1ocr Citations

Redox-coupled crystal structural changes in bovine heart cytochrome c oxidase.

Abstract

Crystal structures of bovine heart cytochrome c oxidase in the fully oxidized, fully reduced, azide-bound, and carbon monoxide-bound states were determined at 2.30, 2.35, 2.9, and 2.8 angstrom resolution, respectively. An aspartate residue apart from the O2 reduction site exchanges its effective accessibility to the matrix aqueous phase for one to the cytosolic phase concomitantly with a significant decrease in the pK of its carboxyl group, on reduction of the metal sites. The movement indicates the aspartate as the proton pumping site. A tyrosine acidified by a covalently linked imidazole nitrogen is a possible proton donor for the O2 reduction by the enzyme.

Reviews - 1ocr mentioned but not cited (1)

  1. Copper active sites in biology. Solomon EI, Heppner DE, Johnston EM, Ginsbach JW, Cirera J, Qayyum M, Kieber-Emmons MT, Kjaergaard CH, Hadt RG, Tian L. Chem. Rev. 114 3659-3853 (2014)

Articles - 1ocr mentioned but not cited (10)

  1. Prediction of transmembrane helix orientation in polytopic membrane proteins. Adamian L, Liang J. BMC Struct. Biol. 6 13 (2006)
  2. Superoxo, mu-peroxo, and mu-oxo complexes from heme/O2 and heme-Cu/O2 reactivity: copper ligand influences in cytochrome c oxidase models. Kim E, Helton ME, Wasser IM, Karlin KD, Lu S, Huang HW, Moenne-Loccoz P, Incarvito CD, Rheingold AL, Honecker M, Kaderli S, Zuberbuhler AD. Proc. Natl. Acad. Sci. U.S.A. 100 3623-3628 (2003)
  3. Context dependence and coevolution among amino acid residues in proteins. Wang ZO, Pollock DD. Meth. Enzymol. 395 779-790 (2005)
  4. Multiple approaches converge on the structure of the integrin alphaIIb/beta3 transmembrane heterodimer. Metcalf DG, Kulp DW, Bennett JS, DeGrado WF. J. Mol. Biol. 392 1087-1101 (2009)
  5. Mitochondrial DNA variant in COX1 subunit significantly alters energy metabolism of geographically divergent wild isolates in Caenorhabditis elegans. Dingley SD, Polyak E, Ostrovsky J, Srinivasan S, Lee I, Rosenfeld AB, Tsukikawa M, Xiao R, Selak MA, Coon JJ, Hebert AS, Grimsrud PA, Kwon YJ, Pagliarini DJ, Gai X, Schurr TG, Hüttemann M, Nakamaru-Ogiso E, Falk MJ. J. Mol. Biol. 426 2199-2216 (2014)
  6. Structure of astrotactin-2: a conserved vertebrate-specific and perforin-like membrane protein involved in neuronal development. Ni T, Harlos K, Gilbert R. Open Biol 6 (2016)
  7. Automatic structure classification of small proteins using random forest. Jain P, Hirst JD. BMC Bioinformatics 11 364 (2010)
  8. MitImpact 3: modeling the residue interaction network of the Respiratory Chain subunits. Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T. Nucleic Acids Res 49 D1282-D1288 (2021)
  9. Homemade cofactors: self-processing in galactose oxidase. Xie L, van der Donk WA. Proc. Natl. Acad. Sci. U.S.A. 98 12863-12865 (2001)
  10. B3LYP study on reduction mechanisms from O2 to H2O at the catalytic sites of fully reduced and mixed-valence bovine cytochrome c oxidases. Yoshioka Y, Mitani M. Bioinorg Chem Appl 182804 (2010)


Reviews citing this publication (100)

  1. Helical membrane protein folding, stability, and evolution. Popot JL, Engelman DM. Annu. Rev. Biochem. 69 881-922 (2000)
  2. Voltage-gated proton channels and other proton transfer pathways. Decoursey TE. Physiol. Rev. 83 475-579 (2003)
  3. Biological significance of phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) in mammalian cells. Imai H, Nakagawa Y. Free Radic. Biol. Med. 34 145-169 (2003)
  4. Structure and dynamics of membrane proteins as studied by infrared spectroscopy. Arrondo JL, Goñi FM. Prog. Biophys. Mol. Biol. 72 367-405 (1999)
  5. Cardiac mitochondria and reactive oxygen species generation. Chen YR, Zweier JL. Circ. Res. 114 524-537 (2014)
  6. The cytochrome bd respiratory oxygen reductases. Borisov VB, Gennis RB, Hemp J, Verkhovsky MI. Biochim. Biophys. Acta 1807 1398-1413 (2011)
  7. Protein design: toward functional metalloenzymes. Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Chem. Rev. 114 3495-3578 (2014)
  8. The regulation and physiology of mitochondrial proton leak. Divakaruni AS, Brand MD. Physiology (Bethesda) 26 192-205 (2011)
  9. Mitochondrial energy metabolism is regulated via nuclear-coded subunits of cytochrome c oxidase. Kadenbach B, Hüttemann M, Arnold S, Lee I, Bender E. Free Radic. Biol. Med. 29 211-221 (2000)
  10. Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Cooper CE. Trends Biochem. Sci. 27 33-39 (2002)
  11. Overexpression of mammalian integral membrane proteins for structural studies. Tate CG. FEBS Lett. 504 94-98 (2001)
  12. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Soto IC, Fontanesi F, Liu J, Barrientos A. Biochim. Biophys. Acta 1817 883-897 (2012)
  13. Cytochrome C oxidase and the regulation of oxidative phosphorylation. Ludwig B, Bender E, Arnold S, Hüttemann M, Lee I, Kadenbach B. Chembiochem 2 392-403 (2001)
  14. Structures and proton-pumping strategies of mitochondrial respiratory enzymes. Schultz BE, Chan SI. Annu Rev Biophys Biomol Struct 30 23-65 (2001)
  15. Cadmium and mitochondria. Cannino G, Ferruggia E, Luparello C, Rinaldi AM. Mitochondrion 9 377-384 (2009)
  16. Mitochondrial copper metabolism and delivery to cytochrome c oxidase. Horn D, Barrientos A. IUBMB Life 60 421-429 (2008)
  17. Suppression mechanisms of COX assembly defects in yeast and human: insights into the COX assembly process. Barrientos A, Gouget K, Horn D, Soto IC, Fontanesi F. Biochim. Biophys. Acta 1793 97-107 (2009)
  18. Mitochondria make a come back. Scheffler IE. Adv. Drug Deliv. Rev. 49 3-26 (2001)
  19. Molecular mechanism of proton translocation by cytochrome c oxidase. Belevich I, Verkhovsky MI. Antioxid. Redox Signal. 10 1-29 (2008)
  20. New control of mitochondrial membrane potential and ROS formation--a hypothesis. Lee I, Bender E, Arnold S, Kadenbach B. Biol. Chem. 382 1629-1636 (2001)
  21. Proton-pumping mechanism of cytochrome C oxidase. Yoshikawa S, Muramoto K, Shinzawa-Itoh K. Annu Rev Biophys 40 205-223 (2011)
  22. The role of the D- and K-pathways of proton transfer in the function of the haem-copper oxidases. Wikström M, Jasaitis A, Backgren C, Puustinen A, Verkhovsky MI. Biochim. Biophys. Acta 1459 514-520 (2000)
  23. Structure, function, and assembly of heme centers in mitochondrial respiratory complexes. Kim HJ, Khalimonchuk O, Smith PM, Winge DR. Biochim. Biophys. Acta 1823 1604-1616 (2012)
  24. Structural elements involved in electron-coupled proton transfer in cytochrome c oxidase. Namslauer A, Brzezinski P. FEBS Lett. 567 103-110 (2004)
  25. The mitochondrial respiratory chain. Rich PR, Maréchal A. Essays Biochem. 47 1-23 (2010)
  26. Biological inorganic chemistry at the beginning of the 21st century. Gray HB. Proc. Natl. Acad. Sci. U.S.A. 100 3563-3568 (2003)
  27. Proton pumping by cytochrome oxidase: progress, problems and postulates. Zaslavsky D, Gennis RB. Biochim. Biophys. Acta 1458 164-179 (2000)
  28. Unraveling the heater: new insights into the structure of the alternative oxidase. Moore AL, Shiba T, Young L, Harada S, Kita K, Ito K. Annu Rev Plant Biol 64 637-663 (2013)
  29. Active sites of transition-metal enzymes with a focus on nickel. Ermler U, Grabarse W, Shima S, Goubeaud M, Thauer RK. Curr. Opin. Struct. Biol. 8 749-758 (1998)
  30. The power of life--cytochrome c oxidase takes center stage in metabolic control, cell signalling and survival. Arnold S. Mitochondrion 12 46-56 (2012)
  31. Structures of membrane proteins. Vinothkumar KR, Henderson R. Q. Rev. Biophys. 43 65-158 (2010)
  32. Guidelines for tunneling in enzymes. Moser CC, Anderson JL, Dutton PL. Biochim. Biophys. Acta 1797 1573-1586 (2010)
  33. The subunit composition and function of mammalian cytochrome c oxidase. Kadenbach B, Hüttemann M. Mitochondrion 24 64-76 (2015)
  34. Redox-driven membrane-bound proton pumps. Brzezinski P. Trends Biochem. Sci. 29 380-387 (2004)
  35. Cytochrome c oxidase: evolution of control via nuclear subunit addition. Pierron D, Wildman DE, Hüttemann M, Markondapatnaikuni GC, Aras S, Grossman LI. Biochim. Biophys. Acta 1817 590-597 (2012)
  36. Novel cofactors via post-translational modifications of enzyme active sites. Okeley NM, van der Donk WA. Chem. Biol. 7 R159-71 (2000)
  37. How does cytochrome oxidase pump protons? Gennis RB. Proc. Natl. Acad. Sci. U.S.A. 95 12747-12749 (1998)
  38. X-ray structure and the reaction mechanism of bovine heart cytochrome c oxidase. Yoshikawa S, Shinzawa-Itoh K, Tsukihara T. J. Inorg. Biochem. 82 1-7 (2000)
  39. Gating and regulation of the cytochrome c oxidase proton pump. Ferguson-Miller S, Hiser C, Liu J. Biochim. Biophys. Acta 1817 489-494 (2012)
  40. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins. Huang X, Groves JT. Chem. Rev. 118 2491-2553 (2018)
  41. Structure of cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes. Abramson J, Svensson-Ek M, Byrne B, Iwata S. Biochim. Biophys. Acta 1544 1-9 (2001)
  42. Generation of protein-derived redox cofactors by posttranslational modification. Davidson VL. Mol Biosyst 7 29-37 (2011)
  43. Femtosecond processes in proteins. Vos MH, Martin JL. Biochim. Biophys. Acta 1411 1-20 (1999)
  44. Mechanism of proton translocation by cytochrome c oxidase: a new four-stroke histidine cycle. Wikström M. Biochim. Biophys. Acta 1458 188-198 (2000)
  45. High-valent metal-oxo intermediates in energy demanding processes: from dioxygen reduction to water splitting. Ray K, Heims F, Schwalbe M, Nam W. Curr Opin Chem Biol 25 159-171 (2015)
  46. Uncovering channels in photosystem II by computer modelling: current progress, future prospects, and lessons from analogous systems. Ho FM. Photosyn. Res. 98 503-522 (2008)
  47. Understanding the mechanism of proton movement linked to oxygen reduction in cytochrome c oxidase: lessons from other proteins. Mills DA, Ferguson-Miller S. FEBS Lett. 545 47-51 (2003)
