1oye Citations

Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump.

Science 300 976-80 (2003)
Related entries: 1oy6, 1oy8, 1oy9, 1oyd

Cited: 241 times
EuropePMC logo PMID: 12738864

Abstract

Multidrug efflux pumps cause serious problems in cancer chemotherapy and treatment of bacterial infections. Yet high-resolution structures of ligand transporter complexes have previously been unavailable. We obtained x-ray crystallographic structures of the trimeric AcrB pump from Escherichia coli with four structurally diverse ligands. The structures show that three molecules of ligands bind simultaneously to the extremely large central cavity of 5000 cubic angstroms, primarily by hydrophobic, aromatic stacking and van der Waals interactions. Each ligand uses a slightly different subset of AcrB residues for binding. The bound ligand molecules often interact with each other, stabilizing the binding.

Reviews - 1oye mentioned but not cited (4)

  1. Multidrug resistance in bacteria. Nikaido H. Annu Rev Biochem 78 119-146 (2009)
  2. Mechanisms of RND multidrug efflux pumps. Nikaido H, Takatsuka Y. Biochim Biophys Acta 1794 769-781 (2009)
  3. One ring to rule them all: Current trends in combating bacterial resistance to the β-lactams. King DT, Sobhanifar S, Strynadka NC. Protein Sci 25 787-803 (2016)
  4. Structural Insights into Transporter-Mediated Drug Resistance in Infectious Diseases. Kim J, Cater RJ, Choy BC, Mancia F. J Mol Biol 433 167005 (2021)

Articles - 1oye mentioned but not cited (3)

  1. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. Yu EW, Aires JR, McDermott G, Nikaido H. J Bacteriol 187 6804-6815 (2005)
  2. There is a baby in the bath water: AcrB contamination is a major problem in membrane-protein crystallization. Veesler D, Blangy S, Cambillau C, Sciara G. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 880-885 (2008)
  3. Comparative mapping of sequence-based and structure-based protein domains. Zhang Y, Chandonia JM, Ding C, Holbrook SR. BMC Bioinformatics 6 77 (2005)


Reviews citing this publication (75)

  1. Molecular basis of bacterial outer membrane permeability revisited. Nikaido H. Microbiol Mol Biol Rev 67 593-656 (2003)
  2. Structure, function, and evolution of bacterial ATP-binding cassette systems. Davidson AL, Dassa E, Orelle C, Chen J. Microbiol Mol Biol Rev 72 317-64, table of contents (2008)
  3. The TetR family of transcriptional repressors. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. Microbiol Mol Biol Rev 69 326-356 (2005)
  4. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Li XZ, Plésiat P, Nikaido H. Clin Microbiol Rev 28 337-418 (2015)
  5. Platforms for antibiotic discovery. Lewis K. Nat Rev Drug Discov 12 371-387 (2013)
  6. The antibiotic resistome: the nexus of chemical and genetic diversity. Wright GD. Nat Rev Microbiol 5 175-186 (2007)
  7. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Piddock LJ. Clin Microbiol Rev 19 382-402 (2006)
  8. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G. Nat Rev Microbiol 13 343-359 (2015)
  9. Multiple molecular mechanisms for multidrug resistance transporters. Higgins CF. Nature 446 749-757 (2007)
  10. ATP-binding cassette transporters in bacteria. Davidson AL, Chen J. Annu Rev Biochem 73 241-268 (2004)
  11. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. Nikaido H, Pagès JM. FEMS Microbiol Rev 36 340-363 (2012)
  12. Efflux-mediated drug resistance in bacteria. Li XZ, Nikaido H. Drugs 64 159-204 (2004)
  13. Efflux-mediated multiresistance in Gram-negative bacteria. Poole K. Clin Microbiol Infect 10 12-26 (2004)
  14. Carbapenem Resistance: A Review. Codjoe FS, Donkor ES. Med Sci (Basel) 6 E1 (2017)
  15. Practical applications and feasibility of efflux pump inhibitors in the clinic--a vision for applied use. Lomovskaya O, Bostian KA. Biochem Pharmacol 71 910-918 (2006)
  16. Structure and function of TolC: the bacterial exit duct for proteins and drugs. Koronakis V, Eswaran J, Hughes C. Annu Rev Biochem 73 467-489 (2004)
  17. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. Silver S, Phung le T. J Ind Microbiol Biotechnol 32 587-605 (2005)
  18. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, Nussinov R. J Mol Biol 383 281-291 (2008)
  19. Beta-lactam antibiotic resistance: a current structural perspective. Wilke MS, Lovering AL, Strynadka NC. Curr Opin Microbiol 8 525-533 (2005)
  20. Structure, function and inhibition of RND efflux pumps in Gram-negative bacteria: an update. Blair JM, Piddock LJ. Curr Opin Microbiol 12 512-519 (2009)
  21. Protein secretion and surface display in Gram-positive bacteria. Schneewind O, Missiakas DM. Philos Trans R Soc Lond B Biol Sci 367 1123-1139 (2012)
  22. Inhibitors of efflux pumps in Gram-negative bacteria. Pagès JM, Masi M, Barbe J. Trends Mol Med 11 382-389 (2005)
  23. Multidrug efflux pumps and resistance: regulation and evolution. Paulsen IT. Curr Opin Microbiol 6 446-451 (2003)
  24. Structure and function of efflux pumps that confer resistance to drugs. Borges-Walmsley MI, McKeegan KS, Walmsley AR. Biochem J 376 313-338 (2003)
  25. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. Mahamoud A, Chevalier J, Alibert-Franco S, Kern WV, Pagès JM. J Antimicrob Chemother 59 1223-1229 (2007)
  26. Recent progress in understanding the mechanism of P-glycoprotein-mediated drug efflux. Loo TW, Clarke DM. J Membr Biol 206 173-185 (2005)
