 times
EuropePMC logo PMID: 10380930

Abstract

Interaction between CD2 and its counterreceptor, CD58 (LFA-3), on opposing cells optimizes immune recognition, facilitating contacts between helper T lymphocytes and antigen-presenting cells as well as between cytolytic effectors and target cells. Here, we report the crystal structure of the heterophilic adhesion complex between the amino-terminal domains of human CD2 and CD58. A strikingly asymmetric, orthogonal, face-to-face interaction involving the major beta sheets of the respective immunoglobulin-like domains with poor shape complementarity is revealed. In the virtual absence of hydrophobic forces, interdigitating charged amino acid side chains form hydrogen bonds and salt links at the interface (approximately 1200 A2), imparting a high degree of specificity albeit with low affinity (K(D) of approximately microM). These features explain CD2-CD58 dynamic binding, offering insights into interactions of related immunoglobulin superfamily receptors.

Reviews - 1qa9 mentioned but not cited (5)

  1. Sequence, structure, function, immunity: structural genomics of costimulation. Chattopadhyay K, Lazar-Molnar E, Yan Q, Rubinstein R, Zhan C, Vigdorovich V, Ramagopal UA, Bonanno J, Nathenson SG, Almo SC. Immunol Rev 229 356-386 (2009)
  2. Signal initiation in biological systems: the properties and detection of transient extracellular protein interactions. Wright GJ. Mol Biosyst 5 1405-1412 (2009)
  3. CD2 Immunobiology. Binder C, Cvetkovski F, Sellberg F, Berg S, Paternina Visbal H, Sachs DH, Berglund E, Berglund D. Front Immunol 11 1090 (2020)
  4. Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors. Sable R, Jois S. Molecules 20 11569-11603 (2015)
  5. Homo- and Heterodimerization of Proteins in Cell Signaling: Inhibition and Drug Design. Singh SS, Jois SD. Adv Protein Chem Struct Biol 111 1-59 (2018)

Articles - 1qa9 mentioned but not cited (34)

  1. Benchmarking and analysis of protein docking performance in Rosetta v3.2. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. PLoS One 6 e22477 (2011)
  2. Initiation of T cell signaling by CD45 segregation at 'close contacts'. Chang VT, Fernandes RA, Ganzinger KA, Lee SF, Siebold C, McColl J, Jönsson P, Palayret M, Harlos K, Coles CH, Jones EY, Lui Y, Huang E, Gilbert RJC, Klenerman D, Aricescu AR, Davis SJ. Nat Immunol 17 574-582 (2016)
  3. Protein-protein docking using region-based 3D Zernike descriptors. Venkatraman V, Yang YD, Sael L, Kihara D. BMC Bioinformatics 10 407 (2009)
  4. Crystal structure of the receptor-binding domain of human B7-2: insights into organization and signaling. Zhang X, Schwartz JC, Almo SC, Nathenson SG. Proc Natl Acad Sci U S A 100 2586-2591 (2003)
  5. DOT2: Macromolecular docking with improved biophysical models. Roberts VA, Thompson EE, Pique ME, Perez MS, Ten Eyck LF. J Comput Chem 34 1743-1758 (2013)
  6. Forced detachment of the CD2-CD58 complex. Bayas MV, Schulten K, Leckband D. Biophys J 84 2223-2233 (2003)
  7. MEGADOCK: an all-to-all protein-protein interaction prediction system using tertiary structure data. Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y. Protein Pept Lett 21 766-778 (2014)
  8. Designing coarse grained-and atom based-potentials for protein-protein docking. Tobi D. BMC Struct Biol 10 40 (2010)
  9. Modeling Protein Complexes Using Restraints from Crosslinking Mass Spectrometry. Bullock JMA, Sen N, Thalassinos K, Topf M. Structure 26 1015-1024.e2 (2018)
  10. Protein-protein docking by fast generalized Fourier transforms on 5D rotational manifolds. Padhorny D, Kazennov A, Zerbe BS, Porter KA, Xia B, Mottarella SE, Kholodov Y, Ritchie DW, Vajda S, Kozakov D. Proc Natl Acad Sci U S A 113 E4286-93 (2016)
  11. Structure of a fully assembled tumor-specific T cell receptor ligated by pMHC. Sušac L, Vuong MT, Thomas C, von Bülow S, O'Brien-Ball C, Santos AM, Fernandes RA, Hummer G, Tampé R, Davis SJ. Cell 185 3201-3213.e19 (2022)
