1ote Citations

Short hydrogen bonds in photoactive yellow protein.

Acta Crystallogr D Biol Crystallogr 60 1008-16 (2004)
Related entries: 1ot6, 1ot9, 1ota, 1otb, 1otd, 1oti

Cited: 56 times
EuropePMC logo PMID: 15159559

Abstract

Eight high-resolution crystal structures of the ground state of photoactive yellow protein (PYP) solved under a variety of conditions reveal that its chromophore is stabilized by two unusually short hydrogen bonds. Both Tyr42 Oeta and Glu46 Oepsilon are separated from the chromophore phenolate oxygen by less than the sum of their atomic van der Waals radii, 2.6 angstroms. This is characteristic of strong hydrogen bonding, in which hydrogen bonds acquire significant covalent character. The hydrogen bond from the protonated Glu46 to the negatively charged phenolate oxygen is 2.58 +/- 0.01 angstroms in length, while that from Tyr42 is considerably shorter, 2.49 +/- 0.01 angstroms. The E46Q mutant was solved to 0.95 angstroms resolution; the isosteric mutation increased the length of the hydrogen bond from Glx46 to the chromophore by 0.29 +/- 0.01 angstroms to that of an average hydrogen bond, 2.88 +/- 0.01 angstroms. The very short hydrogen bond from Tyr42 explains why mutating this residue has such a severe effect on the ground-state structure and PYP photocycle. The effect of isosteric mutations on the photocycle can be largely explained by the alterations to the length and strength of these hydrogen bonds.

Reviews citing this publication (9)

  1. Ligand-binding PAS domains in a genomic, cellular, and structural context. Henry JT, Crosson S. Annu Rev Microbiol 65 261-286 (2011)
  2. Structure and function of plant photoreceptors. Möglich A, Yang X, Ayers RA, Moffat K. Annu Rev Plant Biol 61 21-47 (2010)
  3. Proton transfer reactions and hydrogen-bond networks in protein environments. Ishikita H, Saito K. J R Soc Interface 11 20130518 (2014)
  4. Neutron Crystallography for the Study of Hydrogen Bonds in Macromolecules. Oksanen E, Chen JC, Fisher SZ. Molecules 22 E596 (2017)
  5. A short history of structure based research on the photocycle of photoactive yellow protein. Schmidt M. Struct Dyn 4 032201 (2017)
  6. Low barrier hydrogen bonds in protein structure and function. Kemp MT, Lewandowski EM, Chen Y. Biochim Biophys Acta Proteins Proteom 1869 140557 (2021)
  7. On the Case of the Misplaced Hydrogens. Kumar P, Agarwal PK, Cuneo MJ. Chembiochem 22 288-297 (2021)
  8. The aryl hydrocarbon receptor as a model PAS sensor. Vazquez-Rivera E, Rojas B, Parrott JC, Shen AL, Xing Y, Carney PR, Bradfield CA. Toxicol Rep 9 1-11 (2022)
  9. Small Molecule-Photoactive Yellow Protein Labeling Technology in Live Cell Imaging. Gao F, Gao T, Zhou K, Zeng W. Molecules 21 E1163 (2016)

Articles citing this publication (47)

