1q9c Citations

Tandem histone folds in the structure of the N-terminal segment of the ras activator Son of Sevenless.

Structure 11 1583-93 (2003)
Cited: 31 times
EuropePMC logo PMID: 14656442

Abstract

The Ras activator Son of Sevenless (Sos) contains a Cdc25 homology domain, responsible for nucleotide exchange, as well as Dbl/Pleckstrin homology (DH/PH) domains. We have determined the crystal structure of the N-terminal segment of human Sos1 (residues 1-191) and show that it contains two tandem histone folds. While the N-terminal domain is monomeric in solution, its structure is surprisingly similar to that of histone dimers, with both subunits of the histone "dimer" being part of the same peptide chain. One histone fold corresponds to the region of Sos that is clearly similar in sequence to histones (residues 91-191), whereas the other is formed by residues in Sos (1-90) that are unrelated in sequence to histones. Residues that form a contiguous patch on the surface of the histone domain of Sos are conserved from C. elegans to humans, suggesting a potential role for this domain in protein-protein interactions.

Articles - 1q9c mentioned but not cited (7)

  1. Computational docking and solution x-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Sondermann H, Nagar B, Bar-Sagi D, Kuriyan J. Proc. Natl. Acad. Sci. U.S.A. 102 16632-16637 (2005)
  2. The Histone Database: a comprehensive resource for histones and histone fold-containing proteins. Mariño-Ramírez L, Hsu B, Baxevanis AD, Landsman D. Proteins 62 838-842 (2006)
  3. Structure-energy-based predictions and network modelling of RASopathy and cancer missense mutations. Kiel C, Serrano L. Mol. Syst. Biol. 10 727 (2014)
  4. Allosteric gating of Son of sevenless activity by the histone domain. Yadav KK, Bar-Sagi D. Proc. Natl. Acad. Sci. U.S.A. 107 3436-3440 (2010)
  5. Modeling of RAS complexes supports roles in cancer for less studied partners. Engin HB, Carlin D, Pratt D, Carter H. BMC Biophys 10 5 (2017)
  6. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  7. In silico functional characterization of a double histone fold domain from the Heliothis zea virus 1. Greco C, Fantucci P, De Gioia L. BMC Bioinformatics 6 Suppl 4 S15 (2005)


Reviews citing this publication (6)

  1. The RasGrf family of mammalian guanine nucleotide exchange factors. Fernández-Medarde A, Santos E. Biochim. Biophys. Acta 1815 170-188 (2011)
  2. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Jun JE, Rubio I, Roose JP. Front Immunol 4 239 (2013)
  3. Ras activation revisited: role of GEF and GAP systems. Hennig A, Markwart R, Esparza-Franco MA, Ladds G, Rubio I. Biol. Chem. 396 831-848 (2015)
  4. Conservation of the three-dimensional structure in non-homologous or unrelated proteins. Sousounis K, Haney CE, Cao J, Sunchu B, Tsonis PA. Hum. Genomics 6 10 (2012)
  5. The Interdependent Activation of Son-of-Sevenless and Ras. Bandaru P, Kondo Y, Kuriyan J. Cold Spring Harb Perspect Med 9 (2019)
  6. Regulation of the Small GTPase Ras and Its Relevance to Human Disease. Kulhanek KR, Roose JP, Rubio I. Methods Mol Biol 2262 19-43 (2021)

Articles citing this publication (18)