  12. Consensus scoring for enriching near-native structures from protein-protein docking decoys. Liang S, Meroueh SO, Wang G, Qiu C, Zhou Y. Proteins 75 397-403 (2009)
  13. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  14. Immunosuppression by co-stimulatory molecules: inhibition of CD2-CD48/CD58 interaction by peptides from CD2 to suppress progression of collagen-induced arthritis in mice. Gokhale A, Kanthala S, Latendresse J, Taneja V, Satyanarayanajois S. Chem Biol Drug Des 82 106-118 (2013)
  15. Prediction of Protein-Protein Interaction Sites Using Convolutional Neural Network and Improved Data Sets. Xie Z, Deng X, Shu K. Int J Mol Sci 21 E467 (2020)
  16. Proximity ligation assay to study protein-protein interactions of proteins on two different cells. Sable R, Jambunathan N, Singh S, Pallerla S, Kousoulas KG, Jois S. Biotechniques 65 149-157 (2018)
  17. Linking 3D and 2D binding kinetics of membrane proteins by multiscale simulations. Xie ZR, Chen J, Wu Y. Protein Sci 23 1789-1799 (2014)
  18. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories. Abdel-Azeim S, Chermak E, Vangone A, Oliva R, Cavallo L. BMC Bioinformatics 15 Suppl 5 S1 (2014)
  19. Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins. Swapna LS, Mahajan S, de Brevern AG, Srinivasan N. BMC Struct Biol 12 6 (2012)
  20. Structural deformation upon protein-protein interaction: a structural alphabet approach. Martin J, Regad L, Lecornet H, Camproux AC. BMC Struct Biol 8 12 (2008)
  21. NMR structure of the natural killer cell receptor 2B4 (CD244): implications for ligand recognition. Ames JB, Vyas V, Lusin JD, Mariuzza R. Biochemistry 44 6416-6423 (2005)
  22. A peptide from the beta-strand region of CD2 protein that inhibits cell adhesion and suppresses arthritis in a mouse model. Satyanarayanajois SD, Büyüktimkin B, Gokhale A, Ronald S, Siahaan TJ, Latendresse JR. Chem Biol Drug Des 76 234-244 (2010)
  23. How to use not-always-reliable binding site information in protein-protein docking prediction. Li L, Huang Y, Xiao Y. PLoS One 8 e75936 (2013)
  24. A highly accurate metadynamics-based Dissociation Free Energy method to calculate protein-protein and protein-ligand binding potencies. Wang J, Ishchenko A, Zhang W, Razavi A, Langley D. Sci Rep 12 2024 (2022)
  25. The CC' loop of IgV domains of the immune checkpoint receptors, plays a key role in receptor:ligand affinity modulation. Kundapura SV, Ramagopal UA. Sci Rep 9 19191 (2019)
  26. Integrating ab initio and template-based algorithms for protein-protein complex structure prediction. Vangaveti S, Vreven T, Zhang Y, Weng Z. Bioinformatics 36 751-757 (2020)
  27. Antigen discrimination by T cells relies on size-constrained microvillar contact. Jenkins E, Körbel M, O'Brien-Ball C, McColl J, Chen KY, Kotowski M, Humphrey J, Lippert AH, Brouwer H, Santos AM, Lee SF, Davis SJ, Klenerman D. Nat Commun 14 1611 (2023)
  28. Applying Side-chain Flexibility in Motifs for Protein Docking. Liu H, Lin F, Yang JL, Wang HR, Liu XL. Genomics Insights 8 1-10 (2015)
  29. Discovery of receptor-ligand interfaces in the immunoglobulin superfamily. Gil N, Fajardo EJ, Fiser A. Proteins 88 135-142 (2020)
  30. Cryptic association of B7-2 molecules and its implication for clustering. Lankipalli S, H S MS, Selvam D, Samanta D, Nair D, Ramagopal UA. Protein Sci 30 1958-1973 (2021)
  31. IFACEwat: the interfacial water-implemented re-ranking algorithm to improve the discrimination of near native structures for protein rigid docking. Su C, Nguyen TD, Zheng J, Kwoh CK. BMC Bioinformatics 15 Suppl 16 S9 (2014)
  32. Re-docking scheme for generating near-native protein complexes by assembling residue interaction fingerprints. Uchikoga N, Matsuzaki Y, Ohue M, Hirokawa T, Akiyama Y. PLoS One 8 e69365 (2013)
  33. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  34. Virtual Screening and Binding Analysis of Potential CD58 Inhibitors in Colorectal Cancer (CRC). Guo R, Yu J, Guo Z. Molecules 28 6819 (2023)


Reviews citing this publication (30)