  48. Functions of the hydrophilic channels in protonmotive cytochrome c oxidase. Rich PR, Maréchal A. J R Soc Interface 10 20130183 (2013)
  49. Heme-mediated oxygen activation in biology: cytochrome c oxidase and nitric oxide synthase. Poulos TL, Li H, Raman CS. Curr Opin Chem Biol 3 131-137 (1999)
  50. Reduction of dioxygen by enzymes containing copper. Bento I, Carrondo MA, Lindley PF. J. Biol. Inorg. Chem. 11 539-547 (2006)
  51. Respiratory complex III dysfunction in humans and the use of yeast as a model organism to study mitochondrial myopathy and associated diseases. Meunier B, Fisher N, Ransac S, Mazat JP, Brasseur G. Biochim. Biophys. Acta 1827 1346-1361 (2013)
  52. Cytochrome c oxidase: Intermediates of the catalytic cycle and their energy-coupled interconversion. Konstantinov AA. FEBS Lett. 586 630-639 (2012)
  53. Dioxygen-activating bio-inorganic model complexes. Liang HC, Dahan M, Karlin KD. Curr Opin Chem Biol 3 168-175 (1999)
  54. Yeast cytochrome c oxidase: a model system to study mitochondrial forms of the haem-copper oxidase superfamily. Maréchal A, Meunier B, Lee D, Orengo C, Rich PR. Biochim. Biophys. Acta 1817 620-628 (2012)
  55. Bis-histidine-coordinated hemes in four-helix bundles: how the geometry of the bundle controls the axial imidazole plane orientations in transmembrane cytochromes of mitochondrial complexes II and III and related proteins. Berry EA, Walker FA. J. Biol. Inorg. Chem. 13 481-498 (2008)
  56. Probing molecular structure of dioxygen reduction site of bacterial quinol oxidases through ligand binding to the redox metal centers. Tsubaki M, Hori H, Mogi T. J. Inorg. Biochem. 82 19-25 (2000)
  57. Construction of heme enzymes: four approaches. Watanabe Y. Curr Opin Chem Biol 6 208-216 (2002)
  58. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Ann. Bot. 116 583-600 (2015)
  59. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain. Sun F, Zhou Q, Pang X, Xu Y, Rao Z. Curr. Opin. Struct. Biol. 23 526-538 (2013)
  60. Understanding and applying tyrosine biochemical diversity. Jones LH, Narayanan A, Hett EC. Mol Biosyst 10 952-969 (2014)
  61. A cytochrome c oxidase proton pumping mechanism that excludes the O2 reduction site. Yoshikawa S. FEBS Lett. 555 8-12 (2003)
  62. Crystal structures of all-alpha type membrane proteins. McLuskey K, Roszak AW, Zhu Y, Isaacs NW. Eur. Biophys. J. 39 723-755 (2010)
  63. Oxygen Activation and Energy Conservation by Cytochrome c Oxidase. Wikström M, Krab K, Sharma V. Chem. Rev. 118 2469-2490 (2018)
  64. Current advances in research of cytochrome c oxidase. Popović DM. Amino Acids 45 1073-1087 (2013)
  65. Amazing structure of respirasome: unveiling the secrets of cell respiration. Guo R, Gu J, Wu M, Yang M. Protein Cell 7 854-865 (2016)
  66. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes. Tosha T, Shiro Y. IUBMB Life 65 217-226 (2013)
  67. Functional biomimetic models for the active site in the respiratory enzyme cytochrome c oxidase. Collman JP, Decréau RA. Chem. Commun. (Camb.) 5065-5076 (2008)
  68. Metals in membranes. Liang X, Campopiano DJ, Sadler PJ. Chem Soc Rev 36 968-992 (2007)
  69. Rational heme protein design: all roads lead to Rome. Lin YW, Sawyer EB, Wang J. Chem Asian J 8 2534-2544 (2013)
  70. Recent advances in bioinorganic spectroscopy. Lehnert N, George SD, Solomon EI. Curr Opin Chem Biol 5 176-187 (2001)
  71. Some recent contributions of FTIR difference spectroscopy to the study of cytochrome oxidase. Gennis RB. FEBS Lett. 555 2-7 (2003)
  72. Plasticity of proton pathways in haem-copper oxygen reductases. Pereira MM, Gomes CM, Teixeira M. FEBS Lett. 522 14-18 (2002)
  73. The metal site as a template for the metalloprotein structure formation. Liu C, Xu H. J. Inorg. Biochem. 88 77-86 (2002)
  74. Cooperative coupling and role of heme a in the proton pump of heme-copper oxidases. Papa S, Capitanio N, Villani G, Capitanio G, Bizzoca A, Palese LL, Carlino V, De Nitto E. Biochimie 80 821-836 (1998)
  75. Molecular mechanisms for generating transmembrane proton gradients. Gunner MR, Amin M, Zhu X, Lu J. Biochim. Biophys. Acta 1827 892-913 (2013)
  76. SecA: a potential antimicrobial target. Chaudhary AS, Chen W, Jin J, Tai PC, Wang B. Future Med Chem 7 989-1007 (2015)
  77. Coupled electron and proton transfer reactions during the O→E transition in bovine cytochrome c oxidase. Popović DM, Stuchebrukhov AA. Biochim. Biophys. Acta 1817 506-517 (2012)
  78. Photoinduced proton-coupled electron transfers in biorelevant phenolic systems. Bonin J, Robert M. Photochem. Photobiol. 87 1190-1203 (2011)
  79. Synthetic Fe/Cu Complexes: Toward Understanding Heme-Copper Oxidase Structure and Function. Adam SM, Wijeratne GB, Rogler PJ, Diaz DE, Quist DA, Liu JJ, Karlin KD. Chem. Rev. 118 10840-11022 (2018)
  80. The pathway of O₂to the active site in heme-copper oxidases. Einarsdóttir O, McDonald W, Funatogawa C, Szundi I, Woodruff WH, Dyer RB. Biochim. Biophys. Acta 1847 109-118 (2015)
  81. A comparison of catalytic site intermediates of cytochrome c oxidase and peroxidases. Rich PR, Iwaki M. Biochemistry Mosc. 72 1047-1055 (2007)
  82. Design of photoactive ruthenium complexes to study electron transfer and proton pumping in cytochrome oxidase. Durham B, Millett F. Biochim. Biophys. Acta 1817 567-574 (2012)
  83. From Synthesis to Utilization: The Ins and Outs of Mitochondrial Heme. Swenson SA, Moore CM, Marcero JR, Medlock AE, Reddi AR, Khalimonchuk O. Cells 9 (2020)
  84. Role of conformational change and K-path ligands in controlling cytochrome c oxidase activity. Liu J, Hiser C, Ferguson-Miller S. Biochem. Soc. Trans. 45 1087-1095 (2017)
  85. The mechanism of coupling between oxido-reduction and proton translocation in respiratory chain enzymes. Papa S, Capitanio G, Papa F. Biol Rev Camb Philos Soc 93 322-349 (2018)
  86. Experimental and conceptual approaches to root water transport. Boursiac Y, Protto V, Rishmawi L, Maurel C. Plant Soil 478 349-370 (2022)
  87. Improving artificial metalloenzymes' activity by optimizing electron transfer. Hu C, Yu Y, Wang J. Chem. Commun. (Camb.) 53 4173-4186 (2017)
  88. Proton Pumping and Non-Pumping Terminal Respiratory Oxidases: Active Sites Intermediates of These Molecular Machines and Their Derivatives. Siletsky SA, Borisov VB. Int J Mol Sci 22 10852 (2021)
  89. Role of cooperative H(+)/e(-) linkage (redox bohr effect) at heme a/Cu(A) and heme a(3)/Cu(B) in the proton pump of cytochrome c oxidase. Papa S. Biochemistry Mosc. 70 178-186 (2005)
  90. Traditional and novel tools to probe the mitochondrial metabolism in health and disease. Zhang Y, Avalos JL. Wiley Interdiscip Rev Syst Biol Med 9 (2017)
  91. A quantum chemical approach for the mechanisms of redox-active metalloenzymes. Siegbahn PEM. RSC Adv 11 3495-3508 (2021)
  92. Detergents: Friends not foes for high-performance membrane proteomics toward precision medicine. Zhang X. Proteomics 17 (2017)
  93. Protein-Derived Cofactors Revisited: Empowering Amino Acid Residues with New Functions. Davidson VL. Biochemistry 57 3115-3125 (2018)
  94. Three toxic gases meet in the mitochondria. Decréau RA, Collman JP. Front Physiol 6 210 (2015)
  95. A Salutary Role of Reactive Oxygen Species in Intercellular Tunnel-Mediated Communication. Liang D. Front Cell Dev Biol 6 2 (2018)
  96. An evolving view of complex II-noncanonical complexes, megacomplexes, respiration, signaling, and beyond. Iverson TM, Singh PK, Cecchini G. J Biol Chem 299 104761 (2023)
  97. Biochemistry of Copper Site Assembly in Heme-Copper Oxidases: A Theme with Variations. Llases ME, Morgada MN, Vila AJ. Int J Mol Sci 20 (2019)
  98. Bioinspired and Bioderived Aqueous Electrocatalysis. Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma SC, Feng J, Ngoc LTT, Kellner S, Li AY, Jorge Sobrido AB, Titirici MM. Chem Rev 123 2311-2348 (2023)
  99. Interaction of Terminal Oxidases with Amphipathic Molecules. Azarkina NV, Borisov VB, Oleynikov IP, Sudakov RV, Vygodina TV. Int J Mol Sci 24 6428 (2023)
  100. Research journey of respirasome. Wu M, Gu J, Zong S, Guo R, Liu T, Yang M. Protein Cell 11 318-338 (2020)

Articles citing this publication (327)

  1. The X-ray crystal structures of wild-type and EQ(I-286) mutant cytochrome c oxidases from Rhodobacter sphaeroides. Svensson-Ek M, Abramson J, Larsson G, Törnroth S, Brzezinski P, Iwata S. J. Mol. Biol. 321 329-339 (2002)
  2. Long-range electron transfer. Gray HB, Winkler JR. Proc. Natl. Acad. Sci. U.S.A. 102 3534-3539 (2005)
  3. Structure and mechanism of the aberrant ba(3)-cytochrome c oxidase from thermus thermophilus. Soulimane T, Buse G, Bourenkov GP, Bartunik HD, Huber R, Than ME. EMBO J. 19 1766-1776 (2000)
  4. eIF4E function in somatic cells modulates ageing in Caenorhabditis elegans. Syntichaki P, Troulinaki K, Tavernarakis N. Nature 445 922-926 (2007)
  5. The low-spin heme of cytochrome c oxidase as the driving element of the proton-pumping process. Tsukihara T, Shimokata K, Katayama Y, Shimada H, Muramoto K, Aoyama H, Mochizuki M, Shinzawa-Itoh K, Yamashita E, Yao M, Ishimura Y, Yoshikawa S. Proc. Natl. Acad. Sci. U.S.A. 100 15304-15309 (2003)
  6. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Proietti E, Jaouen F, Lefèvre M, Larouche N, Tian J, Herranz J, Dodelet JP. Nat Commun 2 416 (2011)
  7. Identification of conserved lipid/detergent-binding sites in a high-resolution structure of the membrane protein cytochrome c oxidase. Qin L, Hiser C, Mulichak A, Garavito RM, Ferguson-Miller S. Proc. Natl. Acad. Sci. U.S.A. 103 16117-16122 (2006)
  8. A century of mitochondrial research: achievements and perspectives. Scheffler IE. Mitochondrion 1 3-31 (2001)
  9. How azide inhibits ATP hydrolysis by the F-ATPases. Bowler MW, Montgomery MG, Leslie AG, Walker JE. Proc. Natl. Acad. Sci. U.S.A. 103 8646-8649 (2006)
  10. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Belevich I, Verkhovsky MI, Wikström M. Nature 440 829-832 (2006)