  27. The ins and outs of RND efflux pumps in Escherichia coli. Anes J, McCusker MP, Fanning S, Martins M. Front Microbiol 6 587 (2015)
  28. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Ambudkar SV, Kim IW, Sauna ZE. Eur J Pharm Sci 27 392-400 (2006)
  29. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. Yu EW, Aires JR, Nikaido H. J Bacteriol 185 5657-5664 (2003)
  30. Structure and mechanism of RND-type multidrug efflux pumps. Nikaido H. Adv Enzymol Relat Areas Mol Biol 77 1-60 (2011)
  31. Strategies for bypassing the membrane barrier in multidrug resistant Gram-negative bacteria. Bolla JM, Alibert-Franco S, Handzlik J, Chevalier J, Mahamoud A, Boyer G, Kieć-Kononowicz K, Pagès JM. FEBS Lett 585 1682-1690 (2011)
  32. Bacterial multidrug efflux transporters. Delmar JA, Su CC, Yu EW. Annu Rev Biophys 43 93-117 (2014)
  33. Therapeutic targets: progress of their exploration and investigation of their characteristics. Zheng CJ, Han LY, Yap CW, Ji ZL, Cao ZW, Chen YZ. Pharmacol Rev 58 259-279 (2006)
  34. Waltzing transporters and 'the dance macabre' between humans and bacteria. Lomovskaya O, Zgurskaya HI, Totrov M, Watkins WJ. Nat Rev Drug Discov 6 56-65 (2007)
  35. A Gestalt approach to Gram-negative entry. Silver LL. Bioorg Med Chem 24 6379-6389 (2016)
  36. Structural basis of RND-type multidrug exporters. Yamaguchi A, Nakashima R, Sakurai K. Front Microbiol 6 327 (2015)
  37. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Chem Rev 121 5479-5596 (2021)
  38. TolC--the bacterial exit duct for proteins and drugs. Koronakis V. FEBS Lett 555 66-71 (2003)
  39. The molecular site of action of juvenile hormone and juvenile hormone insecticides during metamorphosis: how these compounds kill insects. Wilson TG. J Insect Physiol 50 111-121 (2004)
  40. Assembly and transport mechanism of tripartite drug efflux systems. Misra R, Bavro VN. Biochim Biophys Acta 1794 817-825 (2009)
  41. Multidrug-exporting secondary transporters. Murakami S, Yamaguchi A. Curr Opin Struct Biol 13 443-452 (2003)
  42. Towards understanding promiscuity in multidrug efflux pumps. Wong K, Ma J, Rothnie A, Biggin PC, Kerr ID. Trends Biochem Sci 39 8-16 (2014)
  43. Sending and Receiving Hedgehog Signals. Petrov K, Wierbowski BM, Salic A. Annu Rev Cell Dev Biol 33 145-168 (2017)
  44. Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex. Long F, Su CC, Lei HT, Bolla JR, Do SV, Yu EW. Philos Trans R Soc Lond B Biol Sci 367 1047-1058 (2012)
  45. New approaches to antimicrobial discovery. Lewis K. Biochem Pharmacol 134 87-98 (2017)
  46. Structures and models of transporter proteins. Dahl SG, Sylte I, Ravna AW. J Pharmacol Exp Ther 309 853-860 (2004)
  47. Understanding efflux in Gram-negative bacteria: opportunities for drug discovery. Schweizer HP. Expert Opin Drug Discov 7 633-642 (2012)
  48. New light on multidrug binding by an ATP-binding-cassette transporter. Shilling RA, Venter H, Velamakanni S, Bapna A, Woebking B, Shahi S, van Veen HW. Trends Pharmacol Sci 27 195-203 (2006)
  49. Efflux pumps and nosocomial antibiotic resistance: a primer for hospital epidemiologists. Hooper DC. Clin Infect Dis 40 1811-1817 (2005)
  50. Iron Acquisition Systems of Gram-negative Bacterial Pathogens Define TonB-Dependent Pathways to Novel Antibiotics. Klebba PE, Newton SMC, Six DA, Kumar A, Yang T, Nairn BL, Munger C, Chakravorty S. Chem Rev 121 5193-5239 (2021)
  51. The Cus efflux system removes toxic ions via a methionine shuttle. Su CC, Long F, Yu EW. Protein Sci 20 6-18 (2011)
  52. Structural and functional aspects of the multidrug efflux pump AcrB. Eicher T, Brandstätter L, Pos KM. Biol Chem 390 693-699 (2009)
  53. Computational models for prediction of interactions with ABC-transporters. Ecker GF, Stockner T, Chiba P. Drug Discov Today 13 311-317 (2008)
  54. Implications of the allosteric kinetics of cytochrome P450s. Atkins WM. Drug Discov Today 9 478-484 (2004)
  55. Multicomponent drug efflux complexes: architecture and mechanism of assembly. Zgurskaya HI. Future Microbiol 4 919-932 (2009)
  56. Structural and Functional Diversity of Resistance-Nodulation-Cell Division Transporters. Klenotic PA, Moseng MA, Morgan CE, Yu EW. Chem Rev 121 5378-5416 (2021)
  57. The yeast Pdr5p multidrug transporter: how does it recognize so many substrates? Golin J, Ambudkar SV, May L. Biochem Biophys Res Commun 356 1-5 (2007)
  58. Efflux pumps of the resistance-nodulation-division family: a perspective of their structure, function, and regulation in gram-negative bacteria. Routh MD, Zalucki Y, Su CC, Zhang Q, Shafer WM, Yu EW. Adv Enzymol Relat Areas Mol Biol 77 109-146 (2011)
  59. Structural and mechanistic diversity of secondary transporters. Sobczak I, Lolkema JS. Curr Opin Microbiol 8 161-167 (2005)
  60. Vacuuming the periplasm. Lomovskaya O, Totrov M. J Bacteriol 187 1879-1883 (2005)
  61. Antibiotic resistance: multidrug efflux proteins, a common transport mechanism? Langton KP, Henderson PJ, Herbert RB. Nat Prod Rep 22 439-451 (2005)
  62. Molecular modeling of blood-brain barrier nutrient transporters: in silico basis for evaluation of potential drug delivery to the central nervous system. Allen DD, Geldenhuys WJ. Life Sci 78 1029-1033 (2006)
  63. MmpL3 a potential new target for development of novel anti-tuberculosis drugs. Rayasam GV. Expert Opin Ther Targets 18 247-256 (2014)
