1plf Citations

The three-dimensional structure of bovine platelet factor 4 at 3.0-A resolution.

J Biol Chem 264 2092-9 (1989)
Cited: 89 times
EuropePMC logo PMID: 2914894

Abstract

Platelet factor 4 (PF4), which is released by platelets during coagulation, binds very tightly to negatively charged oligosaccharides such as heparin. To date, six other proteins are known that are homologous in sequence with PF4 but have quite different functions. The structure of a tetramer of bovine PF4 complexed with one Ni(CN)4(2-) molecule has been determined at 3.0 A resolution and refined to an R factor of 0.28. The current model contains residues 24-85, no solvent, and one overall temperature factor. Residues 1-13, which carried an oligosaccharide chain, were removed with elastase to induce crystallization; residues 14-23 and presumably 86-88 are disordered in the electron density map. Because no heavy atom derivative was isomorphous with the native crystals, the complex of PF4 with one Ni(CN)4(2-) molecule was solved using a single, highly isomorphous Pt(CN)4(2-) derivative and the iterative, single isomorphous replacement method. The secondary structure of the PF4 subunit, from amino- to carboxyl-terminal end, consists of an extended loop, three strands of antiparallel beta-sheet arranged in a Greek key, and one alpha-helix. The tetramer contains two extended, six-stranded beta-sheets, each formed by two subunits, which are arranged back-to-back to form a "beta-bilayer" structure with two buried salt bridges sandwiched in the middle. The carboxyl-terminal alpha-helices, which contain lysine residues that are thought to be intimately involved in binding heparin, are arranged as antiparallel pairs on the surface of each extended beta-sheet.

Articles - 1plf mentioned but not cited (2)

  1. Nanoscale dewetting transition in protein complex folding. Hua L, Huang X, Liu P, Zhou R, Berne BJ. J Phys Chem B 111 9069-9077 (2007)
  2. Computational protein design: validation and possible relevance as a tool for homology searching and fold recognition. Schmidt Am Busch M, Sedano A, Simonson T. PLoS One 5 e10410 (2010)


Reviews citing this publication (14)

  1. Human chemokines: an update. Baggiolini M, Dewald B, Moser B. Annu. Rev. Immunol. 15 675-705 (1997)
  2. Biology of the RANTES/SIS cytokine family. Schall TJ. Cytokine 3 165-183 (1991)
  3. Interleukin 8 and MCAF: novel inflammatory cytokines inducible by IL 1 and TNF. Matsushima K, Oppenheim JJ. Cytokine 1 2-13 (1989)
  4. The interleukin-8-receptor family: from chemokines to malaria. Horuk R. Immunol. Today 15 169-174 (1994)
  5. Common structural motifs in small proteins and domains. Efimov AV. FEBS Lett. 355 213-219 (1994)
  6. Mechanisms of Regulation of the Chemokine-Receptor Network. Stone MJ, Hayward JA, Huang C, E Huma Z, Sanchez J. Int J Mol Sci 18 (2017)
  7. Roles of platelet factor 4 in hematopoiesis and angiogenesis. Maurer AM, Zhou B, Han ZC. Growth Factors 24 242-252 (2006)
  8. Super-secondary structures involving triple-strand beta-sheets. Efimov AV. FEBS Lett. 334 253-256 (1993)
  9. Restoration of the normal coagulation process: advances in therapies to antagonize heparin. D'Ambra M. J. Cardiovasc. Pharmacol. 27 Suppl 1 S58-62 (1996)
  10. Chemokines from a Structural Perspective. Miller MC, Mayo KH. Int J Mol Sci 18 (2017)
  11. Interferons alpha/beta and their receptors: place in the hierarchy of cytokines. Zav'Yalov VP, Zav'Yalova GA. APMIS 105 161-186 (1997)
  12. Structure of class-I MHC molecules: HLA-B27 and disease. Parham P. Scand J Rheumatol Suppl 87 11-20 (1990)
  13. Atomic features of an autoantigen in heparin-induced thrombocytopenia (HIT). Cai Z, Zhu Z, Greene MI, Cines DB. Autoimmun Rev 15 752-755 (2016)
  14. Heterodimers Are an Integral Component of Chemokine Signaling Repertoire. Kaffashi K, Dréau D, Nesmelova IV. Int J Mol Sci 24 11639 (2023)