  11. An insight into the mechanism of human cysteine dioxygenase. Key roles of the thioether-bonded tyrosine-cysteine cofactor. Ye S, Wu X, Wei L, Tang D, Sun P, Bartlam M, Rao Z. J Biol Chem 282 3391-3402 (2007)
  12. The mechanism of proton pumping by cytochrome c oxidasex127e [comments]. Michel H. Proc. Natl. Acad. Sci. U.S.A. 95 12819-12824 (1998)
  13. A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Karu TI, Pyatibrat LV, Afanasyeva NI. Photochem. Photobiol. 80 366-372 (2004)
  14. Interhelical hydrogen bonds and spatial motifs in membrane proteins: polar clamps and serine zippers. Adamian L, Liang J. Proteins 47 209-218 (2002)
  15. Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search. Roberts VA, Pique ME. J. Biol. Chem. 274 38051-38060 (1999)
  16. Evolution of nuclear- and mitochondrial-encoded subunit interaction in cytochrome c oxidase. Schmidt TR, Wu W, Goodman M, Grossman LI. Mol. Biol. Evol. 18 563-569 (2001)
  17. High tolerance for ionizable residues in the hydrophobic interior of proteins. Isom DG, Cannon BR, Castañeda CA, Robinson A, García-Moreno B. Proc. Natl. Acad. Sci. U.S.A. 105 17784-17788 (2008)
  18. Electron hopping through proteins. Warren JJ, Ener ME, Vlček A, Winkler JR, Gray HB. Coord Chem Rev 256 2478-2487 (2012)
  19. What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Burykin A, Warshel A. Biophys. J. 85 3696-3706 (2003)
  20. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Seigneuret M. Biophys. J. 90 212-227 (2006)
  21. The heme-copper oxidases of Thermus thermophilus catalyze the reduction of nitric oxide: evolutionary implications. Giuffrè A, Stubauer G, Sarti P, Brunori M, Zumft WG, Buse G, Soulimane T. Proc. Natl. Acad. Sci. U.S.A. 96 14718-14723 (1999)
  22. A peroxide bridge between Fe and Cu ions in the O2 reduction site of fully oxidized cytochrome c oxidase could suppress the proton pump. Aoyama H, Muramoto K, Shinzawa-Itoh K, Hirata K, Yamashita E, Tsukihara T, Ogura T, Yoshikawa S. Proc. Natl. Acad. Sci. U.S.A. 106 2165-2169 (2009)
  23. Non-alpha-helical elements modulate polytopic membrane protein architecture. Riek RP, Rigoutsos I, Novotny J, Graham RM. J. Mol. Biol. 306 349-362 (2001)
  24. How oxygen is activated and reduced in respiration. Babcock GT. Proc. Natl. Acad. Sci. U.S.A. 96 12971-12973 (1999)
  25. Heme proteins--diversity in structural characteristics, function, and folding. Smith LJ, Kahraman A, Thornton JM. Proteins 78 2349-2368 (2010)
  26. The proton pumping pathway of bovine heart cytochrome c oxidase. Shimokata K, Katayama Y, Murayama H, Suematsu M, Tsukihara T, Muramoto K, Aoyama H, Yoshikawa S, Shimada H. Proc. Natl. Acad. Sci. U.S.A. 104 4200-4205 (2007)
  27. Using a functional enzyme model to understand the chemistry behind hydrogen sulfide induced hibernation. Collman JP, Ghosh S, Dey A, Decréau RA. Proc. Natl. Acad. Sci. U.S.A. 106 22090-22095 (2009)
  28. Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. Grabarse W, Mahlert F, Shima S, Thauer RK, Ermler U. J. Mol. Biol. 303 329-344 (2000)
  29. The cytochrome cbb3 from Pseudomonas stutzeri displays nitric oxide reductase activity. Forte E, Urbani A, Saraste M, Sarti P, Brunori M, Giuffrè A. Eur. J. Biochem. 268 6486-6491 (2001)
  30. A TyrCD1/TrpG8 hydrogen bond network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O. Milani M, Savard PY, Ouellet H, Ascenzi P, Guertin M, Bolognesi M. Proc. Natl. Acad. Sci. U.S.A. 100 5766-5771 (2003)
  31. Bovine cytochrome c oxidase structures enable O2 reduction with minimization of reactive oxygens and provide a proton-pumping gate. Muramoto K, Ohta K, Shinzawa-Itoh K, Kanda K, Taniguchi M, Nabekura H, Yamashita E, Tsukihara T, Yoshikawa S. Proc. Natl. Acad. Sci. U.S.A. 107 7740-7745 (2010)
  32. Proton pumping mechanism and catalytic cycle of cytochrome c oxidase: Coulomb pump model with kinetic gating. Popović DM, Stuchebrukhov AA. FEBS Lett. 566 126-130 (2004)
  33. Determination of the binding sites of the proton transfer inhibitors Cd2+ and Zn2+ in bacterial reaction centers. Axelrod HL, Abresch EC, Paddock ML, Okamura MY, Feher G. Proc. Natl. Acad. Sci. U.S.A. 97 1542-1547 (2000)
  34. Monte Carlo simulations of proton pumps: on the working principles of the biological valve that controls proton pumping in cytochrome c oxidase. Olsson MH, Warshel A. Proc. Natl. Acad. Sci. U.S.A. 103 6500-6505 (2006)
  35. Electrostatic basis for the unidirectionality of the primary proton transfer in cytochrome c oxidase. Pisliakov AV, Sharma PK, Chu ZT, Haranczyk M, Warshel A. Proc. Natl. Acad. Sci. U.S.A. 105 7726-7731 (2008)
  36. Crystal structure of nitrous oxide reductase from Paracoccus denitrificans at 1.6 A resolution. Haltia T, Brown K, Tegoni M, Cambillau C, Saraste M, Mattila K, Djinovic-Carugo K. Biochem. J. 369 77-88 (2003)
  37. Sites of excitatory and inhibitory actions of alcohols on neuronal alpha2beta4 nicotinic acetylcholine receptors. Borghese CM, Henderson LA, Bleck V, Trudell JR, Harris RA. J Pharmacol Exp Ther 307 42-52 (2003)
  38. A histidine residue acting as a controlling site for dioxygen reduction and proton pumping by cytochrome c oxidase. Muramoto K, Hirata K, Shinzawa-Itoh K, Yoko-o S, Yamashita E, Aoyama H, Tsukihara T, Yoshikawa S. Proc. Natl. Acad. Sci. U.S.A. 104 7881-7886 (2007)
  39. High resolution structure of the ba3 cytochrome c oxidase from Thermus thermophilus in a lipidic environment. Tiefenbrunn T, Liu W, Chen Y, Katritch V, Stout CD, Fee JA, Cherezov V. PLoS ONE 6 e22348 (2011)
  40. Studies of proton translocations in biological systems: simulating proton transport in carbonic anhydrase by EVB-based models. Braun-Sand S, Strajbl M, Warshel A. Biophys. J. 87 2221-2239 (2004)
  41. The role of copper and protons in heme-copper oxidases: kinetic study of an engineered heme-copper center in myoglobin. Sigman JA, Kim HK, Zhao X, Carey JR, Lu Y. Proc. Natl. Acad. Sci. U.S.A. 100 3629-3634 (2003)
  42. Atomically defined mechanism for proton transfer to a buried redox centre in a protein. Chen K, Hirst J, Camba R, Bonagura CA, Stout CD, Burgess BK, Armstrong FA. Nature 405 814-817 (2000)
  43. Coherent reaction dynamics in a bacterial cytochrome c oxidase. Liebl U, Lipowski G, Négrerie M, Lambry JC, Martin JL, Vos MH. Nature 401 181-184 (1999)
  44. A chemically explicit model for the mechanism of proton pumping in heme-copper oxidases. Sharpe MA, Ferguson-Miller S. J. Bioenerg. Biomembr. 40 541-549 (2008)
  45. Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase. Wikström M, Ribacka C, Molin M, Laakkonen L, Verkhovsky M, Puustinen A. Proc. Natl. Acad. Sci. U.S.A. 102 10478-10481 (2005)
  46. Protection from inactivation of the adenine nucleotide translocator during hypoglycaemia-induced apoptosis by mitochondrial phospholipid hydroperoxide glutathione peroxidase. Imai H, Koumura T, Nakajima R, Nomura K, Nakagawa Y. Biochem. J. 371 799-809 (2003)
  47. Electrical current generation and proton pumping catalyzed by the ba3-type cytochrome c oxidase from Thermus thermophilus. Kannt A, Soulimane T, Buse G, Becker A, Bamberg E, Michel H. FEBS Lett. 434 17-22 (1998)
  48. Evidence for a copper-coordinated histidine-tyrosine cross-link in the active site of cytochrome oxidase. Buse G, Soulimane T, Dewor M, Meyer HE, Blüggel M. Protein Sci. 8 985-990 (1999)
  49. Molecular evolution of cytochrome c oxidase subunit I in primates: is there coevolution between mitochondrial and nuclear genomes? Wu W, Schmidt TR, Goodman M, Grossman LI. Mol. Phylogenet. Evol. 17 294-304 (2000)
  50. Major changes in copper coordination accompany reduction of peptidylglycine monooxygenase: implications for electron transfer and the catalytic mechanism. Blackburn NJ, Rhames FC, Ralle M, Jaron S. J. Biol. Inorg. Chem. 5 341-353 (2000)
  51. Degenerative diseases, oxidative stress and cytochrome c oxidase function. Kadenbach B, Ramzan R, Vogt S. Trends Mol Med 15 139-147 (2009)
  52. Dynamics of electron transfer pathways in cytochrome C oxidase. Tan ML, Balabin I, Onuchic JN. Biophys. J. 86 1813-1819 (2004)
  53. LC-nanospray-MS/MS analysis of hydrophobic proteins from membrane protein complexes isolated by blue-native electrophoresis. Fandiño AS, Rais I, Vollmer M, Elgass H, Schägger H, Karas M. J Mass Spectrom 40 1223-1231 (2005)
  54. Mass spectrometric determination of dioxygen bond splitting in the "peroxy" intermediate of cytochrome c oxidase. Fabian M, Wong WW, Gennis RB, Palmer G. Proc. Natl. Acad. Sci. U.S.A. 96 13114-13117 (1999)
  55. Toward a chemical mechanism of proton pumping by the B-type cytochrome c oxidases: application of density functional theory to cytochrome ba3 of Thermus thermophilus. Fee JA, Case DA, Noodleman L. J. Am. Chem. Soc. 130 15002-15021 (2008)
  56. A putative novel nuclear-encoded subunit of the cytochrome c oxidase complex in trypanosomatids. Maslov DA, Zíková A, Kyselová I, Lukes J. Mol. Biochem. Parasitol. 125 113-125 (2002)
  57. Simulating redox coupled proton transfer in cytochrome c oxidase: looking for the proton bottleneck. Olsson MH, Sharma PK, Warshel A. FEBS Lett. 579 2026-2034 (2005)
  58. A D-pathway mutation decouples the Paracoccus denitrificans cytochrome c oxidase by altering the side-chain orientation of a distant conserved glutamate. Dürr KL, Koepke J, Hellwig P, Müller H, Angerer H, Peng G, Olkhova E, Richter OM, Ludwig B, Michel H. J. Mol. Biol. 384 865-877 (2008)
  59. Homogeneous catalytic O2 reduction to water by a cytochrome c oxidase model with trapping of intermediates and mechanistic insights. Halime Z, Kotani H, Li Y, Fukuzumi S, Karlin KD. Proc. Natl. Acad. Sci. U.S.A. 108 13990-13994 (2011)
  60. Human COX20 cooperates with SCO1 and SCO2 to mature COX2 and promote the assembly of cytochrome c oxidase. Bourens M, Boulet A, Leary SC, Barrientos A. Hum. Mol. Genet. 23 2901-2913 (2014)
  61. Mapping protein dynamics in catalytic intermediates of the redox-driven proton pump cytochrome c oxidase. Busenlehner LS, Salomonsson L, Brzezinski P, Armstrong RN. Proc. Natl. Acad. Sci. U.S.A. 103 15398-15403 (2006)
