1pq1 Citations

The structure of a Bcl-xL/Bim fragment complex: implications for Bim function.

Immunity 19 341-52 (2003)
Cited: 261 times
EuropePMC logo PMID: 14499110

Abstract

After antigen-driven expansion, the majority of T cells involved in an immune response die rapidly by apoptosis dependent on the Bcl-2 related proteins, Bim and Bax or Bak. The details of how these proteins are activated and interact are still unclear. The crystal structure of mouse Bcl-x(L) bound to a long helical fragment of Bim indicates that the structure of Bim is very different from proteins with a Bcl-2-like fold and may leave the BH3 region of Bim constitutively exposed. Based on the structural homology between Bcl-x(L) and Bax, we predicted that binding of Bim to Bax would require displacement of the Bax penultimate alpha helix. Consistent with this prediction, truncation of this short helix was required for Bim/Bax interaction and led to spontaneous activation of Bax. Our results suggest a way in which both Bim and Bax/Bak might be required for activated T cell apoptosis.

Reviews - 1pq1 mentioned but not cited (6)

  1. Finally, An Apoptosis-Targeting Therapeutic for Cancer. Croce CM, Reed JC. Cancer Res 76 5914-5920 (2016)
  2. The deadly landscape of pro-apoptotic BCL-2 proteins in the outer mitochondrial membrane. Luna-Vargas MP, Chipuk JE. FEBS J 283 2676-2689 (2016)
  3. The Bcl-2 Family in Host-Virus Interactions. Kvansakul M, Caria S, Hinds MG. Viruses 9 E290 (2017)
  4. Inhibitors of the anti-apoptotic Bcl-2 proteins: a patent review. Bajwa N, Liao C, Nikolovska-Coleska Z. Expert Opin Ther Pat 22 37-55 (2012)
  5. Redefining the BH3 Death Domain as a 'Short Linear Motif'. Aouacheria A, Combet C, Tompa P, Hardwick JM. Trends Biochem Sci 40 736-748 (2015)
  6. The Structural Biology of Bcl-xL. Lee EF, Fairlie WD. Int J Mol Sci 20 E2234 (2019)

Articles - 1pq1 mentioned but not cited (38)

  1. Structural insights into the degradation of Mcl-1 induced by BH3 domains. Czabotar PE, Lee EF, van Delft MF, Day CL, Smith BJ, Huang DC, Fairlie WD, Hinds MG, Colman PM. Proc Natl Acad Sci U S A 104 6217-6222 (2007)
  2. Characterization of molecular recognition features, MoRFs, and their binding partners. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK. J Proteome Res 6 2351-2366 (2007)
  3. The unfoldomics decade: an update on intrinsically disordered proteins. Dunker AK, Oldfield CJ, Meng J, Romero P, Yang JY, Chen JW, Vacic V, Obradovic Z, Uversky VN. BMC Genomics 9 Suppl 2 S1 (2008)
  4. Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. Dewson G, Kluck RM. J Cell Sci 122 2801-2808 (2009)
  5. Structural and biochemical bases for the inhibition of autophagy and apoptosis by viral BCL-2 of murine gamma-herpesvirus 68. Ku B, Woo JS, Liang C, Lee KH, Hong HS, E X, Kim KS, Jung JU, Oh BH. PLoS Pathog 4 e25 (2008)
  6. Functional and structural studies of the vaccinia virus virulence factor N1 reveal a Bcl-2-like anti-apoptotic protein. Cooray S, Bahar MW, Abrescia NGA, McVey CE, Bartlett NW, Chen RA, Stuart DI, Grimes JM, Smith GL. J Gen Virol 88 1656-1666 (2007)
  7. Vaccinia virus proteins A52 and B14 Share a Bcl-2-like fold but have evolved to inhibit NF-kappaB rather than apoptosis. Graham SC, Bahar MW, Cooray S, Chen RA, Whalen DM, Abrescia NG, Alderton D, Owens RJ, Stuart DI, Smith GL, Grimes JM. PLoS Pathog 4 e1000128 (2008)
  8. High-resolution structural characterization of a helical alpha/beta-peptide foldamer bound to the anti-apoptotic protein Bcl-xL. Lee EF, Sadowsky JD, Smith BJ, Czabotar PE, Peterson-Kaufman KJ, Colman PM, Gellman SH, Fairlie WD. Angew Chem Int Ed Engl 48 4318-4322 (2009)
  9. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner. Kazi A, Sun J, Doi K, Sung SS, Takahashi Y, Yin H, Rodriguez JM, Becerril J, Berndt N, Hamilton AD, Wang HG, Sebti SM. J Biol Chem 286 9382-9392 (2011)
  10. Modeling backbone flexibility to achieve sequence diversity: the design of novel alpha-helical ligands for Bcl-xL. Fu X, Apgar JR, Keating AE. J Mol Biol 371 1099-1117 (2007)
  11. Cell death and the mitochondria: therapeutic targeting of the BCL-2 family-driven pathway. Roy MJ, Vom A, Czabotar PE, Lessene G. Br J Pharmacol 171 1973-1987 (2014)
  12. Mcl-1-Bim complexes accommodate surprising point mutations via minor structural changes. Fire E, Gullá SV, Grant RA, Keating AE. Protein Sci 19 507-519 (2010)
  13. Blockade of neuronal α7-nAChR by α-conotoxin ImI explained by computational scanning and energy calculations. Yu R, Craik DJ, Kaas Q. PLoS Comput Biol 7 e1002011 (2011)
  14. The restricted binding repertoire of Bcl-B leaves Bim as the universal BH3-only prosurvival Bcl-2 protein antagonist. Rautureau GJ, Yabal M, Yang H, Huang DC, Kvansakul M, Hinds MG. Cell Death Dis 3 e443 (2012)
  15. Vaccinia virus virulence factor N1L is a novel promising target for antiviral therapeutic intervention. Cheltsov AV, Aoyagi M, Aleshin A, Yu EC, Gilliland T, Zhai D, Bobkov AA, Reed JC, Liddington RC, Abagyan R. J Med Chem 53 3899-3906 (2010)
  16. Bak Conformational Changes Induced by Ligand Binding: Insight into BH3 Domain Binding and Bak Homo-Oligomerization. Pang YP, Dai H, Smith A, Meng XW, Schneider PA, Kaufmann SH. Sci Rep 2 257 (2012)
  17. Ceramide channels: destabilization by Bcl-xL and role in apoptosis. Chang KT, Anishkin A, Patwardhan GA, Beverly LJ, Siskind LJ, Colombini M. Biochim Biophys Acta 1848 2374-2384 (2015)
  18. Ancient and conserved functional interplay between Bcl-2 family proteins in the mitochondrial pathway of apoptosis. Popgeorgiev N, Sa JD, Jabbour L, Banjara S, Nguyen TTM, Akhavan-E-Sabet A, Gadet R, Ralchev N, Manon S, Hinds MG, Osigus HJ, Schierwater B, Humbert PO, Rimokh R, Gillet G, Kvansakul M. Sci Adv 6 eabc4149 (2020)
  19. Structure-based redesign of the binding specificity of anti-apoptotic Bcl-x(L). Chen TS, Palacios H, Keating AE. J Mol Biol 425 171-185 (2013)
  20. Structural insight into an evolutionarily ancient programmed cell death regulator - the crystal structure of marine sponge BHP2 bound to LB-Bak-2. Caria S, Hinds MG, Kvansakul M. Cell Death Dis 8 e2543 (2017)
  21. Molecular basis for Bcl-2 homology 3 domain recognition in the Bcl-2 protein family: identification of conserved hot spot interactions. Moroy G, Martin E, Dejaegere A, Stote RH. J Biol Chem 284 17499-17511 (2009)