  1. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Dustin ML, Cooper JA, Cooper JA. Nat Immunol 1 23-29 (2000)
  2. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. Immunol Rev 235 172-189 (2010)
  3. Molecular interactions mediating T cell antigen recognition. van der Merwe PA, Davis SJ. Annu Rev Immunol 21 659-684 (2003)
  4. CD200 and membrane protein interactions in the control of myeloid cells. Barclay AN, Wright GJ, Brooke G, Brown MH. Trends Immunol 23 285-290 (2002)
  5. Structure and function of natural killer cell receptors: multiple molecular solutions to self, nonself discrimination. Natarajan K, Dimasi N, Wang J, Mariuzza RA, Margulies DH. Annu Rev Immunol 20 853-885 (2002)
  6. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Anton van der Merwe P, Davis SJ, Shaw AS, Dustin ML. Semin Immunol 12 5-21 (2000)
  7. The SAP and SLAM families in immune responses and X-linked lymphoproliferative disease. Engel P, Eck MJ, Terhorst C. Nat Rev Immunol 3 813-821 (2003)
  8. Adhesion molecules in the nervous system: structural insights into function and diversity. Shapiro L, Love J, Colman DR. Annu Rev Neurosci 30 451-474 (2007)
  9. Signaling takes shape in the immune system. Dustin ML, Chan AC. Cell 103 283-294 (2000)
  10. The nature of molecular recognition by T cells. Davis SJ, Ikemizu S, Evans EJ, Fugger L, Bakker TR, van der Merwe PA. Nat Immunol 4 217-224 (2003)
  11. A structural perspective on MHC class I recognition by killer cell immunoglobulin-like receptors. Boyington JC, Sun PD. Mol Immunol 38 1007-1021 (2002)
  12. Identification of self through two-dimensional chemistry and synapses. Dustin ML, Bromley SK, Davis MM, Zhu C. Annu Rev Cell Dev Biol 17 133-157 (2001)
  13. Immunoglobulin superfamily cell adhesion molecules: zippers and signals. Aricescu AR, Jones EY. Curr Opin Cell Biol 19 543-550 (2007)
  14. Structural mechanisms of costimulation. Schwartz JC, Zhang X, Nathenson SG, Almo SC. Nat Immunol 3 427-434 (2002)
  15. Structural and thermodynamic correlates of T cell signaling. Rudolph MG, Luz JG, Wilson IA. Annu Rev Biophys Biomol Struct 31 121-149 (2002)
  16. Structure and function of natural killer cell surface receptors. Radaev S, Sun PD. Annu Rev Biophys Biomol Struct 32 93-114 (2003)
  17. 2B4: an NK cell activating receptor with unique specificity and signal transduction mechanism. Nakajima H, Colonna M. Hum Immunol 61 39-43 (2000)
  18. Protein recognition by cell surface receptors: physiological receptors versus virus interactions. Wang Jh. Trends Biochem Sci 27 122-126 (2002)
  19. Peptides and peptidomimetics as immunomodulators. Gokhale AS, Satyanarayanajois S. Immunotherapy 6 755-774 (2014)
  20. Structural basis of cell-cell interactions in the immune system. Wang J, Reinherz EL. Curr Opin Struct Biol 10 656-661 (2000)
  21. Structure and function of natural-killer-cell receptors. Sun PD. Immunol Res 27 539-548 (2003)
  22. Immune selection during tumor checkpoint inhibition therapy paves way for NK-cell "missing self" recognition. Malmberg KJ, Sohlberg E, Goodridge JP, Ljunggren HG. Immunogenetics 69 547-556 (2017)
  23. Cell surface receptors. Deller MC, Yvonne Jones E. Curr Opin Struct Biol 10 213-219 (2000)
  24. MHC class I recognition by Ly49 natural killer cell receptors. Natarajan K, Dimasi N, Wang J, Margulies DH, Mariuzza RA. Mol Immunol 38 1023-1027 (2002)
  25. Does NMR mean "not for molecular replacement"? Using NMR-based search models to solve protein crystal structures. Chen YW, Dodson EJ, Kleywegt GJ. Structure 8 R213-20 (2000)
  26. CD58 Immunobiology at a Glance. Zhang Y, Liu Q, Yang S, Liao Q. Front Immunol 12 705260 (2021)
  27. Nanomechanics of adhesion proteins. Leckband D. Curr Opin Struct Biol 14 524-530 (2004)
  28. Design rules for biomolecular adhesion: lessons from force measurements. Leckband D. Annu Rev Chem Biomol Eng 1 365-389 (2010)
  29. Quantum Molecular Dynamics, Topological, Group Theoretical and Graph Theoretical Studies of Protein-Protein Interactions. Balasubramanian K, Gupta SP. Curr Top Med Chem 19 426-443 (2019)