  62. Structural studies of constitutive nitric oxide synthases with diatomic ligands bound. Li H, Igarashi J, Jamal J, Yang W, Poulos TL. J. Biol. Inorg. Chem. 11 753-768 (2006)
  63. A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex. Schulte U, Haupt V, Abelmann A, Fecke W, Brors B, Rasmussen T, Friedrich T, Weiss H. J. Mol. Biol. 292 569-580 (1999)
  64. Observation of the equilibrium CuB-CO complex and functional implications of the transient heme a3 propionates in cytochrome ba3-CO from Thermus thermophilus. Fourier transform infrared (FTIR) and time-resolved step-scan FTIR studies. Koutsoupakis K, Stavrakis S, Pinakoulaki E, Soulimane T, Varotsis C. J Biol Chem 277 32860-32866 (2002)
  65. Proton uptake controls electron transfer in cytochrome c oxidase. Karpefors M, Adelroth P, Zhen Y, Ferguson-Miller S, Brzezinski P. Proc. Natl. Acad. Sci. U.S.A. 95 13606-13611 (1998)
  66. Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J. Angew. Chem. Int. Ed. Engl. 51 4312-4316 (2012)
  67. Structural and functional characterization of pi bulges and other short intrahelical deformations. Cartailler JP, Luecke H. Structure 12 133-144 (2004)
  68. Amyloid-β peptide binds to cytochrome C oxidase subunit 1. Hernandez-Zimbron LF, Luna-Muñoz J, Mena R, Vazquez-Ramirez R, Kubli-Garfias C, Cribbs DH, Manoutcharian K, Gevorkian G. PLoS ONE 7 e42344 (2012)
  69. Discovery of the first SecA inhibitors using structure-based virtual screening. Li M, Huang YJ, Tai PC, Wang B. Biochem. Biophys. Res. Commun. 368 839-845 (2008)
  70. The proton donor for O-O bond scission by cytochrome c oxidase. Gorbikova EA, Belevich I, Wikström M, Verkhovsky MI. Proc. Natl. Acad. Sci. U.S.A. 105 10733-10737 (2008)
  71. Transient binding of CO to Cu(B) in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: a time-resolved step-scan Fourier transform infrared investigation. Heitbrink D, Sigurdson H, Bolwien C, Brzezinski P, Heberle J. Biophys. J. 82 1-10 (2002)
  72. Perfusion-induced redox differences in cytochrome c oxidase: ATR/FT-IR spectroscopy. Nyquist RM, Heitbrink D, Bolwien C, Wells TA, Gennis RB, Heberle J. FEBS Lett. 505 63-67 (2001)
  73. Posttranslational modifications in the CP43 subunit of photosystem II. Anderson LB, Maderia M, Ouellette AJ, Putnam-Evans C, Higgins L, Krick T, MacCoss MJ, Lim H, Yates JR, Barry BA. Proc. Natl. Acad. Sci. U.S.A. 99 14676-14681 (2002)
  74. Characterization of a membrane protein folding motif, the Ser zipper, using designed peptides. North B, Cristian L, Fu Stowell X, Lear JD, Saven JG, Degrado WF. J. Mol. Biol. 359 930-939 (2006)
  75. Higher-order interhelical spatial interactions in membrane proteins. Adamian L, Jackups R, Binkowski TA, Liang J. J. Mol. Biol. 327 251-272 (2003)
  76. Molecular evolution of cytochrome c oxidase in high-performance fish (teleostei: Scombroidei). Dalziel AC, Moyes CD, Fredriksson E, Lougheed SC. J. Mol. Evol. 62 319-331 (2006)
  77. The timing of proton migration in membrane-reconstituted cytochrome c oxidase. Salomonsson L, Faxén K, Adelroth P, Brzezinski P. Proc. Natl. Acad. Sci. U.S.A. 102 17624-17629 (2005)
  78. Comparative modeling of a GABAA alpha1 receptor using three crystal structures as templates. Trudell JR, Bertaccini E. J. Mol. Graph. Model. 23 39-49 (2004)
  79. Cytochrome bo(3) from Escherichia coli: the binding and turnover of nitric oxide. Butler C, Forte E, Maria Scandurra F, Arese M, Giuffré A, Greenwood C, Sarti P. Biochem. Biophys. Res. Commun. 296 1272-1278 (2002)
  80. Heme-copper-dioxygen complexes: toward understanding ligand-environmental effects on the coordination geometry, electronic structure, and reactivity. Halime Z, Kieber-Emmons MT, Qayyum MF, Mondal B, Gandhi T, Puiu SC, Chufán EE, Sarjeant AA, Hodgson KO, Hedman B, Solomon EI, Karlin KD. Inorg Chem 49 3629-3645 (2010)
  81. NMR basis for interprotein electron transfer gating between cytochrome c and cytochrome c oxidase. Sakamoto K, Kamiya M, Imai M, Shinzawa-Itoh K, Uchida T, Kawano K, Yoshikawa S, Ishimori K. Proc. Natl. Acad. Sci. U.S.A. 108 12271-12276 (2011)
  82. Factors that control catalytic two- versus four-electron reduction of dioxygen by copper complexes. Fukuzumi S, Tahsini L, Lee YM, Ohkubo K, Nam W, Karlin KD. J Am Chem Soc 134 7025-7035 (2012)
  83. Higd1a is a positive regulator of cytochrome c oxidase. Hayashi T, Asano Y, Shintani Y, Aoyama H, Kioka H, Tsukamoto O, Hikita M, Shinzawa-Itoh K, Takafuji K, Higo S, Kato H, Yamazaki S, Matsuoka K, Nakano A, Asanuma H, Asakura M, Minamino T, Goto Y, Ogura T, Kitakaze M, Komuro I, Sakata Y, Tsukihara T, Yoshikawa S, Takashima S. Proc. Natl. Acad. Sci. U.S.A. 112 1553-1558 (2015)
  84. An inquiry into protein structure and genetic disease: introducing undergraduates to bioinformatics in a large introductory course. Bednarski AE, Elgin SC, Pakrasi HB. Cell Biol Educ 4 207-220 (2005)
  85. Intramolecular single-turnover reaction in a cytochrome C oxidase model bearing a Tyr244 mimic. Collman JP, Decréau RA, Yan Y, Yoon J, Solomon EI. J. Am. Chem. Soc. 129 5794-5795 (2007)
  86. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes. Luz AL, Rooney JP, Kubik LL, Gonzalez CP, Song DH, Meyer JN. PLoS ONE 10 e0130940 (2015)
  87. The inorganic side of chemical biology. Lippard SJ. Nat. Chem. Biol. 2 504-507 (2006)
  88. Toward the detection and validation of repeats in protein structure. Murray KB, Taylor WR, Thornton JM. Proteins 57 365-380 (2004)
  89. Crystallographic and online spectral evidence for role of conformational change and conserved water in cytochrome oxidase proton pump. Liu J, Qin L, Ferguson-Miller S. Proc. Natl. Acad. Sci. U.S.A. 108 1284-1289 (2011)
  90. Femtosecond resolution of ligand-heme interactions in the high-affinity quinol oxidase bd: A di-heme active site? Vos MH, Borisov VB, Liebl U, Martin JL, Konstantinov AA. Proc. Natl. Acad. Sci. U.S.A. 97 1554-1559 (2000)
  91. Interaction of nitric oxide with a functional model of cytochrome c oxidase. Collman JP, Dey A, Decreau RA, Yang Y, Hosseini A, Solomon EI, Eberspacher TA. Proc. Natl. Acad. Sci. U.S.A. 105 9892-9896 (2008)
  92. Model studies of the histidine-tyrosine cross-link in cytochrome C oxidase reveal the flexible substituent effect of the imidazole moiety. Pratt DA, Pesavento RP, van der Donk WA. Org. Lett. 7 2735-2738 (2005)
  93. Site-directed mutations in the mitochondrially encoded subunits I and III of yeast cytochrome oxidase. Meunier B. Biochem. J. 354 407-412 (2001)
  94. Zinc ions as cytochrome C oxidase inhibitors: two sites of action. Kuznetsova SS, Azarkina NV, Vygodina TV, Siletsky SA, Konstantinov AA. Biochemistry Mosc. 70 128-136 (2005)
  95. Constant pH Molecular Dynamics in Explicit Solvent with Enveloping Distribution Sampling and Hamiltonian Exchange. Lee J, Miller BT, Damjanović A, Brooks BR. J Chem Theory Comput 10 2738-2750 (2014)
  96. Reaction of Mycobacterium tuberculosis truncated hemoglobin O with hydrogen peroxide: evidence for peroxidatic activity and formation of protein-based radicals. Ouellet H, Ranguelova K, Labarre M, Wittenberg JB, Wittenberg BA, Magliozzo RS, Guertin M. J Biol Chem 282 7491-7503 (2007)
  97. Catalytic reduction of O2 by cytochrome C using a synthetic model of cytochrome C oxidase. Collman JP, Ghosh S, Dey A, Decréau RA, Yang Y. J. Am. Chem. Soc. 131 5034-5035 (2009)
  98. Proton-coupled electron transfer and the role of water molecules in proton pumping by cytochrome c oxidase. Sharma V, Enkavi G, Vattulainen I, Róg T, Wikström M. Proc. Natl. Acad. Sci. U.S.A. 112 2040-2045 (2015)
  99. Synthetic heme/copper assemblies: toward an understanding of cytochrome c oxidase interactions with dioxygen and nitrogen oxides. Hematian S, Garcia-Bosch I, Karlin KD. Acc. Chem. Res. 48 2462-2474 (2015)
  100. Zinc ions inhibit oxidation of cytochrome c oxidase by oxygen. Aagaard A, Brzezinski P. FEBS Lett. 494 157-160 (2001)
  101. Conformational relaxation and water penetration coupled to ionization of internal groups in proteins. Damjanović A, Brooks BR, García-Moreno B. J Phys Chem A 115 4042-4053 (2011)
  102. Exploration of the cytochrome c oxidase pathway puzzle and examination of the origin of elusive mutational effects. Chakrabarty S, Namslauer I, Brzezinski P, Warshel A. Biochim. Biophys. Acta 1807 413-426 (2011)
  103. Syntheses of hemoprotein models that can be covalently attached onto electrode surfaces by click chemistry. Decréau RA, Collman JP, Yang Y, Yan Y, Devaraj NK. J Org Chem 72 2794-2802 (2007)
  104. Accommodation of two diatomic molecules in cytochrome bo: insights into NO reductase activity in terminal oxidases. Hayashi T, Lin MT, Ganesan K, Chen Y, Fee JA, Gennis RB, Moënne-Loccoz P. Biochemistry 48 883-890 (2009)
  105. Exploring pathways and barriers for coupled ET/PT in cytochrome c oxidase: a general framework for examining energetics and mechanistic alternatives. Olsson MH, Siegbahn PE, Blomberg MR, Warshel A. Biochim. Biophys. Acta 1767 244-260 (2007)
  106. Gene cluster of Rhodothermus marinus high-potential iron-sulfur Protein: oxygen oxidoreductase, a caa(3)-type oxidase belonging to the superfamily of heme-copper oxidases. Santana M, Pereira MM, Elias NP, Soares CM, Teixeira M. J. Bacteriol. 183 687-699 (2001)
  107. Heme binding by hemopexin: evidence for multiple modes of binding and functional implications. Shipulina N, Smith A, Morgan WT. J Protein Chem 19 239-248 (2000)
  108. Probing the Q-proton pathway of ba3-cytochrome c oxidase by time-resolved Fourier transform infrared spectroscopy. Koutsoupakis C, Soulimane T, Varotsis C. Biophys. J. 86 2438-2444 (2004)
  109. A cooperative model for protonmotive heme-copper oxidases. The role of heme a in the proton pump of cytochrome c oxidase. Papa S, Capitanio N, Villani G. FEBS Lett. 439 1-8 (1998)
  110. Electron spin resonance investigation of the cyanyl and azidyl radical formation by cytochrome c oxidase. Chen YR, Sturgeon BE, Gunther MR, Mason RP. J Biol Chem 274 24611-24616 (1999)