  22. Structural and functional analyses of hepatitis B virus X protein BH3-like domain and Bcl-xL interaction. Zhang TY, Chen HY, Cao JL, Xiong HL, Mo XB, Li TL, Kang XZ, Zhao JH, Yin B, Zhao X, Huang CH, Yuan Q, Xue D, Xia NS, Yuan YA. Nat Commun 10 3192 (2019)
  23. Interactions of pro-apoptotic BH3 proteins with anti-apoptotic Bcl-2 family proteins measured in live MCF-7 cells using FLIM FRET. Liu Q, Leber B, Andrews DW. Cell Cycle 11 3536-3542 (2012)
  24. Diversity of Cultivable Microbes From Soil of the Fildes Peninsula, Antarctica, and Their Potential Application. Cong B, Yin X, Deng A, Shen J, Tian Y, Wang S, Yang H. Front Microbiol 11 570836 (2020)
  25. Bcl-xl does not have to bind Bax to protect T cells from death. Liu X, Zhu Y, Dai S, White J, Peyerl F, Kappler JW, Marrack P. J Exp Med 203 2953-2961 (2006)
  26. Dynamics of the BH3-Only Protein Binding Interface of Bcl-xL. Liu X, Beugelsdijk A, Chen J. Biophys J 109 1049-1057 (2015)
  27. Behavior of solvent-exposed hydrophobic groove in the anti-apoptotic Bcl-XL protein: clues for its ability to bind diverse BH3 ligands from MD simulations. Lama D, Modi V, Sankararamakrishnan R. PLoS One 8 e54397 (2013)
  28. Selective Affimers Recognise the BCL-2 Family Proteins BCL-xL and MCL-1 through Noncanonical Structural Motifs*. Miles JA, Hobor F, Trinh CH, Taylor J, Tiede C, Rowell PR, Jackson BR, Nadat FA, Ramsahye P, Kyle HF, Wicky BIM, Clarke J, Tomlinson DC, Wilson AJ, Edwards TA. Chembiochem 22 232-240 (2021)
  29. The structural basis of Bcl-2 mediated cell death regulation in hydra. Banjara S, D Sa J, Hinds MG, Kvansakul M. Biochem J 477 3287-3297 (2020)
  30. Conversion of cell-survival activity of Akt into apoptotic death of cancer cells by two mutations on the BIM BH3 domain. Kim JS, Ku B, Woo TG, Oh AY, Jung YS, Soh YM, Yeom JH, Lee K, Park BJ, Oh BH, Ha NC. Cell Death Dis 6 e1804 (2015)
  31. The Study of Apoptosis-inducing Effects of Three Pre-apoptotic Factors by Gallic Acid, Using Simulation Analysis and the Comet Assay Technique on the Prostatic Cancer Cell Line PC3. Saffari-Chaleshtori J, Heidari-Sureshjani E, Moradi F, Jazi HM, Heidarian E. Malays J Med Sci 24 18-29 (2017)
  32. Inhibition of Antiapoptotic BCL-XL, BCL-2, and MCL-1 Proteins by Small Molecule Mimetics. Dalafave DS, Prisco G. Cancer Inform 9 169-177 (2010)
  33. Molecular basis for the interplay of apoptosis and proliferation mediated by Bcl-xL:Bim interactions in pancreatic cancer cells. Abrol R, Edderkaoui M, Goddard WA, Pandol SJ. Biochem Biophys Res Commun 422 596-601 (2012)
  34. Molecular determinants of the binding specificity of BH3 ligands to BclXL apoptotic repressor. Bhat V, Olenick MB, Schuchardt BJ, Mikles DC, McDonald CB, Farooq A. Biopolymers 101 573-582 (2014)
  35. An Intriguing Correlation Based on the Superimposition of Residue Pairs with Inhibitors that Target Protein-Protein Interfaces. Nakadai M, Tomida S, Sekimizu K. Sci Rep 6 18543 (2016)
  36. Predicted Hotspot Residues Involved in Allosteric Signal Transmission in Pro-Apoptotic Peptide-Mcl1 Complexes. Marimuthu P, Razzokov J, Singaravelu K, Bogaerts A. Biomolecules 10 E1114 (2020)
  37. Structure and energetic basis of overrepresented λ light chain in systemic light chain amyloidosis patients. Zhao J, Zhang B, Zhu J, Nussinov R, Ma B. Biochim Biophys Acta Mol Basis Dis 1864 2294-2303 (2018)
  38. Engagement of intrinsic disordered proteins in protein-protein interaction. Roterman I, Stapor K, Konieczny L. Front Mol Biosci 10 1230922 (2023)


Reviews citing this publication (59)

  1. The BCL-2 protein family: opposing activities that mediate cell death. Youle RJ, Strasser A. Nat Rev Mol Cell Biol 9 47-59 (2008)
  2. Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Czabotar PE, Lessene G, Strasser A, Adams JM. Nat Rev Mol Cell Biol 15 49-63 (2014)
  3. The Bcl-2 apoptotic switch in cancer development and therapy. Adams JM, Cory S. Oncogene 26 1324-1337 (2007)
  4. Life in the balance: how BH3-only proteins induce apoptosis. Willis SN, Adams JM. Curr Opin Cell Biol 17 617-625 (2005)
  5. The role of BH3-only proteins in the immune system. Strasser A. Nat Rev Immunol 5 189-200 (2005)
  6. Thirty years of BCL-2: translating cell death discoveries into novel cancer therapies. Delbridge AR, Grabow S, Strasser A, Vaux DL. Nat Rev Cancer 16 99-109 (2016)
  7. Inhibition of α-helix-mediated protein-protein interactions using designed molecules. Azzarito V, Long K, Murphy NS, Wilson AJ. Nat Chem 5 161-173 (2013)
  8. Small molecules, big targets: drug discovery faces the protein-protein interaction challenge. Scott DE, Bayly AR, Abell C, Skidmore J. Nat Rev Drug Discov 15 533-550 (2016)
  9. BCL-2 family antagonists for cancer therapy. Lessene G, Czabotar PE, Colman PM. Nat Rev Drug Discov 7 989-1000 (2008)
  10. Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. Hwang HS, Kim HA. Int J Mol Sci 16 26035-26054 (2015)
  11. Mechanisms of action of Bcl-2 family proteins. Shamas-Din A, Kale J, Leber B, Andrews DW. Cold Spring Harb Perspect Biol 5 a008714 (2013)
  12. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Kelly PN, Strasser A. Cell Death Differ 18 1414-1424 (2011)
  13. Control of T cell viability. Marrack P, Kappler J. Annu Rev Immunol 22 765-787 (2004)
  14. Molecular biology of Bax and Bak activation and action. Westphal D, Dewson G, Czabotar PE, Kluck RM. Biochim Biophys Acta 1813 521-531 (2011)
  15. The autophagy effector Beclin 1: a novel BH3-only protein. Sinha S, Levine B. Oncogene 27 Suppl 1 S137-48 (2008)
  16. BH3-only proteins in apoptosis and beyond: an overview. Lomonosova E, Chinnadurai G. Oncogene 27 Suppl 1 S2-19 (2008)
  17. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Adams JM, Cory S. Cell Death Differ 25 27-36 (2018)
  18. Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Westphal D, Kluck RM, Dewson G. Cell Death Differ 21 196-205 (2014)
  19. How the Bcl-2 family of proteins interact to regulate apoptosis. van Delft MF, Huang DC. Cell Res 16 203-213 (2006)
  20. BH3-only proteins: Orchestrators of apoptosis. Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW. Biochim Biophys Acta 1813 508-520 (2011)
  21. Targeting BCL-2 regulated apoptosis in cancer. Campbell KJ, Tait SWG. Open Biol 8 180002 (2018)
  22. Noxa: at the tip of the balance between life and death. Ploner C, Kofler R, Villunger A. Oncogene 27 Suppl 1 S84-92 (2008)