Articles citing this publication (73)

  1. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. Saper MA, Bjorkman PJ, Wiley DC. J. Mol. Biol. 219 277-319 (1991)
  2. Antibodies from patients with heparin-induced thrombocytopenia/thrombosis are specific for platelet factor 4 complexed with heparin or bound to endothelial cells. Visentin GP, Ford SE, Scott JP, Aster RH. J. Clin. Invest. 93 81-88 (1994)
  3. Binding to heparan sulfate or heparin enhances neutrophil responses to interleukin 8. Webb LM, Ehrengruber MU, Clark-Lewis I, Baggiolini M, Rot A. Proc. Natl. Acad. Sci. U.S.A. 90 7158-7162 (1993)
  4. Cloning and characterization of cDNAs for murine macrophage inflammatory protein 2 and its human homologues. Tekamp-Olson P, Gallegos C, Bauer D, McClain J, Sherry B, Fabre M, van Deventer S, Cerami A. J. Exp. Med. 172 911-919 (1990)
  5. The three-dimensional structure of the bacterial virus MS2. Valegård K, Liljas L, Fridborg K, Unge T. Nature 345 36-41 (1990)
  6. Crystal structure of interleukin 8: symbiosis of NMR and crystallography. Baldwin ET, Weber IT, St Charles R, Xuan JC, Appella E, Yamada M, Matsushima K, Edwards BF, Clore GM, Gronenborn AM. Proc. Natl. Acad. Sci. U.S.A. 88 502-506 (1991)
  7. Differential binding of chemokines to glycosaminoglycan subpopulations. Witt DP, Lander AD. Curr. Biol. 4 394-400 (1994)
  8. Structure of the regulatory complex of Escherichia coli IIIGlc with glycerol kinase. Hurley JH, Faber HR, Worthylake D, Meadow ND, Roseman S, Pettigrew DW, Remington SJ. Science 259 673-677 (1993)
  9. A hypothetical model for the peptide binding domain of hsp70 based on the peptide binding domain of HLA. Rippmann F, Taylor WR, Rothbard JB, Green NM. EMBO J. 10 1053-1059 (1991)
  10. Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Clark-Lewis I, Dewald B, Geiser T, Moser B, Baggiolini M. Proc. Natl. Acad. Sci. U.S.A. 90 3574-3577 (1993)
  11. A dominant negative inhibitor indicates that monocyte chemoattractant protein 1 functions as a dimer. Zhang Y, Rollins BJ. Mol. Cell. Biol. 15 4851-4855 (1995)
  12. Structural and functional properties of region II-plus of the malaria circumsporozoite protein. Sinnis P, Clavijo P, Fenyö D, Chait BT, Cerami C, Nussenzweig V. J. Exp. Med. 180 297-306 (1994)
  13. Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, and RANTES. Characterization of active disaggregated chemokine variants. Czaplewski LG, McKeating J, Craven CJ, Higgins LD, Appay V, Brown A, Dudgeon T, Howard LA, Meyers T, Owen J, Palan SR, Tan P, Wilson G, Woods NR, Heyworth CM, Lord BI, Brotherton D, Christison R, Craig S, Cribbes S, Edwards RM, Evans SJ, Gilbert R, Morgan P, Randle E, Schofield N, Varley PG, Fisher J, Waltho JP, Hunter MG. J. Biol. Chem. 274 16077-16084 (1999)
  14. Role of the GRO family of chemokines in monocyte adhesion to MM-LDL-stimulated endothelium. Schwartz D, Andalibi A, Chaverri-Almada L, Berliner JA, Kirchgessner T, Fang ZT, Tekamp-Olson P, Lusis AJ, Gallegos C, Fogelman AM. J. Clin. Invest. 94 1968-1973 (1994)