  111. Electron-transfer reduction of dinuclear copper peroxo and bis-μ-oxo complexes leading to the catalytic four-electron reduction of dioxygen to water. Tahsini L, Kotani H, Lee YM, Cho J, Nam W, Karlin KD, Fukuzumi S. Chemistry 18 1084-1093 (2012)
  112. Fourier transform infrared characterization of a CuB-nitrosyl complex in cytochrome ba3 from Thermus thermophilus: relevance to NO reductase activity in heme-copper terminal oxidases. Hayashi T, Lin IJ, Chen Y, Fee JA, Moënne-Loccoz P. J. Am. Chem. Soc. 129 14952-14958 (2007)
  113. O2 reduction by a functional heme/nonheme bis-iron NOR model complex. Collman JP, Dey A, Yang Y, Ghosh S, Decréau RA. Proc. Natl. Acad. Sci. U.S.A. 106 10528-10533 (2009)
  114. Quantum chemistry applied to the mechanisms of transition metal containing enzymes -- cytochrome c oxidase, a particularly challenging case. Blomberg MR, Siegbahn PE. J Comput Chem 27 1373-1384 (2006)
  115. Redox-linked transient deprotonation at the binuclear site in the aa(3)-type quinol oxidase from Acidianus ambivalens: implications for proton translocation. Das TK, Gomes CM, Teixeira M, Rousseau DL. Proc. Natl. Acad. Sci. U.S.A. 96 9591-9596 (1999)
  116. Temperature-independent catalytic two-electron reduction of dioxygen by ferrocenes with a copper(II) tris[2-(2-pyridyl)ethyl]amine catalyst in the presence of perchloric acid. Das D, Lee YM, Ohkubo K, Nam W, Karlin KD, Fukuzumi S. J. Am. Chem. Soc. 135 2825-2834 (2013)
  117. The protonation state of the cross-linked tyrosine during the catalytic cycle of cytochrome c oxidase. Gorbikova EA, Wikström M, Verkhovsky MI. J. Biol. Chem. 283 34907-34912 (2008)
  118. A novel heme and peroxide-dependent tryptophan-tyrosine cross-link in a mutant of cytochrome c peroxidase. Bhaskar B, Immoos CE, Shimizu H, Sulc F, Farmer PJ, Poulos TL. J. Mol. Biol. 328 157-166 (2003)
  119. Computational study of the activated O(H) state in the catalytic mechanism of cytochrome c oxidase. Sharma V, Karlin KD, Wikström M. Proc. Natl. Acad. Sci. U.S.A. 110 16844-16849 (2013)
  120. Cross-link formation of the cysteine 228-tyrosine 272 catalytic cofactor of galactose oxidase does not require dioxygen. Rogers MS, Hurtado-Guerrero R, Firbank SJ, Halcrow MA, Dooley DM, Phillips SE, Knowles PF, McPherson MJ. Biochemistry 47 10428-10439 (2008)
  121. Cytochrome c/cytochrome c oxidase interaction. Direct structural evidence for conformational changes during enzyme turnover. Sampson V, Alleyne T. Eur. J. Biochem. 268 6534-6544 (2001)
  122. Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs. Yu Y, Lv X, Li J, Zhou Q, Cui C, Hosseinzadeh P, Mukherjee A, Nilges MJ, Wang J, Lu Y. J. Am. Chem. Soc. 137 4594-4597 (2015)
  123. Radical formation in cytochrome c oxidase. Yu MA, Egawa T, Shinzawa-Itoh K, Yoshikawa S, Yeh SR, Rousseau DL, Gerfen GJ. Biochim. Biophys. Acta 1807 1295-1304 (2011)
  124. Redox-coupled proton pumping in cytochrome c oxidase: further insights from computer simulation. Xu J, Voth GA. Biochim. Biophys. Acta 1777 196-201 (2008)
  125. Acid-induced mechanism change and overpotential decrease in dioxygen reduction catalysis with a dinuclear copper complex. Das D, Lee YM, Ohkubo K, Nam W, Karlin KD, Fukuzumi S. J Am Chem Soc 135 4018-4026 (2013)
  126. Characterizing the proton loading site in cytochrome c oxidase. Lu J, Gunner MR. Proc. Natl. Acad. Sci. U.S.A. 111 12414-12419 (2014)
  127. Coevolutionary patterns in cytochrome c oxidase subunit I depend on structural and functional context. Wang ZO, Pollock DD. J. Mol. Evol. 65 485-495 (2007)
  128. Direct observation of ligand transfer and bond formation in cytochrome c oxidase by using mid-infrared chirped-pulse upconversion. Treuffet J, Kubarych KJ, Lambry JC, Pilet E, Masson JB, Martin JL, Vos MH, Joffre M, Alexandrou A. Proc. Natl. Acad. Sci. U.S.A. 104 15705-15710 (2007)
  129. Electron transfer rates and equilibrium within cytochrome c oxidase. Farver O, Einarsdóttir O, Pecht I. Eur. J. Biochem. 267 950-954 (2000)
  130. Frequencies of hydrophobic and hydrophilic runs and alternations in proteins of known structure. Schwartz R, King J. Protein Sci. 15 102-112 (2006)
  131. Interaction of bd-type quinol oxidase from Escherichia coli and carbon monoxide: heme d binds CO with high affinity. Borisov VB. Biochemistry Mosc. 73 14-22 (2008)
  132. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of CuA in human cytochrome oxidase. Morgada MN, Abriata LA, Cefaro C, Gajda K, Banci L, Vila AJ. Proc. Natl. Acad. Sci. U.S.A. 112 11771-11776 (2015)
  133. pH-dependent structural changes at the Heme-Copper binuclear center of cytochrome c oxidase. Das TK, Tomson FL, Gennis RB, Gordon M, Rousseau DL. Biophys. J. 80 2039-2045 (2001)
  134. Redox-controlled proton gating in bovine cytochrome c oxidase. Egawa T, Yeh SR, Rousseau DL. PLoS ONE 8 e63669 (2013)
  135. The reactions of hydrogen peroxide with bovine cytochrome c oxidase. Jünemann S, Heathcote P, Rich PR. Biochim. Biophys. Acta 1456 56-66 (2000)
  136. A functional model of the cytochrome c oxidase active site: unique conversion of a heme-mu-peroxo-Cu(II) intermediate into heme- superoxo/Cu(I). Liu JG, Naruta Y, Tani F. Angew. Chem. Int. Ed. Engl. 44 1836-1840 (2005)
  137. A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase. Shimada A, Kubo M, Baba S, Yamashita K, Hirata K, Ueno G, Nomura T, Kimura T, Shinzawa-Itoh K, Baba J, Hatano K, Eto Y, Miyamoto A, Murakami H, Kumasaka T, Owada S, Tono K, Yabashi M, Yamaguchi Y, Yanagisawa S, Sakaguchi M, Ogura T, Komiya R, Yan J, Yamashita E, Yamamoto M, Ago H, Yoshikawa S, Tsukihara T. Sci Adv 3 e1603042 (2017)
  138. Activationless electron transfer through the hydrophobic core of cytochrome c oxidase. Jasaitis A, Rappaport F, Pilet E, Liebl U, Vos MH. Proc. Natl. Acad. Sci. U.S.A. 102 10882-10886 (2005)
  139. Comment Assembling a time bomb--cytochrome c oxidase and disease. Poyton RO. Nat. Genet. 20 316-317 (1998)
  140. Cytochrome c signalosome in mitochondria. Díaz-Moreno I, García-Heredia JM, Díaz-Quintana A, De la Rosa MA. Eur. Biophys. J. 40 1301-1315 (2011)
  141. Fourier transform infrared (FTIR) and step-scan time-resolved FTIR spectroscopies reveal a unique active site in cytochrome caa3 oxidase from Thermus thermophilus. Pinakoulaki E, Soulimane T, Varotsis C. J Biol Chem 277 32867-32874 (2002)
  142. Interactions of the human calcitonin fragment 9-32 with phospholipids: a monolayer study. Wagner K, Van Mau N, Boichot S, Kajava AV, Krauss U, Le Grimellec C, Beck-Sickinger A, Heitz F. Biophys. J. 87 386-395 (2004)
  143. Microscopic basis for kinetic gating in Cytochrome c oxidase: insights from QM/MM analysis. Goyal P, Yang S, Cui Q. Chem Sci 6 826-841 (2015)
  144. Mutagenic analysis of Cox11 of Rhodobacter sphaeroides: insights into the assembly of Cu(B) of cytochrome c oxidase. Thompson AK, Smith D, Gray J, Carr HS, Liu A, Winge DR, Hosler JP. Biochemistry 49 5651-5661 (2010)
  145. Oligomerization of heme o synthase in cytochrome oxidase biogenesis is mediated by cytochrome oxidase assembly factor Coa2. Khalimonchuk O, Kim H, Watts T, Perez-Martinez X, Winge DR. J. Biol. Chem. 287 26715-26726 (2012)
  146. Overexpression, purification, and crystallization of the membrane-bound fumarate reductase from Escherichia coli. Luna-Chavez C, Iverson TM, Rees DC, Cecchini G. Protein Expr. Purif. 19 188-196 (2000)
  147. Primary structure of a novel subunit in ba3-cytochrome oxidase from Thermus thermophilus. Soulimane T, Than ME, Dewor M, Huber R, Buse G. Protein Sci. 9 2068-2073 (2000)
  148. Structural basis for nitrous oxide generation by bacterial nitric oxide reductases. Shiro Y, Sugimoto H, Tosha T, Nagano S, Hino T. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 367 1195-1203 (2012)
  149. A combined quantum chemical and crystallographic study on the oxidized binuclear center of cytochrome c oxidase. Kaila VR, Oksanen E, Goldman A, Bloch DA, Verkhovsky MI, Sundholm D, Wikström M. Biochim. Biophys. Acta 1807 769-778 (2011)
  150. Enhanced catalytic four-electron dioxygen (O2) and two-electron hydrogen peroxide (H2O2) reduction with a copper(II) complex possessing a pendant ligand pivalamido group. Kakuda S, Peterson RL, Ohkubo K, Karlin KD, Fukuzumi S. J. Am. Chem. Soc. 135 6513-6522 (2013)
  151. Filling the catalytic site of cytochrome c oxidase with electrons. Reduced CuB facilitates internal electron transfer to heme a3. Jancura D, Antalik M, Berka V, Palmer G, Fabian M. J Biol Chem 281 20003-20010 (2006)
  152. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Klema VJ, Wilmot CM. Int J Mol Sci 13 5375-5405 (2012)
  153. Two conformational states of Glu242 and pKas in bovine cytochrome c oxidase. Popovic DM, Stuchebrukhov AA. Photochem. Photobiol. Sci. 5 611-620 (2006)
  154. Characterization of mutants of beta histidine91, beta aspartate213, and beta asparagine222, possible components of the energy transduction pathway of the proton-translocating pyridine nucleotide transhydrogenase of Escherichia coli. Bragg PD, Hou C. Arch. Biochem. Biophys. 388 299-307 (2001)
  155. Density functional study for the bridged dinuclear center based on a high-resolution X-ray crystal structure of ba3 cytochrome c oxidase from Thermus thermophilus. Du WG, Noodleman L. Inorg Chem 52 14072-14088 (2013)
  156. Investigation of protonatable residues in Rhodothermus marinus caa3 haem-copper oxygen reductase: comparison with Paracoccus denitrificans aa3 haem-copper oxygen reductase. Soares CM, Baptista AM, Pereira MM, Teixeira M. J. Biol. Inorg. Chem. 9 124-134 (2004)
  157. Prediction of membrane protein orientation in lipid bilayers: a theoretical approach. Basyn F, Charloteaux B, Thomas A, Brasseur R. J. Mol. Graph. Model. 20 235-244 (2001)
  158. Role of copper ion in regulating ligand binding in a myoglobin-based cytochrome C oxidase model. Lu C, Zhao X, Lu Y, Rousseau DL, Yeh SR. J. Am. Chem. Soc. 132 1598-1605 (2010)
  159. Similarities and dissimilarities in the structure-function relation between the cytochrome c oxidase from bovine heart and from Paracoccus denitrificans as revealed by FT-IR difference spectroscopy. Hellwig P, Soulimane T, Buse G, Mäntele W. FEBS Lett. 458 83-86 (1999)