  1. Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein. Pande K, Hutchison CD, Groenhof G, Aquila A, Robinson JS, Tenboer J, Basu S, Boutet S, DePonte DP, Liang M, White TA, Zatsepin NA, Yefanov O, Morozov D, Oberthuer D, Gati C, Subramanian G, James D, Zhao Y, Koralek J, Brayshaw J, Kupitz C, Conrad C, Roy-Chowdhury S, Coe JD, Metz M, Xavier PL, Grant TD, Koglin JE, Ketawala G, Fromme R, Šrajer V, Henning R, Spence JC, Ourmazd A, Schwander P, Weierstall U, Frank M, Fromme P, Barty A, Chapman HN, Moffat K, van Thor JJ, Schmidt M. Science 352 725-729 (2016)
  2. Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds. Ihee H, Rajagopal S, Srajer V, Pahl R, Anderson S, Schmidt M, Schotte F, Anfinrud PA, Wulff M, Moffat K. Proc Natl Acad Sci U S A 102 7145-7150 (2005)
  3. Low-barrier hydrogen bond in photoactive yellow protein. Yamaguchi S, Kamikubo H, Kurihara K, Kuroki R, Niimura N, Shimizu N, Yamazaki Y, Kataoka M. Proc Natl Acad Sci U S A 106 440-444 (2009)
  4. Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Schotte F, Cho HS, Kaila VR, Kamikubo H, Dashdorj N, Henry ER, Graber TJ, Henning R, Wulff M, Hummer G, Kataoka M, Anfinrud PA. Proc Natl Acad Sci U S A 109 19256-19261 (2012)
  5. Structural determinants underlying photoprotection in the photoactive orange carotenoid protein of cyanobacteria. Wilson A, Kinney JN, Zwart PH, Punginelli C, D'Haene S, Perreau F, Klein MG, Kirilovsky D, Kerfeld CA. J Biol Chem 285 18364-18375 (2010)
  6. Crystal structures of YkuI and its complex with second messenger cyclic Di-GMP suggest catalytic mechanism of phosphodiester bond cleavage by EAL domains. Minasov G, Padavattan S, Shuvalova L, Brunzelle JS, Miller DJ, Baslé A, Massa C, Collart FR, Schirmer T, Anderson WF. J Biol Chem 284 13174-13184 (2009)
  7. Testing geometrical discrimination within an enzyme active site: constrained hydrogen bonding in the ketosteroid isomerase oxyanion hole. Sigala PA, Kraut DA, Caaveiro JM, Pybus B, Ruben EA, Ringe D, Petsko GA, Herschlag D. J Am Chem Soc 130 13696-13708 (2008)
  8. Energetics of short hydrogen bonds in photoactive yellow protein. Saito K, Ishikita H. Proc Natl Acad Sci U S A 109 167-172 (2012)
  9. A structural pathway for signaling in the E46Q mutant of photoactive yellow protein. Rajagopal S, Anderson S, Srajer V, Schmidt M, Pahl R, Moffat K. Structure 13 55-63 (2005)
  10. Identification of six new photoactive yellow proteins--diversity and structure-function relationships in a bacterial blue light photoreceptor. Kumauchi M, Hara MT, Stalcup P, Xie A, Hoff WD. Photochem Photobiol 84 956-969 (2008)
  11. Hydrogen bond dynamics in the active site of photoactive yellow protein. Sigala PA, Tsuchida MA, Herschlag D. Proc Natl Acad Sci U S A 106 9232-9237 (2009)
  12. PAS domain allostery and light-induced conformational changes in photoactive yellow protein upon I2 intermediate formation, probed with enhanced hydrogen/deuterium exchange mass spectrometry. Brudler R, Gessner CR, Li S, Tyndall S, Getzoff ED, Woods VL. J Mol Biol 363 148-160 (2006)
  13. Influence of the crystalline state on photoinduced dynamics of photoactive yellow protein studied by ultraviolet-visible transient absorption spectroscopy. Yeremenko S, van Stokkum IH, Moffat K, Hellingwerf KJ. Biophys J 90 4224-4235 (2006)
  14. Chromophore conformation and the evolution of tertiary structural changes in photoactive yellow protein. Anderson S, Srajer V, Pahl R, Rajagopal S, Schotte F, Anfinrud P, Wulff M, Moffat K. Structure 12 1039-1045 (2004)
  15. Atomic resolution crystallography of a complex of triosephosphate isomerase with a reaction-intermediate analog: new insight in the proton transfer reaction mechanism. Alahuhta M, Wierenga RK. Proteins 78 1878-1888 (2010)
  16. Unraveling the structural and chemical features of biological short hydrogen bonds. Zhou S, Wang L. Chem Sci 10 7734-7745 (2019)
  17. Combined probes of X-ray scattering and optical spectroscopy reveal how global conformational change is temporally and spatially linked to local structural perturbation in photoactive yellow protein. Kim TW, Yang C, Kim Y, Kim JG, Kim J, Jung YO, Jun S, Lee SJ, Park S, Kosheleva I, Henning R, van Thor JJ, Ihee H. Phys Chem Chem Phys 18 8911-8919 (2016)
  18. Letter Contradictions in X-ray structures of intermediates in the photocycle of photoactive yellow protein. Kaila VR, Schotte F, Cho HS, Hummer G, Anfinrud PA. Nat Chem 6 258-259 (2014)
  19. Proton transfer in a short hydrogen bond caused by solvation shell fluctuations: an ab initio MD and NMR/UV study of an (OHO)(-) bonded system. Pylaeva S, Allolio C, Koeppe B, Denisov GS, Limbach HH, Sebastiani D, Tolstoy PM. Phys Chem Chem Phys 17 4634-4644 (2015)
  20. Combined NMR and UV/vis spectroscopy in the solution state: study of the geometries of strong OHO hydrogen bonds of phenols with carboxylic acids. Tolstoy PM, Koeppe B, Denisov GS, Limbach HH. Angew Chem Int Ed Engl 48 5745-5747 (2009)
  21. Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface. Philip AF, Nome RA, Papadantonakis GA, Scherer NF, Hoff WD. Proc Natl Acad Sci U S A 107 5821-5826 (2010)