  30. Clinical application of immune repertoire sequencing in solid organ transplant. Wong P, Cina DP, Sherwood KR, Fenninger F, Sapir-Pichhadze R, Polychronakos C, Lan J, Keown PA. Front Immunol 14 1100479 (2023)

Articles citing this publication (93)

  1. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Stamper CC, Zhang Y, Tobin JF, Erbe DV, Ikemizu S, Davis SJ, Stahl ML, Seehra J, Somers WS, Mosyak L. Nature 410 608-611 (2001)
  2. Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G, Murty VV, Dominguez-Sola D, Pasqualucci L, Dalla-Favera R. Cancer Cell 20 728-740 (2011)
  3. Herpes simplex virus glycoprotein D bound to the human receptor HveA. Carfí A, Willis SH, Whitbeck JC, Krummenacher C, Cohen GH, Eisenberg RJ, Wiley DC. Mol Cell 8 169-179 (2001)
  4. Structural and functional analysis of the costimulatory receptor programmed death-1. Zhang X, Schwartz JC, Guo X, Bhatia S, Cao E, Lorenz M, Cammer M, Chen L, Zhang ZY, Edidin MA, Nathenson SG, Almo SC. Immunity 20 337-347 (2004)
  5. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Schwartz JC, Zhang X, Fedorov AA, Nathenson SG, Almo SC. Nature 410 604-608 (2001)
  6. Conservation of polar residues as hot spots at protein interfaces. Hu Z, Ma B, Wolfson H, Nussinov R. Proteins 39 331-342 (2000)
  7. Crystal structure of a lectin-like natural killer cell receptor bound to its MHC class I ligand. Tormo J, Natarajan K, Margulies DH, Mariuzza RA. Nature 402 623-631 (1999)
  8. Assessing the performance of the MM/PBSA and MM/GBSA methods. 6. Capability to predict protein-protein binding free energies and re-rank binding poses generated by protein-protein docking. Chen F, Liu H, Sun H, Pan P, Li Y, Li D, Hou T. Phys Chem Chem Phys 18 22129-22139 (2016)
  9. Structure and dimerization of a soluble form of B7-1. Ikemizu S, Gilbert RJ, Fennelly JA, Collins AV, Harlos K, Jones EY, Stuart DI, Davis SJ. Immunity 12 51-60 (2000)
  10. Immunomodulatory effect of 5-azacytidine (5-azaC): potential role in the transplantation setting. Sánchez-Abarca LI, Gutierrez-Cosio S, Santamaría C, Caballero-Velazquez T, Blanco B, Herrero-Sánchez C, García JL, Carrancio S, Hernández-Campo P, González FJ, Flores T, Ciudad L, Ballestar E, Del Cañizo C, San Miguel JF, Pérez-Simon JA. Blood 115 107-121 (2010)
  11. Structural basis for ligand recognition and activation of RAGE. Koch M, Chitayat S, Dattilo BM, Schiefner A, Diez J, Chazin WJ, Fritz G. Structure 18 1342-1352 (2010)
  12. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Hatherley D, Graham SC, Turner J, Harlos K, Stuart DI, Barclay AN. Mol Cell 31 266-277 (2008)
  13. Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. North SJ, Huang HH, Sundaram S, Jang-Lee J, Etienne AT, Trollope A, Chalabi S, Dell A, Stanley P, Haslam SM. J Biol Chem 285 5759-5775 (2010)
  14. Structures of T Cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Santiago C, Ballesteros A, Tami C, Martínez-Muñoz L, Kaplan GG, Casasnovas JM. Immunity 26 299-310 (2007)
  15. Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. van Raaij MJ, Chouin E, van der Zandt H, Bergelson JM, Cusack S. Structure 8 1147-1155 (2000)
  16. Mechanosensing drives acuity of αβ T-cell recognition. Feng Y, Brazin KN, Kobayashi E, Mallis RJ, Reinherz EL, Lang MJ. Proc Natl Acad Sci U S A 114 E8204-E8213 (2017)
  17. Conformational plasticity revealed by the cocrystal structure of NKG2D and its class I MHC-like ligand ULBP3. Radaev S, Rostro B, Brooks AG, Colonna M, Sun PD. Immunity 15 1039-1049 (2001)
  18. Human immunodeficiency-causing mutation defines CD16 in spontaneous NK cell cytotoxicity. Grier JT, Forbes LR, Monaco-Shawver L, Oshinsky J, Atkinson TP, Moody C, Pandey R, Campbell KS, Orange JS. J Clin Invest 122 3769-3780 (2012)
  19. Crystal structure of murine sCEACAM1a[1,4]: a coronavirus receptor in the CEA family. Tan K, Zelus BD, Meijers R, Liu JH, Bergelson JM, Duke N, Zhang R, Joachimiak A, Holmes KV, Wang JH. EMBO J 21 2076-2086 (2002)