  64. Heavy metal transport by the CusCFBA efflux system. Delmar JA, Su CC, Yu EW. Protein Sci 24 1720-1736 (2015)
  65. Are sobriety and consciousness determined by water in protein cavities? Trudell JR, Harris RA. Alcohol Clin Exp Res 28 1-3 (2004)
  66. Crystallizing new approaches for antimicrobial drug discovery. Schmid MB. Biochem Pharmacol 71 1048-1056 (2006)
  67. Detergent-free systems for structural studies of membrane proteins. Guo Y. Biochem Soc Trans 49 1361-1374 (2021)
  68. Preface: the concept and consequences of multidrug resistance. Sheps JA, Ling V. Pflugers Arch 453 545-553 (2007)
  69. Crystal structures of all-alpha type membrane proteins. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Eur Biophys J 39 723-755 (2010)
  70. Energy transduction in transmembrane ion pumps. Facciotti MT, Rouhani-Manshadi S, Glaeser RM. Trends Biochem Sci 29 445-451 (2004)
  71. Focus on the Outer Membrane Factor OprM, the Forgotten Player from Efflux Pumps Assemblies. Phan G, Picard M, Broutin I. Antibiotics (Basel) 4 544-566 (2015)
  72. Modeling the tripartite drug efflux pump archetype: structural and functional studies of the macromolecular constituents reveal more than their names imply. Elkins CA, Beenken KE. J Chemother 17 581-592 (2005)
  73. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Avakh A, Grant GD, Cheesman MJ, Kalkundri T, Hall S. Antibiotics (Basel) 12 1304 (2023)
  74. Current Developments in Native Nanometric Discoidal Membrane Bilayer Formed by Amphipathic Polymers. Esmaili M, Eldeeb MA, Moosavi-Movahedi AA. Nanomaterials (Basel) 11 1771 (2021)
  75. [Studies on the structure, function and expression regulation of bacterial xenobiotic exporters]. Yamaguchi A. Nihon Saikingaku Zasshi 63 437-446 (2008)

Articles citing this publication (159)

  1. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Saier MH, Tran CV, Barabote RD. Nucleic Acids Res 34 D181-6 (2006)
  2. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Murakami S, Nakashima R, Yamashita E, Matsumoto T, Yamaguchi A. Nature 443 173-179 (2006)
  3. Structure of the multidrug transporter EmrD from Escherichia coli. Yin Y, He X, Szewczyk P, Nguyen T, Chang G. Science 312 741-744 (2006)
  4. AdeIJK, a resistance-nodulation-cell division pump effluxing multiple antibiotics in Acinetobacter baumannii. Damier-Piolle L, Magnet S, Brémont S, Lambert T, Courvalin P. Antimicrob Agents Chemother 52 557-562 (2008)
  5. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. Zgurskaya HI, Löpez CA, Gnanakaran S. ACS Infect Dis 1 512-522 (2015)
  6. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nakashima R, Sakurai K, Yamasaki S, Nishino K, Yamaguchi A. Nature 480 565-569 (2011)
  7. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grütter MG. PLoS Biol 5 e7 (2007)
  8. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Symmons MF, Bokma E, Koronakis E, Hughes C, Koronakis V. Proc Natl Acad Sci U S A 106 7173-7178 (2009)
  9. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Eicher T, Cha HJ, Seeger MA, Brandstätter L, El-Delik J, Bohnert JA, Kern WV, Verrey F, Grütter MG, Diederichs K, Pos KM. Proc Natl Acad Sci U S A 109 5687-5692 (2012)
  10. Conformational flexibility in the multidrug efflux system protein AcrA. Mikolosko J, Bobyk K, Zgurskaya HI, Ghosh P. Structure 14 577-587 (2006)
  11. Crystal structures of the CusA efflux pump suggest methionine-mediated metal transport. Long F, Su CC, Zimmermann MT, Boyken SE, Rajashankar KR, Jernigan RL, Yu EW. Nature 467 484-488 (2010)
  12. Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. Sennhauser G, Bukowska MA, Briand C, Grütter MG. J Mol Biol 389 134-145 (2009)
  13. Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli. Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, Yu EW. Nature 470 558-562 (2011)
  14. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Touzé T, Eswaran J, Bokma E, Koronakis E, Hughes C, Koronakis V. Mol Microbiol 53 697-706 (2004)
  15. Multitarget drug discovery for tuberculosis and other infectious diseases. Li K, Schurig-Briccio LA, Feng X, Upadhyay A, Pujari V, Lechartier B, Fontes FL, Yang H, Rao G, Zhu W, Gulati A, No JH, Cintra G, Bogue S, Liu YL, Molohon K, Orlean P, Mitchell DA, Freitas-Junior L, Ren F, Sun H, Jiang T, Li Y, Guo RT, Cole ST, Gennis RB, Crick DC, Oldfield E. J Med Chem 57 3126-3139 (2014)
  16. Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli. Aires JR, Nikaido H. J Bacteriol 187 1923-1929 (2005)
  17. Classification analysis of P-glycoprotein substrate specificity. Didziapetris R, Japertas P, Avdeef A, Petrauskas A. J Drug Target 11 391-406 (2003)
  18. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Takatsuka Y, Chen C, Nikaido H. Proc Natl Acad Sci U S A 107 6559-6565 (2010)
  19. Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Seeger MA, von Ballmoos C, Eicher T, Brandstätter L, Verrey F, Diederichs K, Pos KM. Nat Struct Mol Biol 15 199-205 (2008)
  20. AcrAB-TolC directs efflux-mediated multidrug resistance in Salmonella enterica serovar typhimurium DT104. Baucheron S, Tyler S, Boyd D, Mulvey MR, Chaslus-Dancla E, Cloeckaert A. Antimicrob Agents Chemother 48 3729-3735 (2004)
  21. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. Kern WV, Steinke P, Schumacher A, Schuster S, von Baum H, Bohnert JA. J Antimicrob Chemother 57 339-343 (2006)