  160. Structure of melittin bound to phospholipid micelles studied using hydrogen-deuterium exchange and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Akashi S, Takio K. J. Am. Soc. Mass Spectrom. 12 1247-1253 (2001)
  161. A mechano-chemical model for energy transduction in cytochrome c oxidase: the work of a Maxwell's god. Xavier AV. FEBS Lett. 532 261-266 (2002)
  162. Chapter 28 Use of ruthenium photoreduction techniques to study electron transfer in cytochrome oxidase. Geren L, Durham B, Millett F. Meth. Enzymol. 456 507-520 (2009)
  163. Heme-copper/dioxygen adduct formation relevant to cytochrome c oxidase: spectroscopic characterization of [(6L)FeIII-(O2(2-))-CuII]+. Ghiladi RA, Huang HW, Moënne-Loccoz P, Stasser J, Blackburn NJ, Woods AS, Cotter RJ, Incarvito CD, Rheingold AL, Karlin KD. J. Biol. Inorg. Chem. 10 63-77 (2005)
  164. Probing protonation/deprotonation of tyrosine residues in cytochrome ba3 oxidase from Thermus thermophilus by time-resolved step-scan Fourier transform infrared spectroscopy. Koutsoupakis C, Kolaj-Robin O, Soulimane T, Varotsis C. J. Biol. Chem. 286 30600-30605 (2011)
  165. Structures of reduced and ligand-bound nitric oxide reductase provide insights into functional differences in respiratory enzymes. Sato N, Ishii S, Sugimoto H, Hino T, Fukumori Y, Sako Y, Shiro Y, Tosha T. Proteins 82 1258-1271 (2014)
  166. A novel tyrosine-heme C−O covalent linkage in F43Y myoglobin: a new post-translational modification of heme proteins. Yan DJ, Li W, Xiang Y, Wen GB, Lin YW, Tan X. Chembiochem 16 47-50 (2015)
  167. Interconversions of P and F intermediates of cytochrome c oxidase from Paracoccus denitrificans. von der Hocht I, van Wonderen JH, Hilbers F, Angerer H, MacMillan F, Michel H. Proc. Natl. Acad. Sci. U.S.A. 108 3964-3969 (2011)
  168. Rates and Equilibrium of CuA to heme a electron transfer in Paracoccus denitrificans cytochrome c oxidase. Farver O, Grell E, Ludwig B, Michel H, Pecht I. Biophys. J. 90 2131-2137 (2006)
  169. Significant Improvement of Oxidase Activity through the Genetic Incorporation of a Redox-active Unnatural Amino Acid. Yang Y, Zhou Q, Wang L, Liu X, Zhang W, Hu M, Dong J, Li J, Xiaoxuan L, Ouyang H, Li H, Gao F, Gong W, Lu Y, Wang J. Chem Sci 6 3881-3885 (2015)
  170. Similarity of cytochrome c oxidases in different organisms. Popovic DM, Leontyev IV, Beech DG, Stuchebrukhov AA. Proteins 78 2691-2698 (2010)
  171. Structural changes that occur upon photolysis of the Fe(II)(a3)-CO complex in the cytochrome ba(3)-oxidase of Thermus thermophilus: a combined X-ray crystallographic and infrared spectral study demonstrates CO binding to Cu(B). Liu B, Zhang Y, Sage JT, Soltis SM, Doukov T, Chen Y, Stout CD, Fee JA. Biochim. Biophys. Acta 1817 658-665 (2012)
  172. The active site structure of ba3 oxidase from Thermus thermophilus studied by resonance raman spectroscopy. Gerscher S, Hildebrandt P, Buse G, Soulimane T. Biospectroscopy 5 S53-63 (1999)
  173. The effects of pK(a) tuning on the thermodynamics and kinetics of folding: design of a solvent-shielded carboxylate pair at the a-position of a coiled-coil. Lau WL, Degrado WF, Roder H. Biophys. J. 99 2299-2308 (2010)
  174. Angular dependences of perpendicular and parallel mode electron paramagnetic resonance of oxidized beef heart cytochrome c oxidase. Hunter DJ, Oganesyan VS, Salerno JC, Butler CS, Ingledew WJ, Thomson AJ. Biophys. J. 78 439-450 (2000)
  175. Effective pumping proton collection facilitated by a copper site (CuB) of bovine heart cytochrome c oxidase, revealed by a newly developed time-resolved infrared system. Kubo M, Nakashima S, Yamaguchi S, Ogura T, Mochizuki M, Kang J, Tateno M, Shinzawa-Itoh K, Kato K, Yoshikawa S. J. Biol. Chem. 288 30259-30269 (2013)
  176. Kinetics of electron and proton transfer during O(2) reduction in cytochrome aa(3) from A. ambivalens: an enzyme lacking Glu(I-286). Gilderson G, Aagaard A, Gomes CM, Adelroth P, Teixeira M, Brzezinski P. Biochim. Biophys. Acta 1503 261-270 (2001)
  177. Modeling of the structural features of integral-membrane proteins reverse-environment prediction of integral membrane protein structure (REPIMPS). Dastmalchi S, Morris MB, Church WB. Protein Sci. 10 1529-1538 (2001)
  178. Mutations in the Ca2+ binding site of the Paracoccus denitrificans cytochrome c oxidase. Pfitzner U, Kirichenko A, Konstantinov AA, Mertens M, Wittershagen A, Kolbesen BO, Steffens GC, Harrenga A, Michel H, Ludwig B. FEBS Lett. 456 365-369 (1999)
  179. Proteins participating to the post-transcriptional regulation of the mitochondrial cytochrome c oxidase subunit IV via elements located in the 3'UTR. Cannino G, Ferruggia E, Rinaldi AM. Mitochondrion 9 471-480 (2009)
  180. Purification of Ovine Respiratory Complex I Results in a Highly Active and Stable Preparation. Letts JA, Degliesposti G, Fiedorczuk K, Skehel M, Sazanov LA. J. Biol. Chem. 291 24657-24675 (2016)
  181. The protein effect in the structure of two ferryl-oxo intermediates at the same oxidation level in the heme copper binuclear center of cytochrome c oxidase. Pinakoulaki E, Daskalakis V, Ohta T, Richter OM, Budiman K, Kitagawa T, Ludwig B, Varotsis C. J. Biol. Chem. 288 20261-20266 (2013)
  182. Time-resolved generation of a membrane potential by ba3 cytochrome c oxidase from Thermus thermophilus. Evidence for reduction-induced opening of the binuclear center. Siletskiy S, Soulimane T, Azarkina N, Vygodina TV, Buse G, Kaulen A, Konstantinov A. FEBS Lett. 457 98-102 (1999)
  183. A combined picture from theory and experiments on water oxidation, oxygen reduction and proton pumping. Siegbahn PE, Blomberg MR. Dalton Trans 5832-5840 (2009)
  184. Hydrogen sulfide stimulates Mycobacterium tuberculosis respiration, growth and pathogenesis. Saini V, Chinta KC, Reddy VP, Glasgow JN, Stein A, Lamprecht DA, Rahman MA, Mackenzie JS, Truebody BE, Adamson JH, Kunota TTR, Bailey SM, Moellering DR, Lancaster JR, Steyn AJC. Nat Commun 11 557 (2020)
  185. Molecular phylogeny of Australian Helicarionidae, Euconulidae and related groups (Gastropoda: Pulmonata: Stylommatophora) based on mitochondrial DNA. Hyman IT, Ho SY, Jermiin LS. Mol. Phylogenet. Evol. 45 792-812 (2007)
  186. Nitrogen Oxide Atom-Transfer Redox Chemistry; Mechanism of NO(g) to Nitrite Conversion Utilizing μ-oxo Heme-Fe(III)-O-Cu(II)(L) Constructs. Hematian S, Kenkel I, Shubina TE, Dürr M, Liu JJ, Siegler MA, Ivanovic-Burmazovic I, Karlin KD. J. Am. Chem. Soc. 137 6602-6615 (2015)
  187. Phenol-Induced O-O Bond Cleavage in a Low-Spin Heme-Peroxo-Copper Complex: Implications for O2 Reduction in Heme-Copper Oxidases. Schaefer AW, Kieber-Emmons MT, Adam SM, Karlin KD, Solomon EI. J. Am. Chem. Soc. 139 7958-7973 (2017)
  188. Protein-protein interfaces from cytochrome c oxidase I evolve faster than nonbinding surfaces, yet negative selection is the driving force. Aledo JC, Valverde H, Ruíz-Camacho M, Morilla I, López FD. Genome Biol Evol 6 3064-3076 (2014)
  189. Proton transfer in the K-channel analog of B-type Cytochrome c oxidase from Thermus thermophilus. Woelke AL, Wagner A, Galstyan G, Meyer T, Knapp EW. Biophys. J. 107 2177-2184 (2014)
  190. Synthetic and natural polyanions induce cytochrome c release from mitochondria in vitro and in situ. Krasnikov BF, Melik-Nubarov NS, Zorova LD, Kuzminova AE, Isaev NK, Cooper AJ, Zorov DB. Am. J. Physiol., Cell Physiol. 300 C1193-203 (2011)
  191. Terpyridine-porphyrin hetero-Pacman compounds. Schwalbe M, Metzinger R, Teets TS, Nocera DG. Chemistry 18 15449-15458 (2012)
  192. A periodicity analysis of transmembrane helices. Leonov H, Arkin IT. Bioinformatics 21 2604-2610 (2005)
  193. Broken Symmetry DFT Calculations/Analysis for Oxidized and Reduced Dinuclear Center in Cytochrome c Oxidase: Relating Structures, Protonation States, Energies, and Mössbauer Properties in ba3 Thermus thermophilus. Han Du WG, Noodleman L. Inorg Chem 54 7272-7290 (2015)
  194. Comparison of native and recombinant chlorite dismutase from Ideonella dechloratans. Danielsson Thorell H, Beyer NH, Heegaard NH, Ohman M, Nilsson T. Eur. J. Biochem. 271 3539-3546 (2004)
  195. Direct regulation of cytochrome c oxidase by calcium ions. Vygodina T, Kirichenko A, Konstantinov AA. PLoS ONE 8 e74436 (2013)
  196. Exploring O2 diffusion in A-type cytochrome c oxidases: molecular dynamics simulations uncover two alternative channels towards the binuclear site. Oliveira AS, Damas JM, Baptista AM, Soares CM. PLoS Comput. Biol. 10 e1004010 (2014)
  197. Formation and spectroscopic characterization of the dioxygen adduct of a heme-Cu complex possessing a cross-linked tyrosine-histidine mimic: modeling the active site of cytochrome c oxidase. Liu JG, Naruta Y, Tani F, Chishiro T, Tachi Y. Chem. Commun. (Camb.) 120-121 (2004)
  198. Heterogeneous natural selection on oxidative phosphorylation genes among fishes with extreme high and low aerobic performance. Zhang F, Broughton RE. BMC Evol. Biol. 15 173 (2015)
  199. Insights into functions of the H channel of cytochrome c oxidase from atomistic molecular dynamics simulations. Sharma V, Jambrina PG, Kaukonen M, Rosta E, Rich PR. Proc. Natl. Acad. Sci. U.S.A. 114 E10339-E10348 (2017)
  200. Modulation of the active site conformation by site-directed mutagenesis in cytochrome c oxidase from Paracoccus denitrificans. Ji H, Das TK, Puustinen A, Wikström M, Yeh SR, Rousseau DL. J. Inorg. Biochem. 104 318-323 (2010)
  201. Molecular dynamics in cytochrome c oxidase Mössbauer spectra deconvolution. Bossis F, Palese LL. Biochem. Biophys. Res. Commun. 404 438-442 (2011)
  202. P(M) and P(R) forms of cytochrome c oxidase have different spectral properties. Einarsdóttir O, Szundi I, Van Eps N, Sucheta A. J. Inorg. Biochem. 91 87-93 (2002)
  203. Protein pKa Prediction by Tree-Based Machine Learning. Chen AY, Lee J, Damjanovic A, Brooks BR. J Chem Theory Comput 18 2673-2686 (2022)