  23. Generation of effector CD8+ T cells and their conversion to memory T cells. Cui W, Kaech SM. Immunol Rev 236 151-166 (2010)
  24. Bid: a Bax-like BH3 protein. Billen LP, Shamas-Din A, Andrews DW. Oncogene 27 Suppl 1 S93-104 (2008)
  25. Decoding and unlocking the BCL-2 dependency of cancer cells. Juin P, Geneste O, Gautier F, Depil S, Campone M. Nat Rev Cancer 13 455-465 (2013)
  26. Killing cancer cells by flipping the Bcl-2/Bax switch. Cory S, Adams JM. Cancer Cell 8 5-6 (2005)
  27. Mitochondria: pharmacological manipulation of cell death. Bouchier-Hayes L, Lartigue L, Newmeyer DD. J Clin Invest 115 2640-2647 (2005)
  28. Mechanisms of apoptosis through structural biology. Yan N, Shi Y. Annu Rev Cell Dev Biol 21 35-56 (2005)
  29. The Bcl-2 family: structures, interactions and targets for drug discovery. Kvansakul M, Hinds MG. Apoptosis 20 136-150 (2015)
  30. Structural biology of the Bcl-2 family and its mimicry by viral proteins. Kvansakul M, Hinds MG. Cell Death Dis 4 e909 (2013)
  31. Bim and Bmf in tissue homeostasis and malignant disease. Piñon JD, Labi V, Egle A, Villunger A. Oncogene 27 Suppl 1 S41-52 (2008)
  32. Bcl-2 family proteins in breast development and cancer: could Mcl-1 targeting overcome therapeutic resistance? Williams MM, Cook RS. Oncotarget 6 3519-3530 (2015)
  33. Regulation of T-cell apoptosis by reactive oxygen species. Hildeman DA. Free Radic Biol Med 36 1496-1504 (2004)
  34. How vaccinia virus has evolved to subvert the host immune response. Bahar MW, Graham SC, Chen RA, Cooray S, Smith GL, Stuart DI, Grimes JM. J Struct Biol 175 127-134 (2011)
  35. Men are but worms: neuronal cell death in C elegans and vertebrates. Putcha GV, Johnson EM. Cell Death Differ 11 38-48 (2004)
  36. Regulating cell death at, on, and in membranes. Chi X, Kale J, Leber B, Andrews DW. Biochim Biophys Acta 1843 2100-2113 (2014)
  37. Intrinsically disordered proteins in bcl-2 regulated apoptosis. Rautureau GJ, Day CL, Hinds MG. Int J Mol Sci 11 1808-1824 (2010)
  38. Regulation of apoptosis: uncovering the binding determinants. Hinds MG, Day CL. Curr Opin Struct Biol 15 690-699 (2005)
  39. BCL-2 family deregulation in colorectal cancer: potential for BH3 mimetics in therapy. Ramesh P, Medema JP. Apoptosis 25 305-320 (2020)
  40. BH3-only proteins trigger cytochrome c release, but how? Häcker G, Weber A. Arch Biochem Biophys 462 150-155 (2007)
  41. Helix-mediated protein--protein interactions as targets for intervention using foldamers. Edwards TA, Wilson AJ. Amino Acids 41 743-754 (2011)
  42. The p53 tumor suppressor network in cancer and the therapeutic modulation of cell death. Chari NS, Pinaire NL, Thorpe L, Medeiros LJ, Routbort MJ, McDonnell TJ. Apoptosis 14 336-347 (2009)
  43. Intrinsic and extrinsic control of effector T cell survival and memory T cell development. Hand TW, Kaech SM. Immunol Res 45 46-61 (2009)
  44. Contracting the 'mus cells'--does down-sizing suit us for diving into the memory pool? Kurtulus S, Tripathi P, Opferman JT, Hildeman DA. Immunol Rev 236 54-67 (2010)
  45. Regulating the BCL2 Family to Improve Sensitivity to Microtubule Targeting Agents. Whitaker RH, Placzek WJ. Cells 8 E346 (2019)
  46. Cell death regulation by B-cell lymphoma protein. Verma YK, Gangenahalli GU, Singh VK, Gupta P, Chandra R, Sharma RK, Raj HG. Apoptosis 11 459-471 (2006)
  47. Physiological and pharmacological modulation of BAX. Spitz AZ, Gavathiotis E. Trends Pharmacol Sci 43 206-220 (2022)
  48. To Prime, or Not to Prime: That Is the Question. Potter DS, Letai A. Cold Spring Harb Symp Quant Biol 81 131-140 (2016)
  49. Dying to protect: cell death and the control of T-cell homeostasis. Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Immunol Rev 277 21-43 (2017)
  50. Death by association: BH3 domain-only proteins and liver injury. Baskin-Bey ES, Gores GJ. Am J Physiol Gastrointest Liver Physiol 289 G987-90 (2005)
  51. Therapeutic targeting of Bcl-2 family for treatment of B-cell malignancies. Huang J, Fairbrother W, Reed JC. Expert Rev Hematol 8 283-297 (2015)
  52. B-cell antigen receptor-induced apoptosis: looking for clues. Eldering E, VanLier RA. Immunol Lett 96 187-194 (2005)
  53. Understanding MCL1: from cellular function and regulation to pharmacological inhibition. Sancho M, Leiva D, Lucendo E, Orzáez M. FEBS J 289 6209-6234 (2022)
  54. BH3 Mimetics in Hematologic Malignancies. Klener P, Sovilj D, Renesova N, Andera L. Int J Mol Sci 22 10157 (2021)
  55. MCL-1 is a clinically targetable vulnerability in breast cancer. Winder ML, Campbell KJ. Cell Cycle 21 1439-1455 (2022)
  56. Structural Details of BH3 Motifs and BH3-Mediated Interactions: an Updated Perspective. Sora V, Papaleo E. Front Mol Biosci 9 864874 (2022)
  57. The Role of Bcl-xL Protein Research in Veterinary Oncology. Pawlak A, Henklewska M. Int J Mol Sci 21 E2511 (2020)
  58. Advancing the field of computational drug design using multicanonical molecular dynamics-based dynamic docking. Bekker GJ, Kamiya N. Biophys Rev 14 1349-1358 (2022)
  59. Structural biology of the intrinsic cell death pathway: what do we know and what is missing? Lee EF, Fairlie WD. Comput Struct Biotechnol J 1 e201204007 (2012)

Articles citing this publication (158)

  1. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC. Mol Cell 17 393-403 (2005)
  2. The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. van Delft MF, Wei AH, Mason KD, Vandenberg CJ, Chen L, Czabotar PE, Willis SN, Scott CL, Day CL, Cory S, Adams JM, Roberts AW, Huang DC. Cancer Cell 10 389-399 (2006)
  3. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC. Genes Dev 19 1294-1305 (2005)
  4. Programmed anuclear cell death delimits platelet life span. Mason KD, Carpinelli MR, Fletcher JI, Collinge JE, Hilton AA, Ellis S, Kelly PN, Ekert PG, Metcalf D, Roberts AW, Huang DC, Kile BT. Cell 128 1173-1186 (2007)
  5. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z. J Proteome Res 6 1882-1898 (2007)
  6. Bax crystal structures reveal how BH3 domains activate Bax and nucleate its oligomerization to induce apoptosis. Czabotar PE, Westphal D, Dewson G, Ma S, Hockings C, Fairlie WD, Lee EF, Yao S, Robin AY, Smith BJ, Huang DC, Kluck RM, Adams JM, Colman PM. Cell 152 519-531 (2013)
  7. A stapled BID BH3 helix directly binds and activates BAX. Walensky LD, Pitter K, Morash J, Oh KJ, Barbuto S, Fisher J, Smith E, Verdine GL, Korsmeyer SJ. Mol Cell 24 199-210 (2006)