  22. Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Popp C, Gorboulev V, Müller TD, Gorbunov D, Shatskaya N, Koepsell H. Mol Pharmacol 67 1600-1611 (2005)
  23. Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway. Su CC, Li M, Gu R, Takatsuka Y, McDermott G, Nikaido H, Yu EW. J Bacteriol 188 7290-7296 (2006)
  24. Contact-dependent growth inhibition causes reversible metabolic downregulation in Escherichia coli. Aoki SK, Webb JS, Braaten BA, Low DA. J Bacteriol 191 1777-1786 (2009)
  25. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. Jain M, Cox JS. PLoS Pathog 1 e2 (2005)
  26. The BpeAB-OprB efflux pump of Burkholderia pseudomallei 1026b does not play a role in quorum sensing, virulence factor production, or extrusion of aminoglycosides but is a broad-spectrum drug efflux system. Mima T, Schweizer HP. Antimicrob Agents Chemother 54 3113-3120 (2010)
  27. Crystal structure of the membrane fusion protein CusB from Escherichia coli. Su CC, Yang F, Long F, Reyon D, Routh MD, Kuo DW, Mokhtari AK, Van Ornam JD, Rabe KL, Hoy JA, Lee YJ, Rajashankar KR, Yu EW. J Mol Biol 393 342-355 (2009)
  28. P-glycoprotein substrate binding domains are located at the transmembrane domain/transmembrane domain interfaces: a combined photoaffinity labeling-protein homology modeling approach. Pleban K, Kopp S, Csaszar E, Peer M, Hrebicek T, Rizzi A, Ecker GF, Chiba P. Mol Pharmacol 67 365-374 (2005)
  29. Structure and activity of lipid bilayer within a membrane-protein transporter. Qiu W, Fu Z, Xu GG, Grassucci RA, Zhang Y, Frank J, Hendrickson WA, Guo Y. Proc Natl Acad Sci U S A 115 12985-12990 (2018)
  30. The AcrAB-TolC pump is involved in macrolide resistance but not in telithromycin efflux in Enterobacter aerogenes and Escherichia coli. Chollet R, Chevalier J, Bryskier A, Pagès JM. Antimicrob Agents Chemother 48 3621-3624 (2004)
  31. Differential impact of MexB mutations on substrate selectivity of the MexAB-OprM multidrug efflux pump of Pseudomonas aeruginosa. Middlemiss JK, Poole K. J Bacteriol 186 1258-1269 (2004)
  32. Real-time RNA profiling within a single bacterium. Le TT, Harlepp S, Guet CC, Dittmar K, Emonet T, Pan T, Cluzel P. Proc Natl Acad Sci U S A 102 9160-9164 (2005)
  33. Alkylaminoquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Malléa M, Mahamoud A, Chevalier J, Alibert-Franco S, Brouant P, Barbe J, Pagès JM. Biochem J 376 801-805 (2003)
  34. Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). Bohnert JA, Schuster S, Fähnrich E, Trittler R, Kern WV. J Antimicrob Chemother 59 1216-1222 (2007)
  35. Crystal structure of AcrB in complex with a single transmembrane subunit reveals another twist. Törnroth-Horsefield S, Gourdon P, Horsefield R, Brive L, Yamamoto N, Mori H, Snijder A, Neutze R. Structure 15 1663-1673 (2007)
  36. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump. Elkins CA, Nikaido H. J Bacteriol 185 5349-5356 (2003)
  37. MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA. Lin HT, Bavro VN, Barrera NP, Frankish HM, Velamakanni S, van Veen HW, Robinson CV, Borges-Walmsley MI, Walmsley AR. J Biol Chem 284 1145-1154 (2009)
  38. Snorkeling preferences foster an amino acid composition bias in transmembrane helices. Chamberlain AK, Lee Y, Kim S, Bowie JU. J Mol Biol 339 471-479 (2004)
  39. A model of a transmembrane drug-efflux pump from Gram-negative bacteria. Fernandez-Recio J, Walas F, Federici L, Venkatesh Pratap J, Bavro VN, Miguel RN, Mizuguchi K, Luisi B. FEBS Lett 578 5-9 (2004)
  40. Functional cloning and characterization of the multidrug efflux pumps NorM from Neisseria gonorrhoeae and YdhE from Escherichia coli. Long F, Rouquette-Loughlin C, Shafer WM, Yu EW. Antimicrob Agents Chemother 52 3052-3060 (2008)
  41. Structures and transport dynamics of a Campylobacter jejuni multidrug efflux pump. Su CC, Yin L, Kumar N, Dai L, Radhakrishnan A, Bolla JR, Lei HT, Chou TH, Delmar JA, Rajashankar KR, Zhang Q, Shin YK, Yu EW. Nat Commun 8 171 (2017)
  42. Substrate path in the AcrB multidrug efflux pump of Escherichia coli. Husain F, Nikaido H. Mol Microbiol 78 320-330 (2010)
  43. Antibiotic-sensitive TolC mutants and their suppressors. Augustus AM, Celaya T, Husain F, Humbard M, Misra R. J Bacteriol 186 1851-1860 (2004)
  44. Assembly of the MexAB-OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB. Nehme D, Li XZ, Elliot R, Poole K. J Bacteriol 186 2973-2983 (2004)
  45. Structures of sequential open states in a symmetrical opening transition of the TolC exit duct. Pei XY, Hinchliffe P, Symmons MF, Koronakis E, Benz R, Hughes C, Koronakis V. Proc Natl Acad Sci U S A 108 2112-2117 (2011)
  46. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Ma C, Chang G. Proc Natl Acad Sci U S A 101 2852-2857 (2004)
  47. Crystal structure of the Neisseria gonorrhoeae MtrD inner membrane multidrug efflux pump. Bolla JR, Su CC, Do SV, Radhakrishnan A, Kumar N, Long F, Chou TH, Delmar JA, Lei HT, Rajashankar KR, Shafer WM, Yu EW. PLoS One 9 e97903 (2014)
  48. Determinants of substrate recognition by the Escherichia coli multidrug transporter MdfA identified on both sides of the membrane. Adler J, Bibi E. J Biol Chem 279 8957-8965 (2004)
  49. Different affinities of inhibitors to the outwardly and inwardly directed substrate binding site of organic cation transporter 2. Volk C, Gorboulev V, Budiman T, Nagel G, Koepsell H. Mol Pharmacol 64 1037-1047 (2003)