  1. Germline gain-of-function mutations in SOS1 cause Noonan syndrome. Roberts AE, Araki T, Swanson KD, Montgomery KT, Schiripo TA, Joshi VA, Li L, Yassin Y, Tamburino AM, Neel BG, Kucherlapati RS. Nat. Genet. 39 70-74 (2007)
  2. Structural analysis of autoinhibition in the Ras activator Son of sevenless. Sondermann H, Soisson SM, Boykevisch S, Yang SS, Bar-Sagi D, Kuriyan J. Cell 119 393-405 (2004)
  3. Domain rearrangements in protein evolution. Björklund AK, Ekman D, Light S, Frey-Skött J, Elofsson A. J. Mol. Biol. 353 911-923 (2005)
  4. Membrane-dependent signal integration by the Ras activator Son of sevenless. Gureasko J, Galush WJ, Boykevisch S, Sondermann H, Bar-Sagi D, Groves JT, Kuriyan J. Nat. Struct. Mol. Biol. 15 452-461 (2008)
  5. Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless. Gureasko J, Kuchment O, Makino DL, Sondermann H, Bar-Sagi D, Kuriyan J. Proc. Natl. Acad. Sci. U.S.A. 107 3430-3435 (2010)
  6. Mammalian son of sevenless Guanine nucleotide exchange factors: old concepts and new perspectives. Rojas JM, Oliva JL, Santos E. Genes Cancer 2 298-305 (2011)
  7. The Histone Database: an integrated resource for histones and histone fold-containing proteins. Mariño-Ramírez L, Levine KM, Morales M, Zhang S, Moreland RT, Baxevanis AD, Landsman D. Database (Oxford) 2011 bar048 (2011)
  8. Grb2 is a negative modulator of the intrinsic Ras-GEF activity of hSos1. Zarich N, Oliva JL, Martínez N, Jorge R, Ballester A, Gutiérrez-Eisman S, García-Vargas S, Rojas JM. Mol. Biol. Cell 17 3591-3597 (2006)
  9. Importin 13 mediates nuclear import of histone fold-containing chromatin accessibility complex heterodimers. Walker P, Doenecke D, Kahle J. J. Biol. Chem. 284 11652-11662 (2009)
  10. Comprehensive genetic analysis of overlapping syndromes of RAS/RAF/MEK/ERK pathway. Tumurkhuu M, Saitoh M, Sato A, Takahashi K, Mimaki M, Takita J, Takeshita K, Hama T, Oka A, Mizuguchi M. Pediatr Int 52 557-562 (2010)
  11. Switching of the positive feedback for RAS activation by a concerted function of SOS membrane association domains. Nakamura Y, Hibino K, Yanagida T, Sako Y. Biophys Physicobiol 13 1-11 (2016)
  12. A novel SOS1 mutation in Costello/CFC syndrome affects signaling in both RAS and PI3K pathways. Tumurkhuu M, Saitoh M, Takita J, Mizuno Y, Mizuguchi M. J. Recept. Signal Transduct. Res. 33 124-128 (2013)
  13. New class of Son-of-sevenless (Sos) alleles highlights the complexities of Sos function. Silver SJ, Chen F, Doyon L, Zink AW, Rebay I. Genesis 39 263-272 (2004)
  14. Identification and in silico analysis of a new group of double-histone fold-containing proteins. Greco C, Sacco E, Vanoni M, De Gioia L. J Mol Model 12 76-84 (2005)
  15. Release of Plasmodium sporozoites requires proteins with histone-fold dimerization domains. Currà C, Gessmann R, Pace T, Picci L, Peruzzi G, Varamogianni-Mamatsi V, Spanos L, Garcia CR, Spaccapelo R, Ponzi M, Siden-Kiamos I. Nat Commun 7 13846 (2016)
  16. Histones predate the split between bacteria and archaea. Alva V, Lupas AN. Bioinformatics 35 2349-2353 (2019)
  17. Phosphorylation of SOS1 on tyrosine 1196 promotes its RAC GEF activity and contributes to BCR-ABL leukemogenesis. Gerboth S, Frittoli E, Palamidessi A, Baltanas FC, Salek M, Rappsilber J, Giuliani C, Troglio F, Rolland Y, Pruneri G, Kreutmair S, Pallavicini I, Zobel M, Cinquanta M, Minucci S, Gomez C, Santos E, Illert AL, Scita G. Leukemia 32 820-827 (2018)
  18. The CSN3 subunit of the COP9 signalosome interacts with the HD region of Sos1 regulating stability of this GEF protein. Zarich N, Anta B, Fernández-Medarde A, Ballester A, de Lucas MP, Cámara AB, Anta B, Oliva JL, Rojas-Cabañeros JM, Santos E. Oncogenesis 8 2 (2019)