  8. Structure-guided design of a selective BCL-X(L) inhibitor. Lessene G, Czabotar PE, Sleebs BE, Zobel K, Lowes KN, Adams JM, Baell JB, Colman PM, Deshayes K, Fairbrother WJ, Flygare JA, Gibbons P, Kersten WJ, Kulasegaram S, Moss RM, Parisot JP, Smith BJ, Street IP, Yang H, Huang DC, Watson KG. Nat Chem Biol 9 390-397 (2013)
  9. To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3:groove interactions. Dewson G, Kratina T, Sim HW, Puthalakath H, Adams JM, Colman PM, Kluck RM. Mol Cell 30 369-380 (2008)
  10. Survival factor-induced extracellular signal-regulated kinase phosphorylates BIM, inhibiting its association with BAX and proapoptotic activity. Harada H, Quearry B, Ruiz-Vela A, Korsmeyer SJ. Proc Natl Acad Sci U S A 101 15313-15317 (2004)
  11. Bcl-XL inhibits membrane permeabilization by competing with Bax. Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW. PLoS Biol 6 e147 (2008)
  12. Evidence that Ser87 of BimEL is phosphorylated by Akt and regulates BimEL apoptotic function. Qi XJ, Wildey GM, Howe PH. J Biol Chem 281 813-823 (2006)
  13. Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. Jin H, Carrio R, Yu A, Malek TR. J Immunol 173 657-665 (2004)
  14. Letter Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Lee EF, Czabotar PE, Smith BJ, Deshayes K, Zobel K, Colman PM, Fairlie WD. Cell Death Differ 14 1711-1713 (2007)
  15. Evidence that inhibition of BAX activation by BCL-2 involves its tight and preferential interaction with the BH3 domain of BAX. Ku B, Liang C, Jung JU, Oh BH. Cell Res 21 627-641 (2011)
  16. Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Kvansakul M, Yang H, Fairlie WD, Czabotar PE, Fischer SF, Perugini MA, Huang DC, Colman PM. Cell Death Differ 15 1564-1571 (2008)
  17. A Novel MCL1 Inhibitor Combined with Venetoclax Rescues Venetoclax-Resistant Acute Myelogenous Leukemia. Ramsey HE, Fischer MA, Lee T, Gorska AE, Arrate MP, Fuller L, Boyd KL, Strickland SA, Sensintaffar J, Hogdal LJ, Ayers GD, Olejniczak ET, Fesik SW, Savona MR. Cancer Discov 8 1566-1581 (2018)
  18. Bim, Bad and Bmf: intrinsically unstructured BH3-only proteins that undergo a localized conformational change upon binding to prosurvival Bcl-2 targets. Hinds MG, Smits C, Fredericks-Short R, Risk JM, Bailey M, Huang DC, Day CL. Cell Death Differ 14 128-136 (2007)
  19. Structure of the BH3 domains from the p53-inducible BH3-only proteins Noxa and Puma in complex with Mcl-1. Day CL, Smits C, Fan FC, Lee EF, Fairlie WD, Hinds MG. J Mol Biol 380 958-971 (2008)
  20. Molecular basis of the regulation of Beclin 1-dependent autophagy by the gamma-herpesvirus 68 Bcl-2 homolog M11. Sinha S, Colbert CL, Becker N, Wei Y, Levine B. Autophagy 4 989-997 (2008)
  21. Molecular basis of Bcl-xL's target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. Feng W, Huang S, Wu H, Zhang M. J Mol Biol 372 223-235 (2007)
  22. Bax dimerizes via a symmetric BH3:groove interface during apoptosis. Dewson G, Ma S, Frederick P, Hockings C, Tan I, Kratina T, Kluck RM. Cell Death Differ 19 661-670 (2012)
  23. Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Fletcher JI, Meusburger S, Hawkins CJ, Riglar DT, Lee EF, Fairlie WD, Huang DC, Adams JM. Proc Natl Acad Sci U S A 105 18081-18087 (2008)
  24. A stapled BIM peptide overcomes apoptotic resistance in hematologic cancers. LaBelle JL, Katz SG, Bird GH, Gavathiotis E, Stewart ML, Lawrence C, Fisher JK, Godes M, Pitter K, Kung AL, Walensky LD. J Clin Invest 122 2018-2031 (2012)
  25. Bcl-x(L) sequesters its C-terminal membrane anchor in soluble, cytosolic homodimers. Jeong SY, Gaume B, Lee YJ, Hsu YT, Ryu SW, Yoon SH, Youle RJ. EMBO J 23 2146-2155 (2004)
  26. Conformational control of Bax localization and apoptotic activity by Pro168. Schinzel A, Kaufmann T, Schuler M, Martinalbo J, Grubb D, Borner C. J Cell Biol 164 1021-1032 (2004)
  27. A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. Lee EF, Czabotar PE, van Delft MF, Michalak EM, Boyle MJ, Willis SN, Puthalakath H, Bouillet P, Colman PM, Huang DC, Fairlie WD. J Cell Biol 180 341-355 (2008)
  28. Auto-activation of the apoptosis protein Bax increases mitochondrial membrane permeability and is inhibited by Bcl-2. Tan C, Dlugosz PJ, Peng J, Zhang Z, Lapolla SM, Plafker SM, Andrews DW, Lin J. J Biol Chem 281 14764-14775 (2006)
  29. A structural viral mimic of prosurvival Bcl-2: a pivotal role for sequestering proapoptotic Bax and Bak. Kvansakul M, van Delft MF, Lee EF, Gulbis JM, Fairlie WD, Huang DC, Colman PM. Mol Cell 25 933-942 (2007)
  30. Constitutive association of the proapoptotic protein Bim with Bcl-2-related proteins on mitochondria in T cells. Zhu Y, Swanson BJ, Wang M, Hildeman DA, Schaefer BC, Liu X, Suzuki H, Mihara K, Kappler J, Marrack P. Proc Natl Acad Sci U S A 101 7681-7686 (2004)
  31. Evaluation of diverse α/β-backbone patterns for functional α-helix mimicry: analogues of the Bim BH3 domain. Boersma MD, Haase HS, Peterson-Kaufman KJ, Lee EF, Clarke OB, Colman PM, Smith BJ, Horne WS, Fairlie WD, Gellman SH. J Am Chem Soc 134 315-323 (2012)
  32. Bak core and latch domains separate during activation, and freed core domains form symmetric homodimers. Brouwer JM, Westphal D, Dewson G, Robin AY, Uren RT, Bartolo R, Thompson GV, Colman PM, Kluck RM, Czabotar PE. Mol Cell 55 938-946 (2014)
  33. PUMA binding induces partial unfolding within BCL-xL to disrupt p53 binding and promote apoptosis. Follis AV, Chipuk JE, Fisher JC, Yun MK, Grace CR, Nourse A, Baran K, Ou L, Min L, White SW, Green DR, Kriwacki RW. Nat Chem Biol 9 163-168 (2013)
  34. Vaccinia virus N1L protein resembles a B cell lymphoma-2 (Bcl-2) family protein. Aoyagi M, Zhai D, Jin C, Aleshin AE, Stec B, Reed JC, Liddington RC. Protein Sci 16 118-124 (2007)
  35. Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak. Uren RT, Dewson G, Chen L, Coyne SC, Huang DC, Adams JM, Kluck RM. J Cell Biol 177 277-287 (2007)
  36. Structural plasticity underpins promiscuous binding of the prosurvival protein A1. Smits C, Czabotar PE, Hinds MG, Day CL. Structure 16 818-829 (2008)
  37. Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1. Kvansakul M, Wei AH, Fletcher JI, Willis SN, Chen L, Roberts AW, Huang DC, Colman PM. PLoS Pathog 6 e1001236 (2010)
  38. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. Dutta S, Gullá S, Chen TS, Fire E, Grant RA, Keating AE. J Mol Biol 398 747-762 (2010)