  50. Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB. Krishnamoorthy G, Tikhonova EB, Zgurskaya HI. J Bacteriol 190 691-698 (2008)
  51. Interaction of transported drugs with the lipid bilayer and P-glycoprotein through a solvation exchange mechanism. Omote H, Al-Shawi MK. Biophys J 90 4046-4059 (2006)
  52. A function of SmeDEF, the major quinolone resistance determinant of Stenotrophomonas maltophilia, is the colonization of plant roots. García-León G, Hernández A, Hernando-Amado S, Alavi P, Berg G, Martínez JL. Appl Environ Microbiol 80 4559-4565 (2014)
  53. Cell division defects in Escherichia coli deficient in the multidrug efflux transporter AcrEF-TolC. Lau SY, Zgurskaya HI. J Bacteriol 187 7815-7825 (2005)
  54. Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization. Murray DS, Schumacher MA, Brennan RG. J Biol Chem 279 14365-14371 (2004)
  55. Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. Pérez J, Garcia R, Bach H, de Waard JH, Jacobs WR, Av-Gay Y, Bubis J, Takiff HE. Biochem Biophys Res Commun 348 6-12 (2006)
  56. Substrate-dependent utilization of OprM or OpmH by the Pseudomonas aeruginosa MexJK efflux pump. Chuanchuen R, Murata T, Gotoh N, Schweizer HP. Antimicrob Agents Chemother 49 2133-2136 (2005)
  57. Genetic evidence for functional interactions between TolC and AcrA proteins of a major antibiotic efflux pump of Escherichia coli. Gerken H, Misra R. Mol Microbiol 54 620-631 (2004)
  58. Molecular basis of macrolide resistance in Campylobacter: role of efflux pumps and target mutations. Mamelli L, Prouzet-Mauléon V, Pagès JM, Mégraud F, Bolla JM. J Antimicrob Chemother 56 491-497 (2005)
  59. Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853). Mullin S, Mani N, Grossman TH. Antimicrob Agents Chemother 48 4171-4176 (2004)
  60. Ligand-transporter interaction in the AcrB multidrug efflux pump determined by fluorescence polarization assay. Su CC, Yu EW. FEBS Lett 581 4972-4976 (2007)
  61. Interaction between the TolC and AcrA proteins of a multidrug efflux system of Escherichia coli. Husain F, Humbard M, Misra R. J Bacteriol 186 8533-8536 (2004)
  62. The structure of the efflux pump AcrB in complex with bile acid. Drew D, Klepsch MM, Newstead S, Flaig R, De Gier JW, Iwata S, Beis K. Mol Membr Biol 25 677-682 (2008)
  63. Cryo-Electron Microscopy Structure of an Acinetobacter baumannii Multidrug Efflux Pump. Su CC, Morgan CE, Kambakam S, Rajavel M, Scott H, Huang W, Emerson CC, Taylor DJ, Stewart PL, Bonomo RA, Yu EW. mBio 10 e01295-19 (2019)
  64. The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro. Tanabe M, Szakonyi G, Brown KA, Henderson PJ, Nield J, Byrne B. Biochem Biophys Res Commun 380 338-342 (2009)
  65. Crystal structure of the open state of the Neisseria gonorrhoeae MtrE outer membrane channel. Lei HT, Chou TH, Su CC, Bolla JR, Kumar N, Radhakrishnan A, Long F, Delmar JA, Do SV, Rajashankar KR, Shafer WM, Yu EW. PLoS One 9 e97475 (2014)
  66. Evidence for the assembly of a bacterial tripartite multidrug pump with a stoichiometry of 3:6:3. Janganan TK, Bavro VN, Zhang L, Matak-Vinkovic D, Barrera NP, Venien-Bryan C, Robinson CV, Borges-Walmsley MI, Walmsley AR. J Biol Chem 286 26900-26912 (2011)
  67. Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli. Elkins CA, Mullis LB. J Bacteriol 188 1191-1195 (2006)
  68. Substrate competition studies using whole-cell accumulation assays with the major tripartite multidrug efflux pumps of Escherichia coli. Elkins CA, Mullis LB. Antimicrob Agents Chemother 51 923-929 (2007)
  69. Structural and dynamical insights into the opening mechanism of P. aeruginosa OprM channel. Phan G, Benabdelhak H, Lascombe MB, Benas P, Rety S, Picard M, Ducruix A, Etchebest C, Broutin I. Structure 18 507-517 (2010)
  70. Transport of lipophilic carboxylates is mediated by transmembrane helix 2 in multidrug transporter AcrB. Oswald C, Tam HK, Pos KM. Nat Commun 7 13819 (2016)
  71. Biomimetic Design of Protein Nanomaterials for Hydrophobic Molecular Transport. Ren D, Dalmau M, Randall A, Shindel MM, Baldi P, Wang SW. Adv Funct Mater 22 3170-3180 (2012)
  72. Role of the AcrAB-TolC efflux pump in determining susceptibility of Haemophilus influenzae to the novel peptide deformylase inhibitor LBM415. Dean CR, Narayan S, Daigle DM, Dzink-Fox JL, Puyang X, Bracken KR, Dean KE, Weidmann B, Yuan Z, Jain R, Ryder NS. Antimicrob Agents Chemother 49 3129-3135 (2005)
  73. AcrA suppressor alterations reverse the drug hypersensitivity phenotype of a TolC mutant by inducing TolC aperture opening. Weeks JW, Celaya-Kolb T, Pecora S, Misra R. Mol Microbiol 75 1468-1483 (2010)
  74. Vestibules are part of the substrate path in the multidrug efflux transporter AcrB of Escherichia coli. Husain F, Bikhchandani M, Nikaido H. J Bacteriol 193 5847-5849 (2011)
  75. Crystal structure of the multidrug efflux transporter AcrB at 3.1A resolution reveals the N-terminal region with conserved amino acids. Das D, Xu QS, Lee JY, Ankoudinova I, Huang C, Lou Y, DeGiovanni A, Kim R, Kim SH. J Struct Biol 158 494-502 (2007)
  76. Electron crystallography reveals plasticity within the drug binding site of the small multidrug transporter EmrE. Korkhov VM, Tate CG. J Mol Biol 377 1094-1103 (2008)
  77. The reconstitution and activity of the small multidrug transporter EmrE is modulated by non-bilayer lipid composition. Curnow P, Lorch M, Charalambous K, Booth PJ. J Mol Biol 343 213-222 (2004)
