1pk0 Citations

Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection.

Proc Natl Acad Sci U S A 101 3242-7 (2004)
Cited: 81 times
EuropePMC logo PMID: 14978283

Abstract

Edema factor (EF), a key virulence factor in anthrax pathogenesis, has calmodulin (CaM)-activated adenylyl cyclase activity. We have found that adefovir dipivoxil, a drug approved to treat chronic infection of hepatitis B virus, effectively inhibits EF-induced cAMP accumulation and changes in cytokine production in mouse primary macrophages. Adefovir diphosphate (PMEApp), the active cellular metabolite of adefovir dipivoxil, inhibits the adenylyl cyclase activity of EF in vitro with high affinity (K(i) = 27 nM). A crystal structure of EF-CaM-PMEApp reveals that the catalytic site of EF forms better van der Waals contacts and more hydrogen bonds with PMEApp than with its endogenous substrate, ATP, providing an explanation for the approximately 10,000-fold higher affinity EF-CaM has for PMEApp versus ATP. Adefovir dipivoxil is a clinically approved drug that can block the action of an anthrax toxin. It can be used to address the role of EF in anthrax pathogenesis.

Reviews - 1pk0 mentioned but not cited (1)

Articles - 1pk0 mentioned but not cited (3)

  1. Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. Guo Q, Shen Y, Lee YS, Gibbs CS, Mrksich M, Tang WJ. EMBO J 24 3190-3201 (2005)
  2. Selective inhibition of anthrax edema factor by adefovir, a drug for chronic hepatitis B virus infection. Shen Y, Zhukovskaya NL, Zimmer MI, Soelaiman S, Bergson P, Wang CR, Gibbs CS, Tang WJ. Proc Natl Acad Sci U S A 101 3242-3247 (2004)
  3. Analyzing In Silico the Relationship Between the Activation of the Edema Factor and Its Interaction With Calmodulin. Pitard I, Monet D, Goossens PL, Blondel A, Malliavin TE. Front Mol Biosci 7 586544 (2020)


Reviews citing this publication (31)