  15. The structure of MCP-1 in two crystal forms provides a rare example of variable quaternary interactions. Lubkowski J, Bujacz G, Boqué L, Domaille PJ, Handel TM, Wlodawer A. Nat. Struct. Biol. 4 64-69 (1997)
  16. Heparin is not required for detection of antibodies associated with heparin-induced thrombocytopenia/thrombosis. Visentin GP, Moghaddam M, Beery SE, McFarland JG, Aster RH. J. Lab. Clin. Med. 138 22-31 (2001)
  17. A potent inhibitor of endothelial cell proliferation is generated by proteolytic cleavage of the chemokine platelet factor 4. Gupta SK, Hassel T, Singh JP. Proc. Natl. Acad. Sci. U.S.A. 92 7799-7803 (1995)
  18. gro-beta, a -C-X-C- chemokine, is an angiogenesis inhibitor that suppresses the growth of Lewis lung carcinoma in mice. Cao Y, Chen C, Weatherbee JA, Tsang M, Folkman J. J. Exp. Med. 182 2069-2077 (1995)
  19. The human cytokine I-309 is a monocyte chemoattractant. Miller MD, Krangel MS. Proc. Natl. Acad. Sci. U.S.A. 89 2950-2954 (1992)
  20. Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level. Nesmelova IV, Sham Y, Dudek AZ, van Eijk LI, Wu G, Slungaard A, Mortari F, Griffioen AW, Mayo KH. J. Biol. Chem. 280 4948-4958 (2005)
  21. Identification of a glycosaminoglycan-binding site in chemokine macrophage inflammatory protein-1alpha. Koopmann W, Krangel MS. J. Biol. Chem. 272 10103-10109 (1997)
  22. Angiostatic and chemotactic activities of the CXC chemokine CXCL4L1 (platelet factor-4 variant) are mediated by CXCR3. Struyf S, Salogni L, Burdick MD, Vandercappellen J, Gouwy M, Noppen S, Proost P, Opdenakker G, Parmentier M, Gerard C, Sozzani S, Strieter RM, Van Damme J. Blood 117 480-488 (2011)
  23. Mapping the binding surface of interleukin-8 complexed with an N-terminal fragment of the type 1 human interleukin-8 receptor. Clubb RT, Omichinski JG, Clore GM, Gronenborn AM. FEBS Lett. 338 93-97 (1994)
  24. A detailed consideration of a principal domain of vertebrate fibrinogen and its relatives. Doolittle RF. Protein Sci. 1 1563-1577 (1992)
  25. A recipe for designing water-soluble, beta-sheet-forming peptides. Mayo KH, Ilyina E, Park H. Protein Sci. 5 1301-1315 (1996)
  26. Heparin binding to platelet factor-4. An NMR and site-directed mutagenesis study: arginine residues are crucial for binding. Mayo KH, Ilyina E, Roongta V, Dundas M, Joseph J, Lai CK, Maione T, Daly TJ. Biochem. J. 312 ( Pt 2) 357-365 (1995)
  27. A model of the platelet factor 4 complex with heparin. Stuckey JA, St Charles R, Edwards BF. Proteins 14 277-287 (1992)
  28. Cell adhesion to a motif shared by the malaria circumsporozoite protein and thrombospondin is mediated by its glycosaminoglycan-binding region and not by CSVTCG. Gantt SM, Clavijo P, Bai X, Esko JD, Sinnis P. J. Biol. Chem. 272 19205-19213 (1997)
  29. The crystal structure of recombinant human neutrophil-activating peptide-2 (M6L) at 1.9-A resolution. Malkowski MG, Wu JY, Lazar JB, Johnson PH, Edwards BF. J. Biol. Chem. 270 7077-7087 (1995)
  30. CXC and CC chemokines form mixed heterodimers: association free energies from molecular dynamics simulations and experimental correlations. Nesmelova IV, Sham Y, Gao J, Mayo KH. J. Biol. Chem. 283 24155-24166 (2008)