  39. BCL-XL dimerization by three-dimensional domain swapping. O'Neill JW, Manion MK, Maguire B, Hockenbery DM. J Mol Biol 356 367-381 (2006)
  40. Poxvirus K7 protein adopts a Bcl-2 fold: biochemical mapping of its interactions with human DEAD box RNA helicase DDX3. Kalverda AP, Thompson GS, Vogel A, Schröder M, Bowie AG, Khan AR, Homans SW. J Mol Biol 385 843-853 (2009)
  41. The Epstein-Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim. Desbien AL, Kappler JW, Marrack P. Proc Natl Acad Sci U S A 106 5663-5668 (2009)
  42. Structural, biochemical, and functional analyses of CED-9 recognition by the proapoptotic proteins EGL-1 and CED-4. Yan N, Gu L, Kokel D, Chai J, Li W, Han A, Chen L, Xue D, Shi Y. Mol Cell 15 999-1006 (2004)
  43. BimS-induced apoptosis requires mitochondrial localization but not interaction with anti-apoptotic Bcl-2 proteins. Weber A, Paschen SA, Heger K, Wilfling F, Frankenberg T, Bauerschmitt H, Seiffert BM, Kirschnek S, Wagner H, Häcker G. J Cell Biol 177 625-636 (2007)
  44. Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM. J Biol Chem 286 7123-7131 (2011)
  45. Interaction of F1L with the BH3 domain of Bak is responsible for inhibiting vaccinia-induced apoptosis. Postigo A, Cross JR, Downward J, Way M. Cell Death Differ 13 1651-1662 (2006)
  46. 100 ns molecular dynamics simulations to study intramolecular conformational changes in Bax. Koshy C, Parthiban M, Sowdhamini R. J Biomol Struct Dyn 28 71-83 (2010)
  47. A novel Bcl-2-like inhibitor of apoptosis is encoded by the parapoxvirus ORF virus. Westphal D, Ledgerwood EC, Hibma MH, Fleming SB, Whelan EM, Mercer AA. J Virol 81 7178-7188 (2007)
  48. Conformational changes in Bcl-2 pro-survival proteins determine their capacity to bind ligands. Lee EF, Czabotar PE, Yang H, Sleebs BE, Lessene G, Colman PM, Smith BJ, Fairlie WD. J Biol Chem 284 30508-30517 (2009)
  49. Bax forms an oligomer via separate, yet interdependent, surfaces. Zhang Z, Zhu W, Lapolla SM, Miao Y, Shao Y, Falcone M, Boreham D, McFarlane N, Ding J, Johnson AE, Zhang XC, Andrews DW, Lin J. J Biol Chem 285 17614-17627 (2010)
  50. Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study. Oh KJ, Barbuto S, Meyer N, Kim RS, Collier RJ, Korsmeyer SJ. J Biol Chem 280 753-767 (2005)
  51. The DNA-binding domain mediates both nuclear and cytosolic functions of p53. Follis AV, Llambi F, Ou L, Baran K, Green DR, Kriwacki RW. Nat Struct Mol Biol 21 535-543 (2014)
  52. tBid undergoes multiple conformational changes at the membrane required for Bax activation. Shamas-Din A, Bindner S, Zhu W, Zaltsman Y, Campbell C, Gross A, Leber B, Andrews DW, Fradin C. J Biol Chem 288 22111-22127 (2013)
  53. Bcl-2 homodimerization involves two distinct binding surfaces, a topographic arrangement that provides an effective mechanism for Bcl-2 to capture activated Bax. Zhang Z, Lapolla SM, Annis MG, Truscott M, Roberts GJ, Miao Y, Shao Y, Tan C, Peng J, Johnson AE, Zhang XC, Andrews DW, Lin J. J Biol Chem 279 43920-43928 (2004)
  54. Prognostic impact of bim, puma, and noxa expression in human colon carcinomas. Sinicrope FA, Rego RL, Okumura K, Foster NR, O'Connell MJ, Sargent DJ, Windschitl HE. Clin Cancer Res 14 5810-5818 (2008)
  55. Modified vaccinia virus Ankara protein F1L is a novel BH3-domain-binding protein and acts together with the early viral protein E3L to block virus-associated apoptosis. Fischer SF, Ludwig H, Holzapfel J, Kvansakul M, Chen L, Huang DC, Sutter G, Knese M, Häcker G. Cell Death Differ 13 109-118 (2006)
  56. Structural basis for targeting of human RNA helicase DDX3 by poxvirus protein K7. Oda S, Schröder M, Khan AR. Structure 17 1528-1537 (2009)
  57. Completing the family portrait of the anti-apoptotic Bcl-2 proteins: crystal structure of human Bfl-1 in complex with Bim. Herman MD, Nyman T, Welin M, Lehtiö L, Flodin S, Trésaugues L, Kotenyova T, Flores A, Nordlund P. FEBS Lett 582 3590-3594 (2008)
  58. Structural Insight into African Swine Fever Virus A179L-Mediated Inhibition of Apoptosis. Banjara S, Caria S, Dixon LK, Hinds MG, Kvansakul M. J Virol 91 e02228-16 (2017)
  59. Bcl-2 and Bax interact via the BH1-3 groove-BH3 motif interface and a novel interface involving the BH4 motif. Ding J, Zhang Z, Roberts GJ, Falcone M, Miao Y, Shao Y, Zhang XC, Andrews DW, Lin J. J Biol Chem 285 28749-28763 (2010)
  60. Intrinsically disordered regions in autophagy proteins. Mei Y, Su M, Soni G, Salem S, Colbert CL, Sinha SC. Proteins 82 565-578 (2014)
  61. Hydrophile scanning as a complement to alanine scanning for exploring and manipulating protein-protein recognition: application to the Bim BH3 domain. Boersma MD, Sadowsky JD, Tomita YA, Gellman SH. Protein Sci 17 1232-1240 (2008)
  62. Synthetic human cell fate regulation by protein-driven RNA switches. Saito H, Fujita Y, Kashida S, Hayashi K, Inoue T. Nat Commun 2 160 (2011)
  63. Structural insights of tBid, the caspase-8-activated Bid, and its BH3 domain. Wang Y, Tjandra N. J Biol Chem 288 35840-35851 (2013)
  64. Structural basis of Bcl-xL recognition by a BH3-mimetic α/β-peptide generated by sequence-based design. Lee EF, Smith BJ, Horne WS, Mayer KN, Evangelista M, Colman PM, Gellman SH, Fairlie WD. Chembiochem 12 2025-2032 (2011)
  65. Translocation of a Bak C-terminus mutant from cytosol to mitochondria to mediate cytochrome C release: implications for Bak and Bax apoptotic function. Ferrer PE, Frederick P, Gulbis JM, Dewson G, Kluck RM. PLoS One 7 e31510 (2012)
  66. Predictive Bcl-2 family binding models rooted in experiment or structure. DeBartolo J, Dutta S, Reich L, Keating AE. J Mol Biol 422 124-144 (2012)
  67. tBid elicits a conformational alteration in membrane-bound Bcl-2 such that it inhibits Bax pore formation. Peng J, Tan C, Roberts GJ, Nikolaeva O, Zhang Z, Lapolla SM, Primorac S, Andrews DW, Lin J. J Biol Chem 281 35802-35811 (2006)
  68. Elucidation of some Bax conformational changes through crystallization of an antibody-peptide complex. Peyerl FW, Dai S, Murphy GA, Crawford F, White J, Marrack P, Kappler JW. Cell Death Differ 14 447-452 (2007)
  69. BIM and tBID are not mechanistically equivalent when assisting BAX to permeabilize bilayer membranes. Terrones O, Etxebarria A, Landajuela A, Landeta O, Antonsson B, Basañez G. J Biol Chem 283 7790-7803 (2008)
  70. Structural insight into BH3 domain binding of vaccinia virus antiapoptotic F1L. Campbell S, Thibault J, Mehta N, Colman PM, Barry M, Kvansakul M. J Virol 88 8667-8677 (2014)