  1. Acyclic nucleoside phosphonates: a key class of antiviral drugs. De Clercq E, Holý A. Nat Rev Drug Discov 4 928-940 (2005)
  2. Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Barth H, Aktories K, Popoff MR, Stiles BG. Microbiol Mol Biol Rev 68 373-402, table of contents (2004)
  3. Antivirals and antiviral strategies. De Clercq E. Nat Rev Microbiol 2 704-720 (2004)
  4. Anthrax Pathogenesis. Moayeri M, Leppla SH, Vrentas C, Pomerantsev AP, Liu S. Annu Rev Microbiol 69 185-208 (2015)
  5. Anthrax lethal and edema toxins in anthrax pathogenesis. Liu S, Moayeri M, Leppla SH. Trends Microbiol 22 317-325 (2014)
  6. The evolving field of biodefence: therapeutic developments and diagnostics. Burnett JC, Henchal EA, Schmaljohn AL, Bavari S. Nat Rev Drug Discov 4 281-297 (2005)
  7. Antitoxins: novel strategies to target agents of bioterrorism. Rainey GJ, Young JA. Nat Rev Microbiol 2 721-726 (2004)
  8. Inhibitors of membranous adenylyl cyclases. Seifert R, Lushington GH, Mou TC, Gille A, Sprang SR. Trends Pharmacol Sci 33 64-78 (2012)
  9. Anthrax undervalued zoonosis. Fasanella A, Galante D, Garofolo G, Jones MH. Vet Microbiol 140 318-331 (2010)
  10. The adenylyl cyclase activity of anthrax edema factor. Tang WJ, Guo Q. Mol Aspects Med 30 423-430 (2009)
  11. Antibacterial drug discovery in the 21st century. Bush K. Clin Microbiol Infect 10 Suppl 4 10-17 (2004)
  12. Antiviral treatment of chronic hepatitis B virus infections: the past, the present and the future. Férir G, Kaptein S, Neyts J, De Clercq E. Rev Med Virol 18 19-34 (2008)
  13. Antibacterial drug discovery and structure-based design. Barker JJ. Drug Discov Today 11 391-404 (2006)
  14. Lethal and edema toxins in the pathogenesis of Bacillus anthracis septic shock: implications for therapy. Sherer K, Li Y, Cui X, Eichacker PQ. Am J Respir Crit Care Med 175 211-221 (2007)
  15. Bacillus anthracis: balancing innocent research with dual-use potential. Hudson MJ, Beyer W, Böhm R, Fasanella A, Garofolo G, Golinski R, Goossens PL, Hahn U, Hallis B, King A, Mock M, Montecucco C, Ozin A, Tonello F, Kaufmann SH. Int J Med Microbiol 298 345-364 (2008)
  16. Potential biological targets of Bacillus anthracis in anti-infective approaches against the threat of bioterrorism. Bouzianas DG. Expert Rev Anti Infect Ther 5 665-684 (2007)
  17. Designing inhibitors of anthrax toxin. Nestorovich EM, Bezrukov SM. Expert Opin Drug Discov 9 299-318 (2014)
  18. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis. Beierlein JM, Anderson AC. Curr Med Chem 18 5083-5094 (2011)
  19. Towards selective inhibitors of adenylyl cyclase toxin from Bordetella pertussis. Seifert R, Dove S. Trends Microbiol 20 343-351 (2012)
  20. B. anthracis associated cardiovascular dysfunction and shock: the potential contribution of both non-toxin and toxin components. Remy KE, Qiu P, Li Y, Cui X, Eichacker PQ. BMC Med 11 217 (2013)
  21. Inhibitors of Bacillus anthracis edema factor. Seifert R, Dove S. Pharmacol Ther 140 200-212 (2013)
  22. Novel approaches to the treatment of systemic anthrax. Artenstein AW, Opal SM. Clin Infect Dis 54 1148-1161 (2012)
  23. The potential contributions of lethal and edema toxins to the pathogenesis of anthrax associated shock. Hicks CW, Cui X, Sweeney DA, Li Y, Barochia A, Eichacker PQ. Toxins (Basel) 3 1185-1202 (2011)
  24. Bacillus anthracis edema factor substrate specificity: evidence for new modes of action. Göttle M, Dove S, Seifert R. Toxins (Basel) 4 505-535 (2012)
  25. New insights into the pathogenesis and treatment of anthrax toxin-induced shock. Li Y, Sherer K, Cui X, Eichacker PQ. Expert Opin Biol Ther 7 843-854 (2007)
  26. Emergence of anthrax edema toxin as a master manipulator of macrophage and B cell functions. Gnade BT, Moen ST, Chopra AK, Peterson JW, Yeager LA. Toxins (Basel) 2 1881-1897 (2010)
  27. An overview of investigational toxin-directed therapies for the adjunctive management of Bacillus anthracis infection and sepsis. Ohanjanian L, Remy KE, Li Y, Cui X, Eichacker PQ. Expert Opin Investig Drugs 24 851-865 (2015)
  28. Bacterial Nucleotidyl Cyclases Activated by Calmodulin or Actin in Host Cells: Enzyme Specificities and Cytotoxicity Mechanisms Identified to Date. Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L. Int J Mol Sci 23 6743 (2022)
  29. Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Pitard I, Malliavin TE. Toxins (Basel) 11 E369 (2019)
  30. A Review of the Efficacy of FDA-Approved B. anthracis Anti-Toxin Agents When Combined with Antibiotic or Hemodynamic Support in Infection- or Toxin-Challenged Preclinical Models. Couse Z, Cui X, Li Y, Moayeri M, Leppla S, Eichacker PQ. Toxins (Basel) 13 53 (2021)
  31. Biowarfare Pathogens. Is the Research Flavor Different Than That of Clinically Relevant Pathogens? Lee VJ. Annu Rep Med Chem 39 211-221 (2004)

Articles citing this publication (46)