  204. Site-specific antibodies against hydrophilic domains of subunit III of bovine heart cytochrome c oxidase affect enzyme function. Jeannine Lincoln A, Donat N, Palmer G, Prochaska LJ. Arch. Biochem. Biophys. 416 81-91 (2003)
  205. The inhibitory binding site(s) of Zn2+ in cytochrome c oxidase. Francia F, Giachini L, Boscherini F, Venturoli G, Capitanio G, Martino PL, Papa S. FEBS Lett. 581 611-616 (2007)
  206. Using Biosynthetic Models of Heme-Copper Oxidase and Nitric Oxide Reductase in Myoglobin to Elucidate Structural Features Responsible for Enzymatic Activities. Bhagi-Damodaran A, Petrik I, Lu Y. Isr. J. Chem. 56 773-790 (2016)
  207. A click-activated fluorescent probe for selective detection of hydrazoic acid and its application in biological imaging. Zhou Y, Yao YW, Qi Q, Fang Y, Li JY, Yao C. Chem. Commun. (Camb.) 49 5924-5926 (2013)
  208. An engineered metalloprotein as a functional and structural bioinorganic model system. Ueno T. Angew. Chem. Int. Ed. Engl. 49 3868-3869 (2010)
  209. Cation binding site of cytochrome c oxidase: progress report. Vygodina TV, Kirichenko A, Konstantinov AA. Biochim. Biophys. Acta 1837 1188-1195 (2014)
  210. Chemically Modified Amino Acids in Copper Proteins That Bind or Activate Dioxygen The author acknowledges the Royal Society (London) for a University Research Fellowship. Halcrow MA. Angew. Chem. Int. Ed. Engl. 40 346-349 (2001)
  211. Dynamics of cytochrome c oxidase activity in acute ischemic stroke. Selaković VM, Jovanović MD, Mihajlović RR, Radenović LL. Acta Neurol. Scand. 111 329-332 (2005)
  212. Effect of calcium ions on electron transfer between hemes a and a(3) in cytochrome c oxidase. Vygodina TV, Dyuba AV, Konstantinov AA. Biochemistry Mosc. 77 901-909 (2012)
  213. Electron transfer pathways in cytochrome c oxidase. Lucas MF, Rousseau DL, Guallar V. Biochim. Biophys. Acta 1807 1305-1313 (2011)
  214. Evidence for a conformational change in subunit III of bovine heart mitochondrial cytochrome c oxidase. Ogunjimi EO, Pokalsky CN, Shroyer LA, Prochaska LJ. J. Bioenerg. Biomembr. 32 617-626 (2000)
  215. Evidence for the presence of two conformations of the heme a3-Cu(B) pocket of cytochrome caa3 from Thermus thermophilus. Pavlou A, Soulimane T, Pinakoulaki E. J Phys Chem B 115 11455-11461 (2011)
  216. Evidence that Na+-pumping occurs through the D-channel in Vitreoscilla cytochrome bo. Kim SK, Stark BC, Webster DA. Biochem. Biophys. Res. Commun. 332 332-338 (2005)
  217. How a novel tyrosine-heme cross-link fine-tunes the structure and functions of heme proteins: a direct comparitive study of L29H/F43Y myoglobin. Yan DJ, Yuan H, Li W, Xiang Y, He B, Nie CM, Wen GB, Lin YW, Tan X. Dalton Trans 44 18815-18822 (2015)
  218. IR signatures of the metal centres of bovine cytochrome c oxidase: assignments and redox-linkage. Dodia R, Maréchal A, Bettini S, Iwaki M, Rich PR. Biochem. Soc. Trans. 41 1242-1248 (2013)
  219. Kinetics of proton pumping in cytochrome c oxidase. Smirnov AY, Mourokh LG, Nori F. J Chem Phys 130 235105 (2009)
  220. Nitroxide spin labels as EPR reporters of the relaxation and magnetic properties of the heme-copper site in cytochrome bo3, E. coli. Oganesyan VS, White GF, Field S, Marritt S, Gennis RB, Yap LL, Thomson AJ. J. Biol. Inorg. Chem. 15 1255-1264 (2010)
  221. On the electron tunneling in molecules: a generalized orthogonalization procedure for finding tunneling orbitals. Zheng X, Georgievskii Y, Stuchebrukhov AA. J Chem Phys 121 8680-8686 (2004)
  222. Spectroscopic and kinetic investigation of the fully reduced and mixed valence states of ba3-cytochrome c oxidase from Thermus thermophilus: a Fourier transform infrared (FTIR) and time-resolved step-scan FTIR study. Koutsoupakis C, Soulimane T, Varotsis C. J. Biol. Chem. 287 37495-37507 (2012)
  223. Structure of the intact 14-subunit human cytochrome c oxidase. Zong S, Wu M, Gu J, Liu T, Guo R, Yang M. Cell Res. 28 1026-1034 (2018)
  224. The pore-lining regions in cytochrome c oxidases: A computational analysis of caveolin, cholesterol and transmembrane helix contributions to proton movement. Morrill GA, Kostellow AB, Gupta RK. Biochim. Biophys. Acta 1838 2838-2851 (2014)
  225. The presence of an aqueous cavity in the proton-pumping pathway of the pyridine nucleotide transhydrogenase of Escherichia coli is suggested by the reaction of the enzyme with sulfhydryl inhibitors. Bragg PD, Hou C. Arch. Biochem. Biophys. 380 141-150 (2000)
  226. Theoretical identification of proton channels in the quinol oxidase aa3 from Acidianus ambivalens. Victor BL, Baptista AM, Soares CM. Biophys. J. 87 4316-4325 (2004)
  227. Transthyretin aggregates induce production of reactive nitrogen species. Fong VH, Vieira A. Neurodegener Dis 11 42-48 (2013)
  228. A spectroscopic investigation of a tridentate Cu-complex mimicking the tyrosine-histidine cross-link of cytochrome C oxidase. Offenbacher A, White KN, Sen I, Oliver AG, Konopelski JP, Barry BA, Einarsdóttir O. J Phys Chem B 113 7407-7417 (2009)
  229. ATP generation in a host cell in early-phase infection is increased by upregulation of cytochrome c oxidase activity via the p2 peptide from human immunodeficiency virus type 1 Gag. Ogawa M, Takemoto Y, Sumi S, Inoue D, Kishimoto N, Takamune N, Shoji S, Suzu S, Misumi S. Retrovirology 12 97 (2015)
  230. Activation volumes for intramolecular electron transfer in bovine heart cytochrome c oxidase. Larsen RW. FEBS Lett. 462 75-78 (1999)
  231. Coordination of metal center biogenesis in human cytochrome c oxidase. Nývltová E, Dietz JV, Seravalli J, Khalimonchuk O, Barrientos A. Nat Commun 13 3615 (2022)
  232. Could the tyrosine-histidine ligand to CuB in cytochrome c oxidase be coordinatively labile? Implications from a quantum chemical model study of histidine substitutional lability and the effects of the covalent tyrosine-histidine cross-link. Colbran SB, Paddon-Row MN. J. Biol. Inorg. Chem. 8 855-865 (2003)
  233. Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature. Ishigami I, Zatsepin NA, Hikita M, Conrad CE, Nelson G, Coe JD, Basu S, Grant TD, Seaberg MH, Sierra RG, Hunter MS, Fromme P, Fromme R, Yeh SR, Rousseau DL. Proc. Natl. Acad. Sci. U.S.A. 114 8011-8016 (2017)
  234. Inhibition of electrocatalytic O(2) reduction of functional CcO models by competitive, non-competitive, and mixed inhibitors. Collman JP, Dey A, Barile CJ, Ghosh S, Decréau RA. Inorg Chem 48 10528-10534 (2009)
  235. Model studies of the Cu(B) site of cytochrome c oxidase utilizing a Zn(II) complex containing an imidazole-phenol cross-linked ligand. Pesavento RP, Pratt DA, Jeffers J, van der Donk WA. Dalton Trans 3326-3337 (2006)
  236. Mutations in the D-channel of cytochrome c oxidase causes leakage of the proton pump. Siegbahn PE, Blomberg MR. FEBS Lett. 588 545-548 (2014)
  237. Over-expression and characterization of Bacillus subtilis heme O synthase. Mogi T. J. Biochem. 145 669-675 (2009)
  238. Reversible dioxygen binding on asymmetric dinuclear rhodium centres. Nakajima T, Sakamoto M, Kurai S, Kure B, Tanase T. Chem. Commun. (Camb.) 49 5250-5252 (2013)
  239. Synthesis of N tau-arylhistidine derivatives via direct N-arylation. Yue W, Lewis SI, Koen YM, Hanzlik RP. Bioorg. Med. Chem. Lett. 14 1637-1640 (2004)
  240. Water exit pathways and proton pumping mechanism in B-type cytochrome c oxidase from molecular dynamics simulations. Yang L, Skjevik ÅA, Han Du WG, Noodleman L, Walker RC, Götz AW. Biochim. Biophys. Acta 1857 1594-1606 (2016)
  241. A new dinuclear heme-copper complex derived from functionalized protoporphyrin IX. Dallacosta C, Alves WA, da Costa Ferreira AM, Monzani E, Casella L. Dalton Trans 2197-2206 (2007)
  242. Application of 3-quinolinoyl picket porphyrins to the electroreduction of dioxygen to water: mimicking the active site of cytochrome c oxidase. Ricard D, Didier A, L'Her M, Boitrel B. Chembiochem 2 144-148 (2001)
  243. Communication between R481 and Cu(B) in cytochrome bo(3) ubiquinol oxidase from Escherichia coli. Egawa T, Lin MT, Hosler JP, Gennis RB, Yeh SR, Rousseau DL. Biochemistry 48 12113-12124 (2009)
  244. Critical roles of the CuB site in efficient proton pumping as revealed by crystal structures of mammalian cytochrome c oxidase catalytic intermediates. Shimada A, Hara F, Shinzawa-Itoh K, Kanehisa N, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. J Biol Chem 297 100967 (2021)
  245. Critical structural role of R481 in cytochrome c oxidase from Rhodobacter sphaeroides. Egawa T, Lee HJ, Gennis RB, Yeh SR, Rousseau DL. Biochim. Biophys. Acta 1787 1272-1275 (2009)
  246. Cytochrome c oxidase structures suggest a four-state stochastic pump mechanism. Palese LL. Phys Chem Chem Phys 21 4822-4830 (2019)
  247. Electron transfer processes in subunit I mutants of cytochrome bo quinol oxidase in Escherichia coli. Kobayashi K, Tagawa S, Mogi T. Biosci. Biotechnol. Biochem. 73 1599-1603 (2009)
  248. Energetic Mechanism of Cytochrome c-Cytochrome c Oxidase Electron Transfer Complex Formation under Turnover Conditions Revealed by Mutational Effects and Docking Simulation. Sato W, Hitaoka S, Inoue K, Imai M, Saio T, Uchida T, Shinzawa-Itoh K, Yoshikawa S, Yoshizawa K, Ishimori K. J. Biol. Chem. 291 15320-15331 (2016)
  249. Enhancement of C-H Oxidizing Ability in Co-O2  Complexes through an Isolated Heterobimetallic Oxo Intermediate. DeRosha DE, Mercado BQ, Lukat-Rodgers G, Rodgers KR, Holland PL. Angew. Chem. Int. Ed. Engl. 56 3211-3215 (2017)
  250. First-principles molecular dynamics study of proton transfer mechanism in bovine cytochrome c oxidase. Kamiya K, Boero M, Tateno M, Shiraishi K, Oshiyama A. J Phys Condens Matter 19 365220 (2007)
  251. Fourier-transform infrared studies on azide-binding to the binuclear center of the Escherichia coli bo-type ubiquinol oxidase. Tsubaki M, Mogi T, Hori H. FEBS Lett. 449 191-195 (1999)
  252. Heme-Cu Binucleating Ligand Supports Heme/O2 and FeII-CuI/O2 Reactivity Providing High- and Low-Spin FeIII-Peroxo-CuII Complexes. Kim H, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Inorg Chem 58 15423-15432 (2019)