  71. Chagasic thymic atrophy does not affect negative selection but results in the export of activated CD4+CD8+ T cells in severe forms of human disease. Morrot A, Terra-Granado E, Pérez AR, Silva-Barbosa SD, Milićević NM, Farias-de-Oliveira DA, Berbert LR, De Meis J, Takiya CM, Beloscar J, Wang X, Kont V, Peterson P, Bottasso O, Savino W. PLoS Negl Trop Dis 5 e1268 (2011)
  72. Targeting γ-herpesvirus 68 Bcl-2-mediated down-regulation of autophagy. Su M, Mei Y, Sanishvili R, Levine B, Colbert CL, Sinha S. J Biol Chem 289 8029-8040 (2014)
  73. Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins. Okamoto T, Campbell S, Mehta N, Thibault J, Colman PM, Barry M, Huang DC, Kvansakul M. J Virol 86 11501-11511 (2012)
  74. Anti-apoptotic Bcl-XL protein in complex with BH3 peptides of pro-apoptotic Bak, Bad, and Bim proteins: comparative molecular dynamics simulations. Lama D, Sankararamakrishnan R. Proteins 73 492-514 (2008)
  75. Crystal structure of Bax bound to the BH3 peptide of Bim identifies important contacts for interaction. Robin AY, Krishna Kumar K, Westphal D, Wardak AZ, Thompson GV, Dewson G, Colman PM, Czabotar PE. Cell Death Dis 6 e1809 (2015)
  76. Multiple antimelanoma potential of dry olive leaf extract. Mijatovic SA, Timotijevic GS, Miljkovic DM, Radovic JM, Maksimovic-Ivanic DD, Dekanski DP, Stosic-Grujicic SD. Int J Cancer 128 1955-1965 (2011)
  77. Hydrophobic Binding Hot Spots of Bcl-xL Protein-Protein Interfaces by Cosolvent Molecular Dynamics Simulation. Yang CY, Wang S. ACS Med Chem Lett 2 280-284 (2011)
  78. Peptide ligands for pro-survival protein Bfl-1 from computationally guided library screening. Dutta S, Chen TS, Keating AE. ACS Chem Biol 8 778-788 (2013)
  79. Structural and biochemical analysis of Bcl-2 interaction with the hepatitis B virus protein HBx. Jiang T, Liu M, Wu J, Shi Y. Proc Natl Acad Sci U S A 113 2074-2079 (2016)
  80. Molecular basis of Bcl-X(L)-p53 interaction: insights from molecular dynamics simulations. Bharatham N, Chi SW, Yoon HS. PLoS One 6 e26014 (2011)
  81. The functional differences between pro-survival and pro-apoptotic B cell lymphoma 2 (Bcl-2) proteins depend on structural differences in their Bcl-2 homology 3 (BH3) domains. Lee EF, Dewson G, Evangelista M, Pettikiriarachchi A, Gold GJ, Zhu H, Colman PM, Fairlie WD. J Biol Chem 289 36001-36017 (2014)
  82. A systematic study of the energetics involved in structural changes upon association and connectivity in protein interaction networks. Stein A, Rueda M, Panjkovich A, Orozco M, Aloy P. Structure 19 881-889 (2011)
  83. Novel Bcl-2 homology-3 domain-like sequences identified from screening randomized peptide libraries for inhibitors of the pro-survival Bcl-2 proteins. Lee EF, Fedorova A, Zobel K, Boyle MJ, Yang H, Perugini MA, Colman PM, Huang DC, Deshayes K, Fairlie WD. J Biol Chem 284 31315-31326 (2009)
  84. Structure-function studies of an engineered scaffold protein derived from Stefin A. II: Development and applications of the SQT variant. Stadler LK, Hoffmann T, Tomlinson DC, Song Q, Lee T, Busby M, Nyathi Y, Gendra E, Tiede C, Flanagan K, Cockell SJ, Wipat A, Harwood C, Wagner SD, Knowles MA, Davis JJ, Keegan N, Ferrigno PK. Protein Eng Des Sel 24 751-763 (2011)
  85. The structure of Boo/Diva reveals a divergent Bcl-2 protein. Rautureau GJ, Day CL, Hinds MG. Proteins 78 2181-2186 (2010)
  86. Analysis of Flexibility and Hotspots in Bcl-xL and Mcl-1 Proteins for the Design of Selective Small-Molecule Inhibitors. Yang CY, Wang S. ACS Med Chem Lett 3 308-312 (2012)
  87. Aromatic residues link binding and function of intrinsically disordered proteins. Espinoza-Fonseca LM. Mol Biosyst 8 237-246 (2012)
  88. Cutting Edge: Bim is required for superantigen-mediated B cell death. Goodyear CS, Corr M, Sugiyama F, Boyle DL, Silverman GJ. J Immunol 178 2636-2640 (2007)
  89. Cytosolic Bax: does it require binding proteins to keep its pro-apoptotic activity in check? Vogel S, Raulf N, Bregenhorn S, Biniossek ML, Maurer U, Czabotar P, Borner C. J Biol Chem 287 9112-9127 (2012)
  90. Genome-wide prediction and validation of peptides that bind human prosurvival Bcl-2 proteins. DeBartolo J, Taipale M, Keating AE. PLoS Comput Biol 10 e1003693 (2014)
  91. In silico and in vitro elucidation of BH3 binding specificity toward Bcl-2. London N, Gullá S, Keating AE, Schueler-Furman O. Biochemistry 51 5841-5850 (2012)
  92. Mapping the interaction of pro-apoptotic tBID with pro-survival BCL-XL. Yao Y, Bobkov AA, Plesniak LA, Marassi FM. Biochemistry 48 8704-8711 (2009)
  93. C-terminal residues regulate localization and function of the antiapoptotic protein Bfl-1. Brien G, Debaud AL, Robert X, Oliver L, Trescol-Biemont MC, Cauquil N, Geneste O, Aghajari N, Vallette FM, Haser R, Bonnefoy-Berard N. J Biol Chem 284 30257-30263 (2009)
  94. Crystal Structure of African Swine Fever Virus A179L with the Autophagy Regulator Beclin. Banjara S, Shimmon GL, Dixon LK, Netherton CL, Hinds MG, Kvansakul M. Viruses 11 E789 (2019)
  95. Structural conservation of residues in BH1 and BH2 domains of Bcl-2 family proteins. Gurudutta GU, Verma YK, Singh VK, Gupta P, Raj HG, Sharma RK, Chandra R. FEBS Lett 579 3503-3507 (2005)
  96. n-butylidenephthalide treatment prolongs life span and attenuates motor neuron loss in SOD1G93A mouse model of amyotrophic lateral sclerosis. Zhou QM, Zhang JJ, Li S, Chen S, Le WD. CNS Neurosci Ther 23 375-385 (2017)
  97. Bh3 induced conformational changes in Bcl-Xl revealed by crystal structure and comparative analysis. Rajan S, Choi M, Baek K, Yoon HS. Proteins 83 1262-1272 (2015)
  98. CED-4 forms a 2 : 2 heterotetrameric complex with CED-9 until specifically displaced by EGL-1 or CED-13. Fairlie WD, Perugini MA, Kvansakul M, Chen L, Huang DC, Colman PM. Cell Death Differ 13 426-434 (2006)
  99. Interaction of a putative BH3 domain of clusterin with anti-apoptotic Bcl-2 family proteins as revealed by NMR spectroscopy. Lee DH, Ha JH, Kim Y, Bae KH, Park JY, Choi WS, Yoon HS, Park SG, Park BC, Yi GS, Chi SW. Biochem Biophys Res Commun 408 541-547 (2011)
  100. The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain. Dowling AJ, Waterfield NR, Hares MC, Le Goff G, Streuli CH, ffrench-Constant RH. Cell Microbiol 9 2470-2484 (2007)