  78. TtgV bound to a complex operator site represses transcription of the promoter for the multidrug and solvent extrusion TtgGHI pump. Guazzaroni ME, Terán W, Zhang X, Gallegos MT, Ramos JL. J Bacteriol 186 2921-2927 (2004)
  79. Binding and Transport of Carboxylated Drugs by the Multidrug Transporter AcrB. Tam HK, Malviya VN, Foong WE, Herrmann A, Malloci G, Ruggerone P, Vargiu AV, Pos KM. J Mol Biol 432 861-877 (2020)
  80. Synthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumps. German N, Wei P, Kaatz GW, Kerns RJ. Eur J Med Chem 43 2453-2463 (2008)
  81. H-Chain Ferritin: A Natural Nuclei Targeting and Bioactive Delivery Nanovector. Zhang L, Li L, Di Penta A, Carmona U, Yang F, Schöps R, Brandsch M, Zugaza JL, Knez M. Adv Healthc Mater 4 1305-1310 (2015)
  82. Mutations in the central cavity and periplasmic domain affect efflux activity of the resistance-nodulation-division pump EmhB from Pseudomonas fluorescens cLP6a. Hearn EM, Gray MR, Foght JM. J Bacteriol 188 115-123 (2006)
  83. Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump. Janganan TK, Bavro VN, Zhang L, Borges-Walmsley MI, Walmsley AR. Mol Microbiol 88 590-602 (2013)
  84. Cryoelectron Microscopy Structures of AdeB Illuminate Mechanisms of Simultaneous Binding and Exporting of Substrates. Morgan CE, Glaza P, Leus IV, Trinh A, Su CC, Cui M, Zgurskaya HI, Yu EW. mBio 12 e03690-20 (2021)
  85. Crystal structure of AcrB complexed with linezolid at 3.5 Å resolution. Hung LW, Kim HB, Murakami S, Gupta G, Kim CY, Terwilliger TC. J Struct Funct Genomics 14 71-75 (2013)
  86. Structural mechanisms of heavy-metal extrusion by the Cus efflux system. Delmar JA, Su CC, Yu EW. Biometals 26 593-607 (2013)
  87. The role of RamA on the development of ciprofloxacin resistance in Salmonella enterica serovar Typhimurium. Sun Y, Dai M, Hao H, Wang Y, Huang L, Almofti YA, Liu Z, Yuan Z. PLoS One 6 e23471 (2011)
  88. Be Cautious with Crystal Structures of Membrane Proteins or Complexes Prepared in Detergents. Guo Y. Crystals (Basel) 10 86 (2020)
  89. GroEL/ES inhibitors as potential antibiotics. Abdeen S, Salim N, Mammadova N, Summers CM, Frankson R, Ambrose AJ, Anderson GG, Schultz PG, Horwich AL, Chapman E, Johnson SM. Bioorg Med Chem Lett 26 3127-3134 (2016)
  90. Structural contributions to multidrug recognition in the multidrug resistance (MDR) gene regulator, BmrR. Bachas S, Eginton C, Gunio D, Wade H. Proc Natl Acad Sci U S A 108 11046-11051 (2011)
  91. Crystallographic analysis of AcrB. Pos KM, Schiefner A, Seeger MA, Diederichs K. FEBS Lett 564 333-339 (2004)
  92. QacR-cation recognition is mediated by a redundancy of residues capable of charge neutralization. Peters KM, Schuman JT, Skurray RA, Brown MH, Brennan RG, Schumacher MA. Biochemistry 47 8122-8129 (2008)
  93. Crystal structures of multidrug efflux pump MexB bound with high-molecular-mass compounds. Sakurai K, Yamasaki S, Nakao K, Nishino K, Yamaguchi A, Nakashima R. Sci Rep 9 4359 (2019)
  94. Perturbed structural dynamics underlie inhibition and altered efflux of the multidrug resistance pump AcrB. Reading E, Ahdash Z, Fais C, Ricci V, Wang-Kan X, Grimsey E, Stone J, Malloci G, Lau AM, Findlay H, Konijnenberg A, Booth PJ, Ruggerone P, Vargiu AV, Piddock LJV, Politis A. Nat Commun 11 5565 (2020)
  95. Regulation of the Two-Component Regulator CpxR on Aminoglycosides and β-lactams Resistance in Salmonella enterica serovar Typhimurium. Huang H, Sun Y, Yuan L, Pan Y, Gao Y, Ma C, Hu G. Front Microbiol 7 604 (2016)
  96. Cryo-EM Determination of Eravacycline-Bound Structures of the Ribosome and the Multidrug Efflux Pump AdeJ of Acinetobacter baumannii. Zhang Z, Morgan CE, Bonomo RA, Yu EW. mBio 12 e0103121 (2021)
  97. Crystal structure of the Campylobacter jejuni CmeC outer membrane channel. Su CC, Radhakrishnan A, Kumar N, Long F, Bolla JR, Lei HT, Delmar JA, Do SV, Chou TH, Rajashankar KR, Zhang Q, Yu EW. Protein Sci 23 954-961 (2014)
  98. Crystal structures of CusC review conformational changes accompanying folding and transmembrane channel formation. Lei HT, Bolla JR, Bishop NR, Su CC, Yu EW. J Mol Biol 426 403-411 (2014)
  99. Exploring the HME and HAE1 efflux systems in the genus Burkholderia. Perrin E, Fondi M, Papaleo MC, Maida I, Buroni S, Pasca MR, Riccardi G, Fani R. BMC Evol Biol 10 164 (2010)
  100. Opening of the outer membrane protein channel in tripartite efflux pumps is induced by interaction with the membrane fusion partner. Janganan TK, Zhang L, Bavro VN, Matak-Vinkovic D, Barrera NP, Burton MF, Steel PG, Robinson CV, Borges-Walmsley MI, Walmsley AR. J Biol Chem 286 5484-5493 (2011)
  101. Drug-induced conformational changes in multidrug efflux transporter AcrB from Haemophilus influenzae. Dastidar V, Mao W, Lomovskaya O, Zgurskaya HI. J Bacteriol 189 5550-5558 (2007)
  102. AcrB trimer stability and efflux activity, insight from mutagenesis studies. Yu L, Lu W, Wei Y. PLoS One 6 e28390 (2011)
  103. Dynamical determinants of drug-inducible gene expression in a single bacterium. Le TT, Emonet T, Harlepp S, Guet CC, Cluzel P. Biophys J 90 3315-3321 (2006)
  104. Dynamics of the trimeric AcrB transporter protein inferred from a B-factor analysis of the crystal structure. Lu WC, Wang CZ, Yu EW, Ho KM. Proteins 62 152-158 (2006)