  1. Bacillus anthracis edema toxin causes extensive tissue lesions and rapid lethality in mice. Firoved AM, Miller GF, Moayeri M, Kakkar R, Shen Y, Wiggins JF, McNally EM, Tang WJ, Leppla SH. Am J Pathol 167 1309-1320 (2005)
  2. Anthrax toxins suppress T lymphocyte activation by disrupting antigen receptor signaling. Paccani SR, Tonello F, Ghittoni R, Natale M, Muraro L, D'Elios MM, Tang WJ, Montecucco C, Baldari CT. J Exp Med 201 325-331 (2005)
  3. Antiinflammatory cAMP signaling and cell migration genes co-opted by the anthrax bacillus. Kim C, Wilcox-Adelman S, Sano Y, Tang WJ, Collier RJ, Park JM. Proc Natl Acad Sci U S A 105 6150-6155 (2008)
  4. Anthrax toxins inhibit immune cell chemotaxis by perturbing chemokine receptor signalling. Rossi Paccani S, Tonello F, Patrussi L, Capitani N, Simonato M, Montecucco C, Baldari CT. Cell Microbiol 9 924-929 (2007)
  5. Cytidylyl and uridylyl cyclase activity of bacillus anthracis edema factor and Bordetella pertussis CyaA. Göttle M, Dove S, Kees F, Schlossmann J, Geduhn J, König B, Shen Y, Tang WJ, Kaever V, Seifert R. Biochemistry 49 5494-5503 (2010)
  6. Use of allostery to identify inhibitors of calmodulin-induced activation of Bacillus anthracis edema factor. Laine E, Goncalves C, Karst JC, Lesnard A, Rault S, Tang WJ, Malliavin TE, Ladant D, Blondel A. Proc Natl Acad Sci U S A 107 11277-11282 (2010)
  7. Antiviral treatment of chronic hepatitis B virus (HBV) infections. De Clercq E, Férir G, Kaptein S, Neyts J. Viruses 2 1279-1305 (2010)
  8. Noninvasive imaging technologies reveal edema toxin as a key virulence factor in anthrax. Dumetz F, Jouvion G, Khun H, Glomski IJ, Corre JP, Rougeaux C, Tang WJ, Mock M, Huerre M, Goossens PL. Am J Pathol 178 2523-2535 (2011)
  9. Anthrax oedema toxin induces anthrax toxin receptor expression in monocyte-derived cells. Maldonado-Arocho FJ, Fulcher JA, Lee B, Bradley KA. Mol Microbiol 61 324-337 (2006)
  10. Molecular analysis of the interaction of Bordetella pertussis adenylyl cyclase with fluorescent nucleotides. Göttle M, Dove S, Steindel P, Shen Y, Tang WJ, Geduhn J, König B, Seifert R. Mol Pharmacol 72 526-535 (2007)
  11. Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2'(3')-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides. Taha HM, Schmidt J, Göttle M, Suryanarayana S, Shen Y, Tang WJ, Gille A, Geduhn J, König B, Dove S, Seifert R. Mol Pharmacol 75 693-703 (2009)
  12. Accounting for ligand-bound metal ions in docking small molecules on adenylyl cyclase toxins. Chen D, Menche G, Power TD, Sower L, Peterson JW, Schein CH. Proteins 67 593-605 (2007)
  13. A chemotype that inhibits three unrelated pathogenic targets: the botulinum neurotoxin serotype A light chain, P. falciparum malaria, and the Ebola filovirus. Opsenica I, Burnett JC, Gussio R, Opsenica D, Todorović N, Lanteri CA, Sciotti RJ, Gettayacamin M, Basilico N, Taramelli D, Nuss JE, Wanner L, Panchal RG, Solaja BA, Bavari S. J Med Chem 54 1157-1169 (2011)
  14. Discovery of a small molecule that inhibits the interaction of anthrax edema factor with its cellular activator, calmodulin. Lee YS, Bergson P, He WS, Mrksich M, Tang WJ. Chem Biol 11 1139-1146 (2004)
  15. Anthrax edema toxin sensitizes DBA/2J mice to lethal toxin. Firoved AM, Moayeri M, Wiggins JF, Shen Y, Tang WJ, Leppla SH. Infect Immun 75 2120-2125 (2007)
  16. Novel inhibitors of anthrax edema factor. Chen D, Misra M, Sower L, Peterson JW, Kellogg GE, Schein CH. Bioorg Med Chem 16 7225-7233 (2008)