  20. The CD2-subset of the Ig superfamily of cell surface molecules: receptor-ligand pairs expressed by NK cells and other immune cells. Tangye SG, Phillips JH, Lanier LL. Semin Immunol 12 149-157 (2000)
  21. The molecular interaction of CAR and JAML recruits the central cell signal transducer PI3K. Verdino P, Witherden DA, Havran WL, Wilson IA. Science 329 1210-1214 (2010)
  22. Solution structure of the CIDE-N domain of CIDE-B and a model for CIDE-N/CIDE-N interactions in the DNA fragmentation pathway of apoptosis. Lugovskoy AA, Zhou P, Chou JJ, McCarty JS, Li P, Wagner G. Cell 99 747-755 (1999)
  23. Structure of the human activating natural cytotoxicity receptor NKp30 bound to its tumor cell ligand B7-H6. Li Y, Wang Q, Mariuzza RA. J Exp Med 208 703-714 (2011)
  24. Structure of natural killer cell receptor KLRG1 bound to E-cadherin reveals basis for MHC-independent missing self recognition. Li Y, Hofmann M, Wang Q, Teng L, Chlewicki LK, Pircher H, Mariuzza RA. Immunity 31 35-46 (2009)
  25. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice (Oryza sativa): identification and bioinformatic analyses. Faik A, Abouzouhair J, Sarhan F. Mol Genet Genomics 276 478-494 (2006)
  26. Inhibiting DNA methylation activates cancer testis antigens and expression of the antigen processing and presentation machinery in colon and ovarian cancer cells. Siebenkäs C, Chiappinelli KB, Guzzetta AA, Sharma A, Jeschke J, Vatapalli R, Baylin SB, Ahuja N. PLoS One 12 e0179501 (2017)
  27. CD229 (Ly9) lymphocyte cell surface receptor interacts homophilically through its N-terminal domain and relocalizes to the immunological synapse. Romero X, Zapater N, Calvo M, Kalko SG, de la Fuente MA, Tovar V, Ockeloen C, Pizcueta P, Engel P. J Immunol 174 7033-7042 (2005)
  28. Cutting edge: NTB-A activates NK cells via homophilic interaction. Flaig RM, Stark S, Watzl C. J Immunol 172 6524-6527 (2004)
  29. Dynamic interaction of CD2 with the GYF and the SH3 domain of compartmentalized effector molecules. Freund C, Kühne R, Yang H, Park S, Reinherz EL, Wagner G. EMBO J 21 5985-5995 (2002)
  30. Structure of CD84 provides insight into SLAM family function. Yan Q, Malashkevich VN, Fedorov A, Fedorov E, Cao E, Lary JW, Cole JL, Nathenson SG, Almo SC. Proc Natl Acad Sci U S A 104 10583-10588 (2007)
  31. Immunophenotypic identification and characterization of tumor cells and infiltrating cell populations in meningiomas. Domingues PH, Teodósio C, Ortiz J, Sousa P, Otero A, Maillo A, Bárcena P, García-Macias MC, Lopes MC, de Oliveira C, Orfao A, Tabernero MD. Am J Pathol 181 1749-1761 (2012)
  32. NTB-A receptor crystal structure: insights into homophilic interactions in the signaling lymphocytic activation molecule receptor family. Cao E, Ramagopal UA, Fedorov A, Fedorov E, Yan Q, Lary JW, Cole JL, Nathenson SG, Almo SC. Immunity 25 559-570 (2006)
  33. Electrostatic contribution to the binding stability of protein-protein complexes. Dong F, Zhou HX. Proteins 65 87-102 (2006)
  34. Nanoscale increases in CD2-CD48-mediated intermembrane spacing decrease adhesion and reorganize the immunological synapse. Milstein O, Tseng SY, Starr T, Llodra J, Nans A, Liu M, Wild MK, van der Merwe PA, Stokes DL, Reisner Y, Dustin ML. J Biol Chem 283 34414-34422 (2008)
  35. Structure of natural killer receptor 2B4 bound to CD48 reveals basis for heterophilic recognition in signaling lymphocyte activation molecule family. Velikovsky CA, Deng L, Chlewicki LK, Fernández MM, Kumar V, Mariuzza RA. Immunity 27 572-584 (2007)
  36. CD2 molecules redistribute to the uropod during T cell scanning: implications for cellular activation and immune surveillance. Tibaldi EV, Salgia R, Reinherz EL. Proc Natl Acad Sci U S A 99 7582-7587 (2002)
  37. Molecular dissection of the CD2-CD58 counter-receptor interface identifies CD2 Tyr86 and CD58 Lys34 residues as the functional "hot spot". Kim M, Sun ZY, Byron O, Campbell G, Wagner G, Wang J, Reinherz EL. J Mol Biol 312 711-720 (2001)