  105. Folding of AcrB Subunit Precedes Trimerization. Lu W, Zhong M, Wei Y. J Mol Biol 411 264-274 (2011)
  106. Comment Structural biology: the ins and outs of drug transport. Schuldiner S. Nature 443 156-157 (2006)
  107. Human multidrug resistance protein 2 transports the therapeutic bile salt tauroursodeoxycholate. Gerk PM, Li W, Megaraj V, Vore M. J Pharmacol Exp Ther 320 893-899 (2007)
  108. Mis-translation of a computationally designed protein yields an exceptionally stable homodimer: implications for protein engineering and evolution. Dantas G, Watters AL, Lunde BM, Eletr ZM, Isern NG, Roseman T, Lipfert J, Doniach S, Tompa M, Kuhlman B, Stoddard BL, Varani G, Baker D. J Mol Biol 362 1004-1024 (2006)
  109. The Vibrio cholerae var regulon encodes a metallo-β-lactamase and an antibiotic efflux pump, which are regulated by VarR, a LysR-type transcription factor. Lin HV, Massam-Wu T, Lin CP, Wang YA, Shen YC, Lu WJ, Hsu PH, Chen YH, Borges-Walmsley MI, Walmsley AR. PLoS One 12 e0184255 (2017)
  110. Salt-inducible multidrug efflux pump protein in the moderately halophilic bacterium Chromohalobacter sp. Tokunaga H, Mitsuo K, Ichinose S, Omori A, Ventosa A, Nakae T, Tokunaga M. Appl Environ Microbiol 70 4424-4431 (2004)
  111. An alkylaminoquinazoline restores antibiotic activity in Gram-negative resistant isolates. Mahamoud A, Chevalier J, Baitiche M, Adam E, Pagès JM. Microbiology (Reading) 157 566-571 (2011)
  112. Metagenomic analysis reveals the shared and distinct features of the soil resistome across tundra, temperate prairie, and tropical ecosystems. Qian X, Gunturu S, Guo J, Chai B, Cole JR, Gu J, Tiedje JM. Microbiome 9 108 (2021)
  113. Mutagenesis and modeling to predict structural and functional characteristics of the Staphylococcus aureus MepA multidrug efflux pump. Schindler BD, Patel D, Seo SM, Kaatz GW. J Bacteriol 195 523-533 (2013)
  114. Mutations in MexB that affect the efflux of antibiotics with cytoplasmic targets. Ohene-Agyei T, Lea JD, Venter H. FEMS Microbiol Lett 333 20-27 (2012)
  115. A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. Dombach JL, Quintana JLJ, Nagy TA, Wan C, Crooks AL, Yu H, Su CC, Yu EW, Shen J, Detweiler CS. PLoS Pathog 16 e1009119 (2020)
  116. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Zgurskaya HI, Walker JK, Parks JM, Rybenkov VV. Acc Chem Res 54 930-939 (2021)
  117. Relative contribution of target gene mutation and efflux to varying quinolone resistance in Irish Campylobacter isolates. Corcoran D, Quinn T, Cotter L, Fanning S. FEMS Microbiol Lett 253 39-46 (2005)
  118. Synthesis and evaluation of PSSRI-based inhibitors of Staphylococcus aureus multidrug efflux pumps. German N, Kaatz GW, Kerns RJ. Bioorg Med Chem Lett 18 1368-1373 (2008)
  119. Assembling of AcrB trimer in cell membrane. Lu W, Chai Q, Zhong M, Yu L, Fang J, Wang T, Li H, Zhu H, Wei Y. J Mol Biol 423 123-134 (2012)
  120. Fluorescence High-Throughput Screening for Inhibitors of TonB Action. Nairn BL, Eliasson OS, Hyder DR, Long NJ, Majumdar A, Chakravorty S, McDonald P, Roy A, Newton SM, Klebba PE. J Bacteriol 199 e00889-16 (2017)
  121. Cryo-EM Structures of CusA Reveal a Mechanism of Metal-Ion Export. Moseng MA, Lyu M, Pipatpolkai T, Glaza P, Emerson CC, Stewart PL, Stansfeld PJ, Yu EW. mBio 12 e00452-21 (2021)
  122. The N-terminal domain of an archaeal multidrug and toxin extrusion (MATE) transporter mediates proton coupling required for prokaryotic drug resistance. Jagessar KL, Mchaourab HS, Claxton DP. J Biol Chem 294 12807-12814 (2019)
  123. Using Chemical Probes to Assess the Feasibility of Targeting SecA for Developing Antimicrobial Agents against Gram-Negative Bacteria. Jin J, Hsieh YH, Cui J, Damera K, Dai C, Chaudhary AS, Zhang H, Yang H, Cao N, Jiang C, Vaara M, Wang B, Tai PC. ChemMedChem 11 2511-2521 (2016)
  124. Using Fragment-Based Approaches to Discover New Antibiotics. Lamoree B, Hubbard RE. SLAS Discov 23 495-510 (2018)
  125. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity. Peters KM, Brooks BE, Schumacher MA, Skurray RA, Brennan RG, Brown MH. PLoS One 6 e15974 (2011)
  126. An Analysis of the Novel Fluorocycline TP-6076 Bound to Both the Ribosome and Multidrug Efflux Pump AdeJ from Acinetobacter baumannii. Morgan CE, Zhang Z, Bonomo RA, Yu EW. mBio 13 e0373221 (2021)
  127. Design, synthesis, and evaluation of efflux substrate-metal chelator conjugates as potential antimicrobial agents. Zhang Y, Eric Ballard C, Zheng SL, Gao X, Ko KC, Yang H, Brandt G, Lou X, Tai PC, Lu CD, Wang B. Bioorg Med Chem Lett 17 707-711 (2007)
  128. Interaction between the α-barrel tip of Vibrio vulnificus TolC homologs and AcrA implies the adapter bridging model. Lee S, Song S, Lee M, Hwang S, Kim JS, Ha NC, Lee K. J Microbiol 52 148-153 (2014)
  129. Tetrandrine reverses drug resistance in isoniazid and ethambutol dual drug-resistant Mycobacterium tuberculosis clinical isolates. Zhang Z, Yan J, Xu K, Ji Z, Li L. BMC Infect Dis 15 153 (2015)
  130. Elastic network model-based normal mode analysis reveals the conformational couplings in the tripartite AcrAB-TolC multidrug efflux complex. Wang B, Weng J, Fan K, Wang W. Proteins 79 2936-2945 (2011)
  131. Identification and characterization of the AcrR/AcrAB system of a pathogenic Edwardsiella tarda strain. Hou JH, Hu YH, Zhang M, Sun L. J Gen Appl Microbiol 55 191-199 (2009)