  17. Anthrax edema toxin has cAMP-mediated stimulatory effects and high-dose lethal toxin has depressant effects in an isolated perfused rat heart model. Hicks CW, Li Y, Okugawa S, Solomon SB, Moayeri M, Leppla SH, Mohanty A, Subramanian GM, Mignone TS, Fitz Y, Cui X, Eichacker PQ. Am J Physiol Heart Circ Physiol 300 H1108-18 (2011)
  18. B. anthracis edema toxin increases cAMP levels and inhibits phenylephrine-stimulated contraction in a rat aortic ring model. Li Y, Cui X, Solomon SB, Remy K, Fitz Y, Eichacker PQ. Am J Physiol Heart Circ Physiol 305 H238-50 (2013)
  19. Structure of anthrax edema factor-calmodulin-adenosine 5'-(alpha,beta-methylene)-triphosphate complex reveals an alternative mode of ATP binding to the catalytic site. Shen Y, Guo Q, Zhukovskaya NL, Drum CL, Bohm A, Tang WJ. Biochem Biophys Res Commun 317 309-314 (2004)
  20. Anthrax edema toxin modulates PKA- and CREB-dependent signaling in two phases. Puhar A, Dal Molin F, Horvath S, Ladant D, Montecucco C. PLoS One 3 e3564 (2008)
  21. Anthrax edema factor potency depends on mode of cell entry. Hong J, Beeler J, Zhukovskaya NL, He W, Tang WJ, Rosner MR. Biochem Biophys Res Commun 335 850-857 (2005)
  22. Cationic polyamines inhibit anthrax lethal factor protease. Goldman ME, Cregar L, Nguyen D, Simo O, O'Malley S, Humphreys T. BMC Pharmacol 6 8 (2006)
  23. A fluorimetric assay for real-time monitoring of adenylyl cyclase activity based on terbium norfloxacin. Spangler CM, Spangler C, Göttle M, Shen Y, Tang WJ, Seifert R, Schäferling M. Anal Biochem 381 86-93 (2008)
  24. Symmetry complementarity-guided design of anthrax toxin inhibitors based on β-cyclodextrin: Synthesis and relative activities of face-selective functionalized polycationic clusters. Díaz-Moscoso A, Méndez-Ardoy A, Ortega-Caballero F, Benito JM, Ortiz Mellet C, Defaye J, Robinson TM, Yohannes A, Karginov VA, García Fernández JM. ChemMedChem 6 181-192 (2011)
  25. Amidate prodrugs of 9-[2-(phosphonomethoxy)ethyl]adenine as inhibitors of adenylate cyclase toxin from Bordetella pertussis. Šmídková M, Dvoráková A, Tloust'ová E, Česnek M, Janeba Z, Mertlíková-Kaiserová H. Antimicrob Agents Chemother 58 664-671 (2014)
  26. Bisamidate Prodrugs of 2-Substituted 9-[2-(Phosphonomethoxy)ethyl]adenine (PMEA, adefovir) as Selective Inhibitors of Adenylate Cyclase Toxin from Bordetella pertussis. Česnek M, Jansa P, Šmídková M, Mertlíková-Kaiserová H, Dračínský M, Brust TF, Pávek P, Trejtnar F, Watts VJ, Janeba Z. ChemMedChem 10 1351-1364 (2015)
  27. Involvement of adenosine A1 receptors in upregulation of nitric oxide by acyclic nucleotide analogues. Zídek Z, Kmonícková E, Holý A. Eur J Pharmacol 501 79-86 (2004)
  28. 4-Amino-7-chloroquinolines: probing ligand efficiency provides botulinum neurotoxin serotype A light chain inhibitors with significant antiprotozoal activity. Opsenica IM, Tot M, Gomba L, Nuss JE, Sciotti RJ, Bavari S, Burnett JC, Solaja BA. J Med Chem 56 5860-5871 (2013)
  29. Differential binding of tenofovir and adefovir to reverse transcriptase of hepatitis B virus. van Hemert FJ, Berkhout B, Zaaijer HL. PLoS One 9 e106324 (2014)
  30. Distinct Spatiotemporal Distribution of Bacterial Toxin-Produced Cellular cAMP Differentially Inhibits Opsonophagocytic Signaling. Hasan S, Rahman WU, Sebo P, Osicka R. Toxins (Basel) 11 E362 (2019)
  31. Distinct interactions of 2'- and 3'-O-(N-methyl)anthraniloyl-isomers of ATP and GTP with the adenylyl cyclase toxin of Bacillus anthracis, edema factor. Suryanarayana S, Wang JL, Richter M, Shen Y, Tang WJ, Lushington GH, Seifert R. Biochem Pharmacol 78 224-230 (2009)