  38. HLA-B27 heavy chains distinguished by a micropolymorphism exhibit differential flexibility. Fabian H, Huser H, Loll B, Ziegler A, Naumann D, Uchanska-Ziegler B. Arthritis Rheum 62 978-987 (2010)
  39. CD58, a novel surface marker, promotes self-renewal of tumor-initiating cells in colorectal cancer. Xu S, Wen Z, Jiang Q, Zhu L, Feng S, Zhao Y, Wu J, Dong Q, Mao J, Zhu Y. Oncogene 34 1520-1531 (2015)
  40. The Laminin 511/521-binding site on the Lutheran blood group glycoprotein is located at the flexible junction of Ig domains 2 and 3. Mankelow TJ, Burton N, Stefansdottir FO, Spring FA, Parsons SF, Pedersen JS, Oliveira CL, Lammie D, Wess T, Mohandas N, Chasis JA, Brady RL, Anstee DJ. Blood 110 3398-3406 (2007)
  41. Analysis of leukocyte membrane protein interactions using protein microarrays. Letarte M, Voulgaraki D, Hatherley D, Foster-Cuevas M, Saunders NJ, Barclay AN. BMC Biochem 6 2 (2005)
  42. Conformationally constrained peptides from CD2 to modulate protein-protein interactions between CD2 and CD58. Gokhale A, Weldeghiorghis TK, Taneja V, Satyanarayanajois SD. J Med Chem 54 5307-5319 (2011)
  43. Functional role of human NK cell receptor 2B4 (CD244) isoforms. Mathew SO, Rao KK, Kim JR, Bambard ND, Mathew PA. Eur J Immunol 39 1632-1641 (2009)
  44. Structure of signal-regulatory protein alpha: a link to antigen receptor evolution. Hatherley D, Graham SC, Harlos K, Stuart DI, Barclay AN. J Biol Chem 284 26613-26619 (2009)
  45. CD58 polymorphisms associated with the risk of neuromyelitis optica in a Korean population. Kim JY, Bae JS, Kim HJ, Shin HD. BMC Neurol 14 57 (2014)
  46. Constrained Cyclic Peptides as Immunomodulatory Inhibitors of the CD2:CD58 Protein-Protein Interaction. Sable R, Durek T, Taneja V, Craik DJ, Pallerla S, Gauthier T, Jois S. ACS Chem Biol 11 2366-2374 (2016)
  47. Structural models for carcinoembryonic antigen and its complex with the single-chain Fv antibody molecule MFE23. Boehm MK, Perkins SJ. FEBS Lett 475 11-16 (2000)
  48. Fingolimod alters the transcriptome profile of circulating CD4+ cells in multiple sclerosis. Friess J, Hecker M, Roch L, Koczan D, Fitzner B, Angerer IC, Schröder I, Flechtner K, Thiesen HJ, Winkelmann A, Zettl UK. Sci Rep 7 42087 (2017)
  49. Genome-wide identification, classification and expression analysis of genes encoding putative fasciclin-like arabinogalactan proteins in Chinese cabbage (Brassica rapa L.). Jun L, Xiaoming W. Mol Biol Rep 39 10541-10555 (2012)
  50. Alterations of the CD58 gene in classical Hodgkin lymphoma. Schneider M, Schneider S, Zühlke-Jenisch R, Klapper W, Sundström C, Hartmann S, Hansmann ML, Siebert R, Küppers R, Giefing M. Genes Chromosomes Cancer 54 638-645 (2015)
  51. Peptides of CD200 modulate LPS-induced TNF-alpha induction and mortality in vivo. Gorczynski R, Boudakov I, Khatri I. J Surg Res 145 87-96 (2008)
  52. Expression of NTRK1/TrkA affects immunogenicity of neuroblastoma cells. Pajtler KW, Rebmann V, Lindemann M, Schulte JH, Schulte S, Stauder M, Leuschner I, Schmid KW, Köhl U, Schramm A, Eggert A. Int J Cancer 133 908-919 (2013)
  53. A subtle role for CD2 in T cell antigen recognition. van der Merwe PA. J Exp Med 190 1371-1374 (1999)
  54. Boltzmann energy-based image analysis demonstrates that extracellular domain size differences explain protein segregation at immune synapses. Burroughs NJ, Köhler K, Miloserdov V, Dustin ML, van der Merwe PA, Davis DM. PLoS Comput Biol 7 e1002076 (2011)
  55. Mutational analysis of the human 2B4 (CD244)/CD48 interaction: Lys68 and Glu70 in the V domain of 2B4 are critical for CD48 binding and functional activation of NK cells. Mathew SO, Kumaresan PR, Lee JK, Huynh VT, Mathew PA. J Immunol 175 1005-1013 (2005)
  56. A conserved hydrophobic patch on Vβ domains revealed by TCRβ chain crystal structures: Implications for pre-TCR dimerization. Zhou B, Chen Q, Mallis RJ, Zhang H, Zhang H, Liu JH, Reinherz EL, Wang JH. Front Immunol 2 5 (2011)
