1pd7 Citations

Extension of the binding motif of the Sin3 interacting domain of the Mad family proteins.

Biochemistry 43 46-54 (2004)
Cited: 26 times
EuropePMC logo PMID: 14705930

Abstract

Sin3 forms the scaffold for a multiprotein corepressor complex that silences transcription via the action of histone deacetylases. Sin3 is recruited to the DNA by several DNA binding repressors, such as the helix-loop-helix proteins of the Mad family. Here, we elaborate on the Mad-Sin3 interaction based on a binding study, solution structure, and dynamics of the PAH2 domain of mSin3 in complex to an extended Sin3 interacting domain (SID) of 24 residues of Mad1. We show that SID residues Met7 and Glu23, outside the previously defined minimal binding motif, mediate additional hydrophobic and electrostatic interactions with PAH2. On the basis of these results we propose an extended consensus sequence describing the PAH2-SID interaction specifically for the Mad family, showing that residues outside the hydrophobic core of the SID interact with PAH2 and modulate binding affinity to appropriate levels.

Articles - 1pd7 mentioned but not cited (1)

  1. Phylogenetic analysis of Harmonin homology domains. Colcombet-Cazenave B, Druart K, Bonnet C, Petit C, Spérandio O, Guglielmini J, Wolff N. BMC Bioinformatics 22 190 (2021)


Reviews citing this publication (6)

  1. Sin3: a flexible regulator of global gene expression and genome stability. Silverstein RA, Ekwall K. Curr Genet 47 1-17 (2005)
  2. Sin3: master scaffold and transcriptional corepressor. Grzenda A, Lomberk G, Zhang JS, Urrutia R. Biochim Biophys Acta 1789 443-450 (2009)
  3. Sin3: insight into its transcription regulatory functions. Kadamb R, Mittal S, Bansal N, Batra H, Saluja D. Eur J Cell Biol 92 237-246 (2013)
  4. Survey of the year 2004 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 18 431-478 (2005)
  5. Co-repressor, co-activator and general transcription factor: the many faces of the Sin3 histone deacetylase (HDAC) complex. Adams GE, Chandru A, Cowley SM. Biochem J 475 3921-3932 (2018)
  6. αα-Hub domains and intrinsically disordered proteins: A decisive combo. Bugge K, Staby L, Salladini E, Falbe-Hansen RG, Kragelund BB, Skriver K. J Biol Chem 296 100226 (2021)

Articles citing this publication (19)

  1. HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations. Swanson KA, Knoepfler PS, Huang K, Kang RS, Cowley SM, Laherty CD, Eisenman RN, Radhakrishnan I. Nat Struct Mol Biol 11 738-746 (2004)
  2. The neural repressor NRSF/REST binds the PAH1 domain of the Sin3 corepressor by using its distinct short hydrophobic helix. Nomura M, Uda-Tochio H, Murai K, Mori N, Nishimura Y. J Mol Biol 354 903-915 (2005)
  3. Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells. Farias EF, Petrie K, Leibovitch B, Murtagh J, Chornet MB, Schenk T, Zelent A, Waxman S. Proc Natl Acad Sci U S A 107 11811-11816 (2010)
  4. Conserved themes in target recognition by the PAH1 and PAH2 domains of the Sin3 transcriptional corepressor. Sahu SC, Swanson KA, Kang RS, Huang K, Brubaker K, Ratcliff K, Radhakrishnan I. J Mol Biol 375 1444-1456 (2008)
  5. FoxN3 is required for craniofacial and eye development of Xenopus laevis. Schuff M, Rössner A, Wacker SA, Donow C, Gessert S, Knöchel W. Dev Dyn 236 226-239 (2007)
  6. Molecular characterization of Sin3 PAH-domain interactor specificity and identification of PAH partners. Le Guezennec X, Vermeulen M, Stunnenberg HG. Nucleic Acids Res 34 3929-3937 (2006)
  7. Sin3 interacts with Foxk1 and regulates myogenic progenitors. Shi X, Garry DJ. Mol Cell Biochem 366 251-258 (2012)
  8. Solution structure of the mSin3A PAH2-Pf1 SID1 complex: a Mad1/Mxd1-like interaction disrupted by MRG15 in the Rpd3S/Sin3S complex. Kumar GS, Xie T, Zhang Y, Radhakrishnan I. J Mol Biol 408 987-1000 (2011)
  9. Sin3a-Tet1 interaction activates gene transcription and is required for embryonic stem cell pluripotency. Zhu F, Zhu Q, Ye D, Zhang Q, Yang Y, Guo X, Liu Z, Jiapaer Z, Wan X, Wang G, Chen W, Zhu S, Jiang C, Shi W, Kang J. Nucleic Acids Res 46 6026-6040 (2018)
  10. Structure of the 30-kDa Sin3-associated protein (SAP30) in complex with the mammalian Sin3A corepressor and its role in nucleic acid binding. Xie T, He Y, Korkeamaki H, Zhang Y, Imhoff R, Lohi O, Radhakrishnan I. J Biol Chem 286 27814-27824 (2011)
  11. Alteration of nuclear matrix-intermediate filament system and differential expression of nuclear matrix proteins during human hepatocarcinoma cell differentiation. Tang J, Niu JW, Xu DH, Li ZX, Li QF, Chen JA. World J Gastroenterol 13 2791-2797 (2007)
  12. Mxi1-SRalpha: a novel Mxi1 isoform with enhanced transcriptional repression potential. Dugast-Darzacq C, Pirity M, Blanck JK, Scherl A, Schreiber-Agus N. Oncogene 23 8887-8899 (2004)
  13. Role of structural and dynamical plasticity in Sin3: the free PAH2 domain is a folded module in mSin3B. van Ingen H, Baltussen MA, Aelen J, Vuister GW. J Mol Biol 358 485-497 (2006)
  14. Sin3A recruits Tet1 to the PAH1 domain via a highly conserved Sin3-Interaction Domain. Chandru A, Bate N, Vuister GW, Cowley SM. Sci Rep 8 14689 (2018)
  15. Coupled unfolding and dimerization by the PAH2 domain of the mammalian Sin3A corepressor. Zhang Y, Zhang Z, Demeler B, Radhakrishnan I. J Mol Biol 360 7-14 (2006)
  16. Solution NMR studies of apo-mSin3A and -mSin3B reveal that the PAH1 and PAH2 domains are structurally independent. He Y, Radhakrishnan I. Protein Sci 17 171-175 (2008)
  17. pH might play a role in regulating the function of paired amphipathic helices domains of human Sin3B by altering structure and thermodynamic stability. Hasan T, Ali M, Saluja D, Singh LR. Biochemistry (Mosc) 80 424-432 (2015)
  18. Functional characterization and comparative analysis of gene repression-mediating domains interacting with yeast pleiotropic corepressors Sin3, Cyc8 and Tup1. Lettow J, Kliewe F, Aref R, Schüller HJ. Curr Genet 69 127-139 (2023)
  19. Invasive phenotype in triple negative breast cancer is inhibited by blocking SIN3A-PF1 interaction through KLF9 mediated repression of ITGA6 and ITGB1. Kadamb R, Leibovitch BA, Farias EF, Dahiya N, Suryawanshi H, Bansal N, Waxman S. Transl Oncol 16 101320 (2022)