  32. Effects of 39 Compounds on Calmodulin-Regulated Adenylyl Cyclases AC1 and Bacillus anthracis Edema Factor. Lübker C, Seifert R. PLoS One 10 e0124017 (2015)
  33. Design and Synthesis of Fluorescent Acyclic Nucleoside Phosphonates as Potent Inhibitors of Bacterial Adenylate Cyclases. Břehová P, Šmídková M, Skácel J, Dračínský M, Mertlíková-Kaiserová H, Velasquez MP, Watts VJ, Janeba Z. ChemMedChem 11 2534-2546 (2016)
  34. Congress The International Bacillus anthracis, B. cereus, and B. thuringiensis Conference, "Bacillus-ACT05". Keim P, Mock M, Young J, Koehler TM. J Bacteriol 188 3433-3441 (2006)
  35. Nucleobase Modified Adefovir (PMEA) Analogues as Potent and Selective Inhibitors of Adenylate Cyclases from Bordetella pertussis and Bacillus anthracis. Česnek M, Skácel J, Jansa P, Dračínský M, Šmídková M, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. ChemMedChem 13 1779-1796 (2018)
  36. Fusion protein of Delta 27LFn and EFn has the potential as a novel anthrax toxin inhibitor. Kong Y, Guo Q, Yu C, Dong D, Zhao J, Cai C, Hou L, Song X, Fu L, Xu J, Chen W. FEBS Lett 583 1257-1260 (2009)
  37. Structural basis of anthrax edema factor neutralization by a neutralizing antibody. Makiya M, Dolan M, Agulto L, Purcell R, Chen Z. Biochem Biophys Res Commun 417 324-329 (2012)
  38. Synthesis of α-Branched Acyclic Nucleoside Phosphonates as Potential Inhibitors of Bacterial Adenylate Cyclases. Frydrych J, Skácel J, Šmídková M, Mertlíková-Kaiserová H, Dračínský M, Gnanasekaran R, Lepšík M, Soto-Velasquez M, Watts VJ, Janeba Z. ChemMedChem 13 199-206 (2018)
  39. Acyclic nucleoside phosphonates with 2-aminothiazole base as inhibitors of bacterial and mammalian adenylate cyclases. Břehová P, Chaloupecká E, Česnek M, Skácel J, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. Eur J Med Chem 222 113581 (2021)
  40. Halogen-Dance-Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2-Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases. Česnek M, Šafránek M, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Hayes MP, Watts VJ, Janeba Z. ChemMedChem 17 e202100568 (2022)
  41. Rapid Discovery and Characterization of Synthetic Neutralizing Antibodies against Anthrax Edema Toxin. Farcasanu M, Wang AG, Uchański T, Bailey LJ, Yue J, Chen Z, Wu X, Kossiakoff A, Tang WJ. Biochemistry 58 2996-3004 (2019)
  42. Defensive strategies of Bacillus anthracis that promote a fatal disease. Mogridge J. Drug Discov Today Dis Mech 4 253-258 (2007)
  43. Peptide inhibitors MAP the way towards fighting anthrax pathogenesis. DeCathelineau AM, Bokoch GM. Biochem J 395 e1-3 (2006)
  44. Bacillus anthracis edema toxin inhibits hypoxic pulmonary vasoconstriction via edema factor and cAMP-mediated mechanisms in isolated perfused rat lungs. Cui X, Wang J, Li Y, Couse ZG, Risoleo TF, Moayeri M, Leppla SH, Malide D, Yu ZX, Eichacker PQ. Am J Physiol Heart Circ Physiol 320 H36-H51 (2021)
  45. Anthrax toxins--roadblocks for exocytic trafficking. Ireton K. Dev Cell 19 643-644 (2010)
  46. Bacillus anthracis Edema Toxin Increases Fractional Free Water and Sodium Reabsorption in an Isolated Perfused Rat Kidney Model. Jaswal DS, Cui X, Torabi-Parizi P, Ohanjanian L, Sampath-Kumar H, Fitz Y, Li Y, Xu W, Eichacker PQ. Infect Immun 85 e00264-17 (2017)


Related citations provided by authors (1)

  1. Physiological calcium concentrations regulate calmodulin binding and catalysis of adenylyl cyclase exotoxins.. Shen Y, Lee YS, Soelaiman S, Bergson P, Lu D, Chen A, Beckingham K, Grabarek Z, Mrksich M, Tang WJ EMBO J 21 6721-32 (2002)