  57. A novel immunoglobulin superfamily receptor (19A) related to CD2 is expressed on activated lymphocytes and promotes homotypic B-cell adhesion. Murphy JJ, Hobby P, Vilarino-Varela J, Bishop B, Iordanidou P, Sutton BJ, Norton JD. Biochem J 361 431-436 (2002)
  58. Clonal evolution after treatment pressure in multiple myeloma: heterogenous genomic aberrations and transcriptomic convergence. Misund K, Hofste Op Bruinink D, Coward E, Hoogenboezem RM, Rustad EH, Sanders MA, Rye M, Sponaas AM, van der Holt B, Zweegman S, Hovig E, Meza-Zepeda LA, Sundan A, Myklebost O, Sonneveld P, Waage A. Leukemia 36 1887-1897 (2022)
  59. Costimulatory Function of Cd58/Cd2 Interaction in Adaptive Humoral Immunity in a Zebrafish Model. Shao T, Shi W, Zheng JY, Xu XX, Lin AF, Xiang LX, Shao JZ. Front Immunol 9 1204 (2018)
  60. Making sense of the diverse ligand recognition by NKG2D. Radaev S, Kattah M, Zou Z, Colonna M, Sun PD. J Immunol 169 6279-6285 (2002)
  61. A genomics approach to the detection of positive selection in cattle: adaptive evolution of the T-cell and natural killer cell-surface protein CD2. Lynn DJ, Freeman AR, Murray C, Bradley DG. Genetics 170 1189-1196 (2005)
  62. The crystal structure of the heparin-binding reelin-N domain of f-spondin. Tan K, Duquette M, Liu JH, Lawler J, Wang JH. J Mol Biol 381 1213-1223 (2008)
  63. Using codon optimization, chaperone co-expression, and rational mutagenesis for production and NMR assignments of human eIF2 alpha. Ito T, Wagner G. J Biomol NMR 28 357-367 (2004)
  64. CD58 loss in tumor cells confers functional impairment of CAR T cells. Yan X, Chen D, Ma X, Wang Y, Guo Y, Wei J, Tong C, Zhu Q, Lu Y, Yu Y, Wu Z, Han W. Blood Adv 6 5844-5856 (2022)
  65. Immunoregulatory T cells, LFA-3 and HLA-DR in autoimmune thyroid diseases. Nada AM, Hammouda M. Indian J Endocrinol Metab 18 574-581 (2014)
  66. A feline CD2 homologue interacts with human red blood cells. Shimojima M, Nishimura Y, Miyazawa T, Kato K, Nakamura K, Izumiya Y, Akashi H, Tohya Y. Immunology 105 360-366 (2002)
  67. Design, structure and biological activity of beta-turn peptides of CD2 protein for inhibition of T-cell adhesion. Jining L, Makagiansar I, Yusuf-Makagiansar H, Chow VT, Siahaan TJ, Jois SD. Eur J Biochem 271 2873-2886 (2004)
  68. Human intestinal intraepithelial lymphocytes and epithelial cells coinduce interleukin-8 production through the CD2-CD58 interaction. Ebert EC, Panja A, Praveen R. Am J Physiol Gastrointest Liver Physiol 296 G671-7 (2009)
  69. Line tension and stability of domains in cell-adhesion zones mediated by long and short receptor-ligand complexes. Krobath H, Różycki B, Lipowsky R, Weikl TR. PLoS One 6 e23284 (2011)
  70. Porcine CD58: cDNA cloning and molecular dissection of the porcine CD58-human CD2 interface. Brossay A, Hubé F, Moreau T, Bardos P, Watier H. Biochem Biophys Res Commun 309 992-998 (2003)
  71. Analysis of human and primate CD2 molecules by protein sequence and epitope mapping with anti-human CD2 antibodies. Damschroder MM, Kozhich AA, Woods RM, Cheng L, Mullikin BA, Wilson SD, Ulbrandt ND, Bachy CM, Wu H, Suzich JA, Kiener PA, Dall'Acqua WF, White WI. Mol Immunol 41 985-1000 (2004)
  72. Human CD30: structural implications from epitope mapping and modeling studies. Dong L, Hülsmeyer M, Dürkop H, Hansen HP, Schneider-Mergener J, Ziegler A, Uchanska-Ziegler B. J Mol Recognit 16 28-36 (2003)
  73. Monoclonal antibodies generated by DNA immunization recognize CD2 from a broad range of primates. Brady JL, Mannering SI, Kireta S, Coates PT, Proietto AI, Cowan PJ, D'Apice AJ, Lew AM. Immunol Cell Biol 87 413-418 (2009)
  74. The contribution of conformational adjustments and long-range electrostatic forces to the CD2/CD58 interaction. Kearney A, Avramovic A, Castro MA, Carmo AM, Davis SJ, van der Merwe PA. J Biol Chem 282 13160-13166 (2007)
  75. Targeting human CD2 by the monoclonal antibody CB.219 reduces intestinal inflammation in a humanized transfer colitis model. Erben U, Pawlowski NN, Doerfel K, Loddenkemper C, Hoffmann JC, Siegmund B, Kühl AA. Clin Immunol 157 16-25 (2015)