  132. Stepwise substrate translocation mechanism revealed by free energy calculations of doxorubicin in the multidrug transporter AcrB. Zuo Z, Wang B, Weng J, Wang W. Sci Rep 5 13905 (2015)
  133. The crystal structure of Rv0793, a hypothetical monooxygenase from M. tuberculosis. Lemieux MJ, Ference C, Cherney MM, Wang M, Garen C, James MN. J Struct Funct Genomics 6 245-257 (2005)
  134. Molecular Interactions of Carbapenem Antibiotics with the Multidrug Efflux Transporter AcrB of Escherichia coli. Atzori A, Malloci G, Cardamone F, Bosin A, Vargiu AV, Ruggerone P. Int J Mol Sci 21 E860 (2020)
  135. Functional relevance of AcrB Trimerization in pump assembly and substrate binding. Lu W, Zhong M, Chai Q, Wang Z, Yu L, Wei Y. PLoS One 9 e89143 (2014)
  136. Ligand-binding prediction in the resistance-nodulation-cell division (RND) proteins. Hernandez-Mendoza A, Quinto C, Segovia L, Perez-Rueda E. Comput Biol Chem 31 115-123 (2007)
  137. Molecular control of a bimodal distribution of quinone-analogue inhibitor binding sites in the cytochrome b(6)f complex. Yan J, Cramer WA. J Mol Biol 344 481-493 (2004)
  138. Structural Basis of Peptide-Based Antimicrobial Inhibition of a Resistance-Nodulation-Cell Division Multidrug Efflux Pump. Lyu M, Ayala JC, Chirakos I, Su CC, Shafer WM, Yu EW. Microbiol Spectr 10 e0299022 (2022)
  139. The Role of Tryptophan in π Interactions in Proteins: An Experimental Approach. Shao J, Kuiper BP, Thunnissen AWH, Cool RH, Zhou L, Huang C, Dijkstra BW, Broos J. J Am Chem Soc 144 13815-13822 (2022)
  140. Universal fluorescent sensors of high-affinity iron transport, applied to ESKAPE pathogens. Chakravorty S, Shipelskiy Y, Kumar A, Majumdar A, Yang T, Nairn BL, Newton SM, Klebba PE. J Biol Chem 294 4682-4692 (2019)
  141. Differential Binding of Carbapenems with the AdeABC Efflux Pump and Modulation of the Expression of AdeB Linked to Novel Mutations within Two-Component System AdeRS in Carbapenem-Resistant Acinetobacter baumannii. Roy S, Junghare V, Dutta S, Hazra S, Basu S. mSystems 7 e0021722 (2022)
  142. Dissecting the function of a protruding loop in AcrB trimerization. Fang J, Yu L, Wu M, Wei Y. J Biomol Struct Dyn 31 385-392 (2013)
  143. Efflux of cytoplasmically acting antibiotics from gram-negative bacteria: periplasmic substrate capture by multicomponent efflux pumps inferred from their cooperative action with single-component transporters. Palmer M. J Bacteriol 185 5287-5289 (2003)
  144. Prevalence and antimicrobial susceptibility of virulent and avirulent multidrug-resistant Escherichia coli isolated from diarrheic neonatal calves. Barigye R, Gautam A, Piche LM, Schaan LP, Krogh DF, Olet S. Am J Vet Res 73 1944-1950 (2012)
  145. The porinologist. Klebba PE. J Bacteriol 187 8232-8236 (2005)
  146. Unraveling membrane-mediated substrate-transporter interactions. Seelig A. Biophys J 90 3825-3826 (2006)
  147. Cryo-EM Structures of the Klebsiella pneumoniae AcrB Multidrug Efflux Pump. Zhang Z, Morgan CE, Bonomo RA, Yu EW. mBio 14 e0065923 (2023)
  148. Induction of a stress response in Lactococcus lactis is associated with a resistance to ribosomally active antibiotics. Dorrian JM, Briggs DA, Ridley ML, Layfield R, Kerr ID. FEBS J 278 4015-4024 (2011)
  149. Open pore block of connexin26 and connexin32 hemichannels by neutral, acidic and basic glycoconjugates. Locke D, Wang LX, Bevans CG, Lee YC, Harris AL. Cell Commun Adhes 10 239-244 (2003)
  150. Periplasmic domain of CusA in an Escherichia coli Cu+/Ag+ transporter has metal binding sites. Yun BY, Xu Y, Piao S, Kim N, Yoon JH, Cho HS, Lee K, Ha NC. J Microbiol 48 829-835 (2010)
  151. Accumulation and efflux of polychlorinated biphenyls in Escherichia coli. Geng S, Fang J, Turner KB, Daunert S, Wei Y. Anal Bioanal Chem 403 2403-2409 (2012)
  152. Cryo-EM Structures of AcrD Illuminate a Mechanism for Capturing Aminoglycosides from Its Central Cavity. Zhang Z, Morgan CE, Cui M, Yu EW. mBio 14 e0338322 (2023)
  153. Molecular Characterization of Fluoroquinolone Resistance Mechanisms of Campylobacter Isolates from Duck Meats. Kang M, Wei B, Choi SW, Cha SY, Jang HK. J Food Prot 80 2056-2059 (2017)
  154. Molecular graphics approach to bacterial AcrB protein-beta-lactam antibiotic molecular recognition in drug efflux mechanism. Kiralj R, Ferreira MM. J Mol Graph Model 25 126-145 (2006)
  155. Cryo-Electron Microscopy Structures of a Campylobacter Multidrug Efflux Pump Reveal a Novel Mechanism of Drug Recognition and Resistance. Zhang Z, Lizer N, Wu Z, Morgan CE, Yan Y, Zhang Q, Yu EW. Microbiol Spectr 11 e0119723 (2023)
  156. Potential applications of designed ankyrin repeat proteins in diagnostics and therapeutics. Baumann MJ, Stadler BM, Vogel M. Expert Opin Med Diagn 1 409-421 (2007)
  157. Sodium Malonate Inhibits the AcrAB-TolC Multidrug Efflux Pump of Escherichia coli and Increases Antibiotic Efficacy. Cauilan A, Ruiz C. Pathogens 11 1409 (2022)
  158. Bacterial efflux pump modulators prevent bacterial growth in macrophages and under broth conditions that mimic the host environment. Allgood SC, Su C-C, Crooks AL, Meyer CT, Zhou B, Betterton MD, Barbachyn MR, Yu EW, Detweiler CS. mBio e0249223 (2023)
  159. Understanding Functional Redundancy and Promiscuity of Multidrug Transporters in E. coli under Lipophilic Cation Stress. Radi MS, Munro LJ, Salcedo-Sora JE, Kim SH, Feist AM, Kell DB. Membranes (Basel) 12 1264 (2022)