  31. Characterisation of the conformational changes in platelet factor 4 induced by polyanions: towards in vitro prediction of antigenicity. Brandt S, Krauel K, Gottschalk KE, Renné T, Helm CA, Greinacher A, Block S. Thromb. Haemost. 112 53-64 (2014)
  32. Elucidating the structural chemistry of glycosaminoglycan recognition by protein C inhibitor. Kuhn LA, Griffin JH, Fisher CL, Greengard JS, Bouma BN, España F, Tainer JA. Proc. Natl. Acad. Sci. U.S.A. 87 8506-8510 (1990)
  33. Inhibition of human secretory class II phospholipase A2 by heparin. Dua R, Cho W. Eur. J. Biochem. 221 481-490 (1994)
  34. Monomeric solution structure of the prototypical 'C' chemokine lymphotactin. Kuloglu ES, McCaslin DR, Kitabwalla M, Pauza CD, Markley JL, Volkman BF. Biochemistry 40 12486-12496 (2001)
  35. An automated method for modeling proteins on known templates using distance geometry. Srinivasan S, March CJ, Sudarsanam S. Protein Sci. 2 277-289 (1993)
  36. Importance of specific amino acids in protein binding sites for heparin and heparan sulfate. Caldwell EE, Nadkarni VD, Fromm JR, Linhardt RJ, Weiler JM. Int. J. Biochem. Cell Biol. 28 203-216 (1996)
  37. Functional and receptor binding characterization of recombinant murine macrophage inflammatory protein 2: sequence analysis and mutagenesis identify receptor binding epitopes. Jerva LF, Sullivan G, Lolis E. Protein Sci. 6 1643-1652 (1997)
  38. Elucidating the structural mechanisms for biological activity of the chemokine family. Baysal C, Atilgan AR. Proteins 43 150-160 (2001)
  39. Site-directed mutagenesis of monocyte chemoattractant protein-1 identifies two regions of the polypeptide essential for biological activity. Beall CJ, Mahajan S, Kuhn DE, Kolattukudy PE. Biochem. J. 313 ( Pt 2) 633-640 (1996)
  40. A model of GAG/MIP-2/CXCR2 interfaces and its functional effects. Rajasekaran D, Keeler C, Syed MA, Jones MC, Harrison JK, Wu D, Bhandari V, Hodsdon ME, Lolis EJ. Biochemistry 51 5642-5654 (2012)
  41. Immunoregulatory activity of peptides related to platelet factor 4. Zucker MB, Katz IR, Thorbecke GJ, Milot DC, Holt J. Proc. Natl. Acad. Sci. U.S.A. 86 7571-7574 (1989)
  42. Analysis of hydrophobicity in the alpha and beta chemokine families and its relevance to dimerization. Covell DG, Smythers GW, Gronenborn AM, Clore GM. Protein Sci. 3 2064-2072 (1994)
  43. The amino-terminal residues in the crystal structure of connective tissue activating peptide-III (des10) block the ELR chemotactic sequence. Malkowski MG, Lazar JB, Johnson PH, Edwards BF. J. Mol. Biol. 266 367-380 (1997)
  44. Structure and bioactivity of recombinant human CTAP-III and NAP-2. Proudfoot AE, Peitsch MC, Power CA, Allet B, Mermod JJ, Bacon K, Wells TN. J Protein Chem 16 37-49 (1997)
  45. Biological activity of the growth factor-induced cytokine N51: structure-function analysis using N51/Interleukin-8 chimeric molecules. Heinrich JN, O'Rourke EC, Chen L, Gray H, Dorfman KS, Bravo R. Mol. Cell. Biol. 14 2849-2861 (1994)