  76. Two genetic variants explain the association of European ancestry with multiple sclerosis risk in African-Americans. Nakatsuka N, Patterson N, Patsopoulos NA, Altemose N, Tandon A, Beecham AH, McCauley JL, Isobe N, Hauser S, De Jager PL, Hafler DA, Oksenberg JR, Reich D. Sci Rep 10 16902 (2020)
  77. Upregulated CD58 is associated with clinicopathological characteristics and poor prognosis of patients with pancreatic ductal adenocarcinoma. Zhang Y, Liu Q, Liu J, Liao Q. Cancer Cell Int 21 327 (2021)
  78. A space-time structure determination of human CD2 reveals the CD58-binding mode. Kitao A, Wagner G. Proc Natl Acad Sci U S A 97 2064-2068 (2000)
  79. Structure-activity studies of peptides from the "hot-spot" region of human CD2 protein: development of peptides for immunomodulation. Liu J, Ying J, Chow VT, Hruby VJ, Satyanarayanajois SD. J Med Chem 48 6236-6249 (2005)
  80. Investigating cyclic peptides inhibiting CD2-CD58 interactions through molecular dynamics and molecular docking methods. Leherte L, Petit A, Jacquemin D, Vercauteren DP, Laurent AD. J Comput Aided Mol Des 32 1295-1313 (2018)
  81. Modulation of co-stimulatory signal from CD2-CD58 proteins by a grafted peptide. Parajuli P, Sable R, Shrestha L, Dahal A, Gauthier T, Taneja V, Jois S. Chem Biol Drug Des 97 607-627 (2021)
  82. Characterization of mechanisms positioning costimulatory complexes in immune synapses. Siokis A, Robert PA, Demetriou P, Kvalvaag A, Valvo S, Mayya V, Dustin ML, Meyer-Hermann M. iScience 24 103100 (2021)
  83. Discrete structural features among interface residue-level classes. Sowmya G, Ranganathan S. BMC Bioinformatics 16 Suppl 18 S8 (2015)
  84. Structure-function studies of peptides for cell adhesion inhibition: identification of key residues by alanine mutation and peptide-truncation approach. Li C, Satyanarayanajois SD. Peptides 28 1498-1508 (2007)
  85. Amplitudes and directions of internal protein motions from a JAM analysis of 15N relaxation data. Kitao A, Wagner G. Magn Reson Chem 44 Spec No S130-42 (2006)
  86. CD58; leucocyte function adhesion-3 (LFA-3) could be used as a differentiating marker between immune and non-immune thyroid disorders. El Menshawy N, Eissa M, Abdeen HM, Elkhamisy EM, Joseph N. Comp Clin Path 27 721-727 (2018)
  87. Immunology. CAR'ing for the skin. Shaw AS, Huang Y. Science 329 1154-1155 (2010)
  88. Impaired interleukin-2 synthesis and T cell proliferation following antibody-mediated CD3 and CD2 or CD28 cross-linking in trans: evidence that T cell activation requires the engagement of costimulatory molecules within the immunological synapse. Watson CL, Furlong SJ, Hoskin DW. Immunol Invest 37 63-78 (2008)
  89. Leukemia propagating cells in Philadelphia chromosome-positive ALL: a resistant phenotype with an adverse prognosis. El-Menshawy N, Abd-Aziz SM, Elkhamisy EM, Ebrahim MA. Blood Res 53 138-144 (2018)
  90. Prestimulation of CD2 confers resistance to HIV-1 latent infection in blood resting CD4 T cells. He S, Guo J, Fu Y, Spear M, Qin C, Fu S, Cui Z, Jin W, Xu X, Chen W, Shang H, Wu Y. iScience 24 103305 (2021)
  91. Structure-based identification of inhibitors disrupting the CD2-CD58 interactions. Tripathi N, Leherte L, Vercauteren DP, Laurent AD. J Comput Aided Mol Des 35 337-353 (2021)
  92. CD58 acts as a tumor promotor in hepatocellular carcinoma via activating the AKT/GSK-3β/β-catenin pathway. Wang C, Cao F, Cao J, Jiao Z, You Y, Xiong Y, Zhao W, Wang X. J Transl Med 21 539 (2023)
  93. Conformationally constrained cyclic grafted peptidomimetics targeting protein-protein interactions. Dahal A, Subramanian V, Shrestha P, Liu D, Gauthier T, Jois S. Pept Sci (Hoboken) 115 e24328 (2023)


Related citations provided by authors (1)

  1. Design and NMR Studies of a Functional Glycan-Free Adhesion Domain of the Human Cell Surface Receptor CD58. Sun Z-YJ, Dotsch V, Kim M, Li J, Reinherz EL, Wagner G To be published - (1999)