  101. Structural changes in the BH3 domain of SOUL protein upon interaction with the anti-apoptotic protein Bcl-xL. Ambrosi E, Capaldi S, Bovi M, Saccomani G, Perduca M, Monaco HL. Biochem J 438 291-301 (2011)
  102. Subversion of the Bcl-2 life/death switch in cancer development and therapy. Adams JM, Huang DC, Strasser A, Willis S, Chen L, Wei A, van Delft M, Fletcher JI, Puthalakath H, Kuroda J, Michalak EM, Kelly PN, Bouillet P, Villunger A, O'Reilly L, Bath ML, Smith DP, Egle A, Harris AW, Hinds M, Colman P, Cory S. Cold Spring Harb Symp Quant Biol 70 469-477 (2005)
  103. Molecular dynamics simulations of pro-apoptotic BH3 peptide helices in aqueous medium: relationship between helix stability and their binding affinities to the anti-apoptotic protein Bcl-X(L). Lama D, Sankararamakrishnan R. J Comput Aided Mol Des 25 413-426 (2011)
  104. Design of libraries targeting protein-protein interfaces. Fry D, Huang KS, Di Lello P, Mohr P, Müller K, So SS, Harada T, Stahl M, Vu B, Mauser H. ChemMedChem 8 726-732 (2013)
  105. Grouper iridovirus GIV66 is a Bcl-2 protein that inhibits apoptosis by exclusively sequestering Bim. Banjara S, Mao J, Ryan TM, Caria S, Kvansakul M. J Biol Chem 293 5464-5477 (2018)
  106. Identification and characterization of BH3 domain protein Bim and its isoforms in human hepatocellular carcinomas. Miao J, Chen GG, Yun JP, Chun SY, Zheng ZZ, Ho RL, Chak EC, Xia NS, Lai PB. Apoptosis 12 1691-1701 (2007)
  107. Structural transition in Bcl-xL and its potential association with mitochondrial calcium ion transport. Rajan S, Choi M, Nguyen QT, Ye H, Liu W, Toh HT, Kang C, Kamariah N, Li C, Huang H, White C, Baek K, Grüber G, Yoon HS. Sci Rep 5 10609 (2015)
  108. Alpha-Tocotrienol Prevents Oxidative Stress-Mediated Post-Translational Cleavage of Bcl-xL in Primary Hippocampal Neurons. Park HA, Mnatsakanyan N, Broman K, Davis AU, May J, Licznerski P, Crowe-White KM, Lackey KH, Jonas EA. Int J Mol Sci 21 E220 (2019)
  109. Interactions of Bax and tBid with lipid monolayers. Van Mau N, Kajava AV, Bonfils C, Martinou JC, Harricane MC. J Membr Biol 207 1-9 (2005)
  110. Tannin-rich extracts from Lannea stuhlmannii and Lannea humilis (Anacardiaceae) exhibit hepatoprotective activities in vivo via enhancement of the anti-apoptotic protein Bcl-2. Sobeh M, Mahmoud MF, Hasan RA, Abdelfattah MAO, Sabry OM, Ghareeb MA, El-Shazly AM, Wink M. Sci Rep 8 9343 (2018)
  111. The N-terminus and alpha-5, alpha-6 helices of the pro-apoptotic protein Bax, modulate functional interactions with the anti-apoptotic protein Bcl-xL. Parikh N, Koshy C, Dhayabaran V, Perumalsamy LR, Sowdhamini R, Sarin A. BMC Cell Biol 8 16 (2007)
  112. BH3-only proteins: orchestrating cell death. Fletcher JI, Huang DC. Cell Death Differ 13 1268-1271 (2006)
  113. Molecular dynamics study of small molecule inhibitors of the Bcl-2 family. Acoca S, Cui Q, Shore GC, Purisima EO. Proteins 79 2624-2636 (2011)
  114. The N Terminus of the Vaccinia Virus Protein F1L Is an Intrinsically Unstructured Region That Is Not Involved in Apoptosis Regulation. Caria S, Marshall B, Burton RL, Campbell S, Pantaki-Eimany D, Hawkins CJ, Barry M, Kvansakul M. J Biol Chem 291 14600-14608 (2016)
  115. A functional BH3 domain in an aquaporin from Leishmania infantum. Genes CM, de Lucio H, González VM, Sánchez-Murcia PA, Rico E, Gago F, Fasel N, Jiménez-Ruiz A. Cell Death Discov 2 16043 (2016)
  116. Design, synthesis, and activity evaluation of broad-spectrum small-molecule inhibitors of anti-apoptotic Bcl-2 family proteins: characteristics of broad-spectrum protein binding and its effects on anti-tumor activity. Zheng CH, Yang H, Zhang M, Lu SH, Shi D, Wang J, Chen XH, Ren XH, Liu J, Lv JG, Zhu J, Zhou YJ. Bioorg Med Chem Lett 22 39-44 (2012)
  117. Loss of Bak enhances lymphocytosis but does not ameliorate thrombocytopaenia in BCL-2 transgenic mice. Vandenberg CJ, Josefsson EC, Campbell KJ, James C, Lawlor KE, Kile BT, Cory S. Cell Death Differ 21 676-684 (2014)
  118. Bcl2-interacting killer CpG methylation in multiple myeloma: a potential predictor of relapsed/refractory disease with therapeutic implications. Hatzimichael E, Dasoula A, Kounnis V, Benetatos L, Lo Nigro C, Lattanzio L, Papoudou-Bai A, Dranitsaris G, Briasoulis E, Crook T. Leuk Lymphoma 53 1709-1713 (2012)
  119. Co-crystallization with conformation-specific designed ankyrin repeat proteins explains the conformational flexibility of BCL-W. Schilling J, Schöppe J, Sauer E, Plückthun A. J Mol Biol 426 2346-2362 (2014)
  120. Complex disruption effect of natural polyphenols on Bcl-2-Bax: molecular dynamics simulation and essential dynamics study. Verma S, Singh A, Mishra A. J Biomol Struct Dyn 33 1094-1106 (2015)
  121. Cytokine mediated suppression of TF-1 apoptosis requires PI3K activation and inhibition of Bim expression. Rosas M, Birkenkamp KU, Lammers JW, Koenderman L, Coffer PJ. FEBS Lett 579 191-198 (2005)
  122. A conserved hydrophobic core at Bcl-xL mediates its structural stability and binding affinity with BH3-domain peptide of pro-apoptotic protein. Feng Y, Zhang L, Hu T, Shen X, Ding J, Chen K, Jiang H, Liu D. Arch Biochem Biophys 484 46-54 (2009)
  123. Construction of a three-dimensional pharmacophore for Bcl-2 inhibitors by flexible docking and the multiple copy simultaneous search method. Zheng CH, Zhou YJ, Zhu J, Ji HT, Chen J, Li YW, Sheng CQ, Lu JG, Jiang JH, Tang H, Song YL. Bioorg Med Chem 15 6407-6417 (2007)
  124. EGL-1 BH3 mutants reveal the importance of protein levels and target affinity for cell-killing potency. Lee EF, Chen L, Yang H, Colman PM, Huang DC, Fairlie WD. Cell Death Differ 15 1609-1618 (2008)
  125. Molecular dynamics study of segment peptides of Bax, Bim, and Mcl-1 BH3 domain of the apoptosis-regulating proteins bound to the anti-apoptotic Mcl-1 protein. Zhao RN, Fan S, Han JG, Liu G. J Biomol Struct Dyn 33 1067-1081 (2015)
  126. Natural polyphenolic inhibitors against the antiapoptotic BCL-2. Verma S, Singh A, Kumari A, Tyagi C, Goyal S, Jamal S, Grover A. J Recept Signal Transduct Res 37 391-400 (2017)
  127. A structural investigation of NRZ mediated apoptosis regulation in zebrafish. Suraweera CD, Caria S, Järvå M, Hinds MG, Kvansakul M. Cell Death Dis 9 967 (2018)
  128. BcL-xL conformational changes upon fragment binding revealed by NMR. Aguirre C, Ten Brink T, Walker O, Guillière F, Davesne D, Krimm I. PLoS One 8 e64400 (2013)