  46. Platelet factor 4 efficiently reverses heparin anticoagulation in the rat without adverse effects of heparin-protamine complexes. Cook JJ, Niewiarowski S, Yan Z, Schaffer L, Lu W, Stewart GJ, Mosser DM, Myers JA, Maione TE. Circulation 85 1102-1109 (1992)
  47. Protein design on computers. Five new proteins: Shpilka, Grendel, Fingerclasp, Leather, and Aida. Sander C, Vriend G, Bazan F, Horovitz A, Nakamura H, Ribas L, Finkelstein AV, Lockhart A, Merkl R, Perry LJ. Proteins 12 105-110 (1992)
  48. A simple atomic-level hydrophobicity scale reveals protein interfacial structure. Kapcha LH, Rossky PJ. J. Mol. Biol. 426 484-498 (2014)
  49. Multiple native-like conformations trapped via self-association-induced hydrophobic collapse of the 33-residue beta-sheet domain from platelet factor 4. Ilyina E, Mayo KH. Biochem. J. 306 ( Pt 2) 407-419 (1995)
  50. NMR structure and dynamics of monomeric neutrophil-activating peptide 2. Young H, Roongta V, Daly TJ, Mayo KH. Biochem. J. 338 ( Pt 3) 591-598 (1999)
  51. Secondary structure of neutrophil-activating peptide-2 determined by 1H-nuclear magnetic resonance spectroscopy. Mayo KH, Yang Y, Daly TJ, Barry JK, La Rosa GJ. Biochem. J. 304 ( Pt 2) 371-376 (1994)
  52. Structural change and receptor binding in a chemokine mutant with a rearranged disulfide: X-ray structure of E38C/C50AIL-8 at 2 A resolution. Eigenbrot C, Lowman HB, Chee L, Artis DR. Proteins 27 556-566 (1997)
  53. 1H assignment and secondary structure determination of human melanoma growth stimulating activity (MGSA) by NMR spectroscopy. Fairbrother WJ, Reilly D, Colby T, Horuk R. FEBS Lett. 330 302-306 (1993)
  54. A novel molecular variant of the neutrophil-activating peptide NAP-2 with enhanced biological activity is truncated at the C-terminus: identification by antibodies with defined epitope specificity. Brandt E, Petersen F, Flad HD. Mol. Immunol. 30 979-991 (1993)
  55. Crystal structure of viral macrophage inflammatory protein I encoded by Kaposi's sarcoma-associated herpesvirus at 1.7A. Luz JG, Yu M, Su Y, Wu Z, Zhou Z, Sun R, Wilson IA. J. Mol. Biol. 352 1019-1028 (2005)
  56. Engineering Metamorphic Chemokine Lymphotactin/XCL1 into the GAG-Binding, HIV-Inhibitory Dimer Conformation. Fox JC, Tyler RC, Guzzo C, Tuinstra RL, Peterson FC, Lusso P, Volkman BF. ACS Chem. Biol. 10 2580-2588 (2015)
  57. Limited and defined truncation at the C terminus enhances receptor binding and degranulation activity of the neutrophil-activating peptide 2 (NAP-2). Comparison of native and recombinant NAP-2 variants. Ehlert JE, Petersen F, Kubbutat MH, Gerdes J, Flad HD, Brandt E. J. Biol. Chem. 270 6338-6344 (1995)
  58. CCR2 and CCR5 receptor-binding properties of herpesvirus-8 vMIP-II based on sequence analysis and its solution structure. Shao W, Fernandez E, Sachpatzidis A, Wilken J, Thompson DA, Schweitzer BI, Lolis E. Eur. J. Biochem. 268 2948-2959 (2001)
  59. Chemical modification of a variant of human MIP-1alpha; implications for dimer structure. Ashfield JT, Meyers T, Lowne D, Varley PG, Arnold JR, Tan P, Yang JC, Czaplewski LG, Dudgeon T, Fisher J. Protein Sci. 9 2047-2053 (2000)