  22. Spectroscopic properties of a strongly anharmonic Mannich base N-oxide. Jezierska A, Panek JJ, Koll A. Chemphyschem 9 839-846 (2008)
  23. Phonon driven proton transfer in crystals with short strong hydrogen bonds. Fontaine-Vive F, Johnson MR, Kearley GJ, Cowan JA, Howard JA, Parker SF. J Chem Phys 124 234503 (2006)
  24. Probing anisotropic structure changes in proteins with picosecond time-resolved small-angle X-ray scattering. Cho HS, Schotte F, Dashdorj N, Kyndt J, Anfinrud PA. J Phys Chem B 117 15825-15832 (2013)
  25. Strong ionic hydrogen bonding causes a spectral isotope effect in photoactive yellow protein. Kaledhonkar S, Hara M, Stalcup TP, Xie A, Hoff WD. Biophys J 105 2577-2585 (2013)
  26. Comprehensive determination of protein tyrosine pKa values for photoactive yellow protein using indirect 13C NMR spectroscopy. Oktaviani NA, Pool TJ, Kamikubo H, Slager J, Scheek RM, Kataoka M, Mulder FA. Biophys J 102 579-586 (2012)
  27. Hydrogen-bond network probed by time-resolved optoacoustic spectroscopy: photoactive yellow protein and the effect of E46Q and E46A mutations. Losi A, Gensch T, van der Horst MA, Hellingwerf KJ, Braslavsky SE. Phys Chem Chem Phys 7 2229-2236 (2005)
  28. Neutron crystallography of photoactive yellow protein reveals unusual protonation state of Arg52 in the crystal. Yonezawa K, Shimizu N, Kurihara K, Yamazaki Y, Kamikubo H, Kataoka M. Sci Rep 7 9361 (2017)
  29. Diverse roles of glycine residues conserved in photoactive yellow proteins. Imamoto Y, Tatsumi S, Harigai M, Yamazaki Y, Kamikubo H, Kataoka M. Biophys J 94 3620-3628 (2008)
  30. Evolution of PAS domains and PAS-containing genes in eukaryotes. Mei Q, Dvornyk V. Chromosoma 123 385-405 (2014)
  31. Unraveling electronic absorption spectra using nuclear quantum effects: Photoactive yellow protein and green fluorescent protein chromophores in water. Zuehlsdorff TJ, Napoli JA, Milanese JM, Markland TE, Isborn CM. J Chem Phys 149 024107 (2018)
  32. Perturbation of Short Hydrogen Bonds in Photoactive Yellow Protein via Noncanonical Amino Acid Incorporation. Thomson B, Both J, Wu Y, Parrish RM, Martínez TJ, Boxer SG. J Phys Chem B 123 4844-4849 (2019)
  33. Room temperature structures beyond 1.5 Å by serial femtosecond crystallography. Schmidt M, Pande K, Basu S, Tenboer J. Struct Dyn 2 041708 (2015)
  34. Spectroscopic ruler for measuring active-site distortions based on Raman optical activity of a hydrogen out-of-plane vibration. Haraguchi S, Shingae T, Fujisawa T, Kasai N, Kumauchi M, Hanamoto T, Hoff WD, Unno M. Proc Natl Acad Sci U S A 115 8671-8675 (2018)
  35. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein. Gamiz-Hernandez AP, Kaila VR. Phys Chem Chem Phys 18 2802-2809 (2016)
  36. Enzyme transient state kinetics in crystal and solution from the perspective of a time-resolved crystallographer. Schmidt M, Saldin DK. Struct Dyn 1 024701 (2014)
  37. Combining protein sequence, structure, and dynamics: A novel approach for functional evolution analysis of PAS domain superfamily. Dong Z, Zhou H, Tao P. Protein Sci 27 421-430 (2018)
  38. Stress tensor analysis of the protein quake of photoactive yellow protein. Koike K, Kawaguchi K, Yamato T. Phys Chem Chem Phys 10 1400-1405 (2008)
  39. Unusual Spectroscopic and Electric Field Sensitivity of Chromophores with Short Hydrogen Bonds: GFP and PYP as Model Systems. Lin CY, Boxer SG. J Phys Chem B 124 9513-9525 (2020)
  40. Absorption wavelength along chromophore low-barrier hydrogen bonds. Tsujimura M, Tamura H, Saito K, Ishikita H. iScience 25 104247 (2022)
  41. Active-Site pKa Determination for Photoactive Yellow Protein Rationalizes Slow Ground-State Recovery. Oktaviani NA, Pool TJ, Yoshimura Y, Kamikubo H, Scheek RM, Kataoka M, Mulder FAA. Biophys J 112 2109-2116 (2017)
  42. Computerized implementation of higher-order electron-correlation methods and their linear-scaling divide-and-conquer extensions. Nakano M, Yoshikawa T, Hirata S, Seino J, Nakai H. J Comput Chem 38 2520-2527 (2017)
  43. Simulations of Two-dimensional Infrared and Stimulated Resonance Raman Spectra of Photoactive Yellow Protein. Preketes NK, Biggs JD, Ren H, Andricioaei I, Mukamel S. Chem Phys 422 (2013)
  44. Structural Origins of Altered Spectroscopic Properties upon Ligand Binding in Proteins Containing a Fluorescent Noncanonical Amino Acid. Gleason PR, Kolbaba-Kartchner B, Henderson JN, Stahl EP, Simmons CR, Mills JH. Biochemistry 60 2577-2585 (2021)
  45. Protonation Equilibrium in the Active Site of the Photoactive Yellow Protein. Campomanes P, Vanni S. Molecules 26 2025 (2021)
  46. Quantum mechanical/molecular mechanical/continuum style solvation model: second order Møller-Plesset perturbation theory. Thellamurege NM, Si D, Cui F, Li H. J Chem Phys 140 174115 (2014)
  47. Stretching vibrational frequencies and pKa differences in H-bond networks of protein environments. Tsujimura M, Saito K, Ishikita H. Biophys J 122 4336-4347 (2023)