  129. Bcl-xL forms two distinct homodimers at non-ionic detergents: implications in the dimerization of Bcl-2 family proteins. Feng Y, Lin Z, Shen X, Chen K, Jiang H, Liu D. J Biochem 143 243-252 (2008)
  130. Dynamics of Bcl-xL in water and membrane: molecular simulations. Maity A, Yadav S, Verma CS, Ghosh Dastidar S. PLoS One 8 e76837 (2013)
  131. NMR studies of interactions between Bax and BH3 domain-containing peptides in the absence and presence of CHAPS. Yao S, Westphal D, Babon JJ, Thompson GV, Robin AY, Adams JM, Colman PM, Czabotar PE. Arch Biochem Biophys 545 33-43 (2014)
  132. The BH3-only protein Puma plays an essential role in p53-mediated apoptosis of chronic lymphocytic leukemia cells. Zhu HJ, Liu L, Fan L, Zhang LN, Fang C, Zou ZJ, Li JY, Xu W. Leuk Lymphoma 54 2712-2719 (2013)
  133. Rational design and structure-activity relationship studies of quercetin-amino acid hybrids targeting the anti-apoptotic protein Bcl-xL. Kellici TF, Chatziathanasiadou MV, Lee MS, Sayyad N, Geromichalou EG, Vrettos EI, Tsiailanis AD, Chi SW, Geromichalos GD, Mavromoustakos T, Tzakos AG. Org Biomol Chem 15 7956-7976 (2017)
  134. Synthesis and biological activities of polyquinoline derivatives: new Bcl-2 family protein modulators. Saugues E, Debaud AL, Anizon F, Bonnefoy N, Moreau P. Eur J Med Chem 57 112-125 (2012)
  135. Antiapoptotic Bcl-2 homolog CED-9 in Caenorhabditis elegans: dynamics of BH3 and CED-4 binding regions and comparison with mammalian antiapoptotic Bcl-2 proteins. Modi V, Sankararamakrishnan R. Proteins 82 1035-1047 (2014)
  136. Biophysical basis of the promiscuous binding of B-cell lymphoma protein 2 apoptotic repressor to BH3 ligands. Bhat V, Olenick MB, Schuchardt BJ, Mikles DC, McDonald CB, Farooq A. J Mol Recognit 26 501-513 (2013)
  137. Cryptic-site binding mechanism of medium-sized Bcl-xL inhibiting compounds elucidated by McMD-based dynamic docking simulations. Bekker GJ, Fukuda I, Higo J, Fukunishi Y, Kamiya N. Sci Rep 11 5046 (2021)
  138. DMFC (3,5-dimethyl-7H-furo[3,2-g]chromen-7-one) regulates Bim to trigger Bax and Bak activation to suppress drug-resistant human hepatoma. Xiang J, Wang Z, Liu Q, Li X, Sun J, Fung KP, Liu F. Apoptosis 22 381-392 (2017)
  139. Deletion mutational analysis of BMRP, a pro-apoptotic protein that binds to Bcl-2. Malladi S, Parsa KV, Bhupathi D, Rodríguez-González MA, Conde JA, Anumula P, Romo HE, Claunch CJ, Ballestero RP, González-García M. Mol Cell Biochem 351 217-232 (2011)
  140. Phosphorylation and down-regulation of Bim by muscarinic cholinergic receptor activation via protein kinase C. Styles NA, Zhu W, Li X. Neurochem Int 47 519-527 (2005)
  141. Photocrosslinking Approach to Investigate Protein Interactions in the BCL-2 Family. Lin J, Johnson AE, Zhang Z. Methods Mol Biol 1877 131-149 (2019)
  142. Structural biology of the macroautophagy machinery. Chew LH, Yip CK. Front Biol (Beijing) 9 18-34 (2014)
  143. Construction of a Stapled α-Helix Peptide Library Displayed on Phage for the Screening of Galectin-3-Binding Peptide Ligands. Anananuchatkul T, Chang IV, Miki T, Tsutsumi H, Mihara H. ACS Omega 5 5666-5674 (2020)
  144. Improving the therapeutic potential of endostatin by fusing it with the BAX BH3 death domain. Chura-Chambi RM, Bellini MH, Jacysyn JF, Andrade LN, Medina LP, Prieto-da-Silva AR, Amarante-Mendes GP, Morganti L. Cell Death Dis 5 e1371 (2014)
  145. Pro-death activity of a BH3 domain in an aquaporin from the protozoan parasite Leishmania. Genes CM, de Lucio H, Sánchez-Murcia PA, Gago F, Jiménez-Ruiz A. Cell Death Dis 7 e2318 (2016)
  146. Proteome-Wide Identification of On- and Off-Targets of Bcl-2 Inhibitors in Native Biological Systems by Using Affinity-Based Probes (AfBPs). Wang Z, Guo Z, Song T, Zhang X, He N, Liu P, Wang P, Zhang Z. Chembiochem 19 2312-2320 (2018)
  147. Rise of the selective inhibitors of anti-apoptotic Bcl-2 family proteins. Han L, Wang R. ChemMedChem 8 1437-1440 (2013)
  148. Small-molecule inhibitors of Bcl-2 family proteins are able to induce tumor regression in a mouse model of pre-B-cell acute lymphocytic lymphoma. Turner BC, Eves T, Refaeli Y. DNA Cell Biol 27 133-142 (2008)
  149. A new assay based on fluorescence resonance energy transfer to determine the binding affinity of Bcl-xL inhibitors. Feng Y, Shen X, Chen K, Jiang H, Liu D. Biosci Biotechnol Biochem 72 1936-1939 (2008)
  150. Binding affinity of pro-apoptotic BH3 peptides for the anti-apoptotic Mcl-1 and A1 proteins: Molecular dynamics simulations of Mcl-1 and A1 in complex with six different BH3 peptides. Modi V, Sankararamakrishnan R. J Mol Graph Model 73 115-128 (2017)
  151. InDeep: 3D fully convolutional neural networks to assist in silico drug design on protein-protein interactions. Mallet V, Checa Ruano L, Moine Franel A, Nilges M, Druart K, Bouvier G, Sperandio O. Bioinformatics 38 1261-1268 (2022)
  152. Synthesis of conformationally constrained benzoylureas as BH3-mimetics. Brady RM, Hatzis E, Connor T, Street IP, Baell JB, Lessene G. Org Biomol Chem 10 5230-5237 (2012)
  153. Bcl-xL Is Required by Primary Hippocampal Neurons during Development to Support Local Energy Metabolism at Neurites. Jansen J, Scott M, Amjad E, Stumpf A, Lackey KH, Caldwell KA, Park HA. Biology (Basel) 10 772 (2021)
  154. Diversity in the intrinsic apoptosis pathway of nematodes. Young ND, Harris TJ, Evangelista M, Tran S, Wouters MA, Soares da Costa TP, Kershaw NJ, Gasser RB, Smith BJ, Lee EF, Fairlie WD. Commun Biol 3 478 (2020)
  155. Alpha-tocotrienol enhances arborization of primary hippocampal neurons via upregulation of Bcl-xL. Park HA, Crowe-White KM, Ciesla L, Scott M, Bannerman S, Davis AU, Adhikari B, Burnett G, Broman K, Ferdous KA, Lackey KH, Licznerski P, Jonas EA. Nutr Res 101 31-42 (2022)
  156. Mutual induced-fit mechanism drives binding between intrinsically disordered Bim and cryptic binding site of Bcl-xL. Bekker GJ, Araki M, Oshima K, Okuno Y, Kamiya N. Commun Biol 6 349 (2023)
  157. Structural basis for proapoptotic activation of Bak by the noncanonical BH3-only protein Pxt1. Lim D, Choe SH, Jin S, Lee S, Kim Y, Shin HC, Choi JS, Oh DB, Kim SJ, Seo J, Ku B. PLoS Biol 21 e3002156 (2023)
  158. Yeast Bax Inhibitor (Bxi1p/Ybh3p) Is Not Required for the Action of Bcl-2 Family Proteins on Cell Viability. Mentel M, Illová M, Krajčovičová V, Kroupová G, Mannová Z, Chovančíková P, Polčic P. Int J Mol Sci 24 12011 (2023)