  60. Canine CXCL7 and its functional expression in dendritic cells undergoing maturation. Wang YS, Liao KW, Chen MF, Huang YC, Chu RM, Chi KH. Vet. Immunol. Immunopathol. 135 128-136 (2010)
  61. Chemokine CXCL7 Heterodimers: Structural Insights, CXCR2 Receptor Function, and Glycosaminoglycan Interactions. Brown AJ, Joseph PR, Sawant KV, Rajarathnam K. Int J Mol Sci 18 (2017)
  62. Human recombinant interferon-inducible protein-10: intact disulfide bridges are not required for inhibition of hematopoietic progenitors and chemotaxis of T lymphocytes and monocytes. Crow M, Taub DD, Cooper S, Broxmeyer HE, Sarris AH. J. Hematother. Stem Cell Res. 10 147-156 (2001)
  63. Expression of synthetic genes encoding fused proteins under tight control of modified regulatory regions of the colicin operon. Waleh NS, Sohel I, Lazar JB, Hudson DV, Sze P, Underhill PA, Johnson PH. Gene 117 7-14 (1992)
  64. Platelet Factor 4 Interactions with Short Heparin Oligomers: Implications for Folding and Assembly. Niu C, Yang Y, Huynh A, Nazy I, Kaltashov IA. Biophys J 119 1371-1379 (2020)
  65. The complete primary structure of glycosylated porcine platelet factor 4. Proudfoot AE, Magnenat E, Haley TM, Maione TE, Wells TN. Eur. J. Biochem. 228 658-664 (1995)
  66. The three dimensional structure of rat cytokine CINC/Gro in solution by homonuclear 3D NMR. Hanzawa H, Haruyama H, Watanabe K, Tsurufuji S. FEBS Lett. 354 207-212 (1994)
  67. Carboxyterminal peptides with the dimeric form of PF4 retain the inhibitory effect on the growth of human megakaryoblastic cell lines. Lebeurier I, Raclet L, Amiral J, Caen JP, Han ZC. J. Lab. Clin. Med. 127 179-185 (1996)
  68. Comparative studies of the interaction of human and bovine platelet factor 4 with heparin using histidine NMR resonances as spectroscopic probes. Talpas CJ, Lee L. J. Protein Chem. 12 303-309 (1993)
  69. Conservation of a polyanion binding site in mammalian and avian CD4. Parish CR, Warren HS. Immunology 74 191-196 (1991)
  70. Identification of amino acids involved in the binding of hMIP-1 alpha to CC-CKR1, a MIP-1 alpha receptor found on neutrophils. Crisman JM, Elder PJ, Wilkie NM, Kolattukudy PE. Mol. Cell. Biochem. 195 245-256 (1999)
  71. Preliminary crystallographic analysis of murine macrophage inflammatory protein 2. Lolis E, Sweet RM, Cousens LS, Tekamp-Olson P, Sherry BA, Cerami A. J. Mol. Biol. 225 913-915 (1992)
  72. CXCL17 binds efficaciously to glycosaminoglycans with the potential to modulate chemokine signaling. Giblin SP, Ranawana S, Hassibi S, Birchenough HL, Mincham KT, Snelgrove RJ, Tsuchiya T, Kanegasaki S, Dyer D, Pease JE. Front Immunol 14 1254697 (2023)
  73. Quarternary structure amplification of protein folding differences observed in 'native' platelet factor-4. Barker S, Mayo KH. FEBS Lett. 357 301-304 (1995)


Related citations provided by authors (1)

  1. X-Ray Diffraction Analysis of Crystals of Bovine Platelet Factor 4. Charles RSt, Ciaglowski RE, Walz D, Edwards BFP J. Mol. Biol. 176 421- (1984)