  253. Iron porphyrins as models of cytochrome c oxidase. Ricard D, L'Her M, Richard P, Boitrel B. Chemistry 7 3291-3297 (2001)
  254. Kinetics of intramolecular electron transfer in cytochrome bo3 from Escherichia coli. Ching E, Gennis RB, Larsen RW. Biophys. J. 84 2728-2733 (2003)
  255. Ligand trapping by cytochrome c oxidase: implications for gating at the catalytic center. Parul D, Palmer G, Fabian M. J. Biol. Chem. 285 4536-4543 (2010)
  256. Membrane potential genesis in Nitella cells, mitochondria, and thylakoids. Kitasato H. J. Plant Res. 116 401-418 (2003)
  257. Mitochondrial inhibitor sodium azide inhibits the reorganization of mitochondria-rich cytoplasm and the establishment of the anteroposterior axis in ascidian embryo. Ishii H, Shirai T, Makino C, Nishikata T. Dev. Growth Differ. 56 175-188 (2014)
  258. Serial femtosecond crystallography structure of cytochrome c oxidase at room temperature. Andersson R, Safari C, Dods R, Nango E, Tanaka R, Yamashita A, Nakane T, Tono K, Joti Y, Båth P, Dunevall E, Bosman R, Nureki O, Iwata S, Neutze R, Brändén G. Sci Rep 7 4518 (2017)
  259. Site-directed mutagenesis of five conserved residues of subunit i of the cytochrome cbb3 oxidase in Rhodobacter capsulatus. Ozturk M, Gurel E, Watmough NJ, Mandaci S. J. Biochem. Mol. Biol. 40 697-707 (2007)
  260. Structure and coordination of CuB in the Acidianus ambivalens aa3 quinol oxidase heme-copper center. Bandeiras TM, Pereira MM, Teixeira M, Moenne-Loccoz P, Blackburn NJ. J. Biol. Inorg. Chem. 10 625-635 (2005)
  261. Structure and reaction mechanism of a novel enone reductase. Hou F, Miyakawa T, Kitamura N, Takeuchi M, Park SB, Kishino S, Ogawa J, Tanokura M. FEBS J. 282 1526-1537 (2015)
  262. Synthesis and structural characterization of cross-linked histidine-phenol Cu(ii) complexes as cytochrome c oxidase active site models. White KN, Sen I, Szundi I, Landaverry YR, Bria LE, Konopelski JP, Olmstead MM, Einarsdóttir O. Chem. Commun. (Camb.) 3252-3254 (2007)
  263. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes. Liu JG, Naruta Y, Tani F. Chemistry 13 6365-6378 (2007)
  264. The Unusual Homodimer of a Heme-Copper Terminal Oxidase Allows Itself to Utilize Two Electron Donors. Zhu G, Zeng H, Zhang S, Juli J, Tai L, Zhang D, Pang X, Zhang Y, Lam SM, Zhu Y, Peng G, Michel H, Sun F. Angew Chem Int Ed Engl 60 13323-13330 (2021)
  265. Thiol-copper(I) and disulfide-dicopper(I) complex O2-reactivity leading to sulfonate-copper(II) complex or the formation of a cross-linked thioether-phenol product with phenol addition. Lee Y, Lee DH, Sarjeant AA, Karlin KD. J. Inorg. Biochem. 101 1845-1858 (2007)
  266. A common coupling mechanism for A-type heme-copper oxidases from bacteria to mitochondria. Maréchal A, Xu JY, Genko N, Hartley AM, Haraux F, Meunier B, Rich PR. Proc Natl Acad Sci U S A 117 9349-9355 (2020)
  267. Analyzing the electrogenicity of cytochrome c oxidase. Kim I, Warshel A. Proc. Natl. Acad. Sci. U.S.A. 113 7810-7815 (2016)
  268. CO-dynamics in the active site of cytochrome c oxidase. Soloviov M, Meuwly M. J Chem Phys 140 145101 (2014)
  269. Circular dichroism spectra of cytochrome c oxidase. Dyuba AV, Arutyunyan AM, Vygodina TV, Azarkina NV, Kalinovich AV, Sharonov YA, Konstantinov AA. Metallomics 3 417-432 (2011)
  270. Comparison Between O and OH Intermediates of Cytochrome c Oxidase Studied by FTIR Spectroscopy. Gorbikova E, Kalendar R. Front Chem 8 387 (2020)
  271. Cox2A/Cox2B subunit interaction in Polytomella sp. cytochrome c oxidase: role of the Cox2B subunit extension. Jiménez-Suárez A, Vázquez-Acevedo M, Miranda-Astudillo H, González-Halphen D. J. Bioenerg. Biomembr. 49 453-461 (2017)
  272. Crystallographic studies of cytochrome c and cytochrome c oxidase. Tsukihara T. J Biochem 171 13-15 (2022)
  273. Cytochrome aa3 Oxygen Reductase Utilizes the Tunnel Observed in the Crystal Structures To Deliver O2 for Catalysis. Mahinthichaichan P, Gennis RB, Tajkhorshid E. Biochemistry 57 2150-2161 (2018)
  274. Docking of cytochrome c6 and plastocyanin to the aa3-type cytochrome c oxidase in the cyanobacterium Phormidium laminosum. Hart SE, Howe CJ, Mizuguchi K, Fernandez-Recio J. Protein Eng. Des. Sel. 21 689-698 (2008)
  275. Electrostatics of Cytochrome-c assemblies. Renugopalakrishnan V, Ortiz-Lombardía M, Verma C. J Mol Model 11 265-270 (2005)
  276. How hydrogen peroxide is metabolized by oxidized cytochrome c oxidase. Jancura D, Stanicova J, Palmer G, Fabian M. Biochemistry 53 3564-3575 (2014)
  277. Intramolecular electron transfer processes in Cu(B)-deficient cytochrome bo studied by pulse radiolysis. Kobayashi K, Tagawa S, Mogi T. J. Biochem. 145 685-691 (2009)
  278. NO and O2 reactivities of synthetic functional models of nitric oxide reductase and cytochrome c oxidase. Dey SG, Dey A. Dalton Trans 40 12633-12647 (2011)
  279. Nonphotodynamic Roles of Methylene Blue: Display of Distinct Antimycobacterial and Anticandidal Mode of Actions. Pal R, Ansari MA, Saibabu V, Das S, Fatima Z, Hameed S. J Pathog 2018 3759704 (2018)
  280. O2 Reduction by Biosynthetic Models of Cytochrome c Oxidase: Insights into Role of Proton Transfer Residues from Perturbed Active Sites Models of CcO. Mukherjee S, Mukherjee M, Mukherjee A, Bhagi-Damodaran A, Lu Y, Dey A. ACS Catal 8 8915-8924 (2018)
  281. Photoreactions of cytochrome C oxidase. Winterle JS, Einarsdóttir O. Photochem. Photobiol. 82 711-719 (2006)
  282. Redox dependent conformational changes in the mixed valence form of the cytochrome c oxidase from p. The reorganization of glutamic acid 278 is coupled to the electron transfer from/to heme a and the binuclear center. denitrificans. Hellwig P, Rost B, Mäntele W. Spectrochim Acta A Mol Biomol Spectrosc 57A 1123-1131 (2001)
  283. Reduction of ferricytochrome c by tyrosyltyrosylphenylalanine. Hirota S, Okumura H, Kuroiwa S, Funasaki N, Watanabe Y. J. Biol. Inorg. Chem. 10 355-363 (2005)
  284. Structural Determination of an Unusual CuI -Porphyrin-π-Bond in a Hetero-Pacman Cu-Zn-Complex. Marquardt M, Cula B, Budhija V, Dallmann A, Schwalbe M. Chemistry 27 3991-3996 (2021)
  285. Structure of a functional obligate complex III2IV2 respiratory supercomplex from Mycobacterium smegmatis. Wiseman B, Nitharwal RG, Fedotovskaya O, Schäfer J, Guo H, Kuang Q, Benlekbir S, Sjöstrand D, Ädelroth P, Rubinstein JL, Brzezinski P, Högbom M. Nat. Struct. Mol. Biol. 25 1128-1136 (2018)
  286. Structure of bovine cytochrome c oxidase in the ligand-free reduced state at neutral pH. Luo F, Shinzawa-Itoh K, Hagimoto K, Shimada A, Shimada S, Yamashita E, Yoshikawa S, Tsukihara T. Acta Crystallogr F Struct Biol Commun 74 92-98 (2018)
  287. Study of redox potential in cytochrome c covalently bound to terminal oxidase of alkaliphilic Bacillus pseudofirmus FTU. Muntyan MS, Bloch DA. Biochemistry Mosc. 73 107-111 (2008)
  288. Synthesis of a cyclic pentapeptide mimic of the active site His-Tyr cofactor of cytochrome c oxidase. Mahoney ME, Oliver A, Einarsdóttir O, Konopelski JP. J. Org. Chem. 74 8212-8218 (2009)
  289. The oxygenase-peroxidase theory of Bach and Chodat and its modern equivalents: change and permanence in scientific thinking as shown by our understanding of the roles of water, peroxide, and oxygen in the functioning of redox enzymes. Nicholls P. Biochemistry Mosc. 72 1039-1046 (2007)
  290. An engineered heme-copper center in myoglobin: CO migration and binding. Nienhaus K, Olson JS, Nienhaus GU. Biochim. Biophys. Acta 1834 1824-1831 (2013)
  291. Asymmetric Azidation under Hydrogen Bonding Phase-Transfer Catalysis: A Combined Experimental and Computational Study. Wang J, Horwitz MA, Dürr AB, Ibba F, Pupo G, Gao Y, Ricci P, Christensen KE, Pathak TP, Claridge TDW, Lloyd-Jones GC, Paton RS, Gouverneur V. J Am Chem Soc 144 4572-4584 (2022)
  292. Bimetallic M/N/C catalysts prepared from π-expanded metal salen precursors toward an efficient oxygen reduction reaction. Onoda A, Tanaka Y, Matsumoto K, Ito M, Sakata T, Yasuda H, Hayashi T. RSC Adv 8 2892-2899 (2018)
  293. Biochemical and crystallographic studies of monomeric and dimeric bovine cytochrome c oxidase. Shinzawa-Itoh K, Muramoto K. Biophys Physicobiol 18 186-195 (2021)
  294. Calcium ions inhibit reduction of heme a in bovine cytochrome c oxidase. Dyuba AV, Vygodina T, Azarkina N, Konstantinov AA. FEBS Lett. 589 3853-3858 (2015)
  295. Comparison of redox and ligand binding behaviour of yeast and bovine cytochrome c oxidases using FTIR spectroscopy. Maréchal A, Hartley AM, Warelow TP, Meunier B, Rich PR. Biochim Biophys Acta Bioenerg 1859 705-711 (2018)
  296. Crystallographic cyanide-probing for cytochrome c oxidase reveals structural bases suggesting that a putative proton transfer H-pathway pumps protons. Shimada A, Baba J, Nagao S, Shinzawa-Itoh K, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. J Biol Chem 299 105277 (2023)
  297. Cytochrome c oxidase deficiency detection in human fibroblasts using scanning electrochemical microscopy. Thind S, Lima D, Booy E, Trinh D, McKenna SA, Kuss S. Proc Natl Acad Sci U S A 121 e2310288120 (2024)
  298. Cytochrome c Reductase is a Key Enzyme Involved in the Extracellular Electron Transfer Pathway towards Transition Metal Complexes in Pseudomonas Putida. Lai B, Bernhardt PV, Krömer JO. ChemSusChem 13 5308-5317 (2020)
  299. Defining the viability of tardigrades with a molecular sensor related to death. Richaud M, Galas S. PLoS ONE 13 e0206444 (2018)
  300. Discovery and biosynthesis of tricyclic copper-binding ribosomal peptides containing histidine-to-butyrine crosslinks. Li Y, Ma Y, Xia Y, Zhang T, Sun S, Gao J, Yao H, Wang H. Nat Commun 14 2944 (2023)
  301. Electric fields control water-gated proton transfer in cytochrome c oxidase. Saura P, Riepl D, Frey DM, Wikström M, Kaila VRI. Proc Natl Acad Sci U S A 119 e2207761119 (2022)
  302. Electrostatic Environment of Proteorhodopsin Affects the pKa of Its Buried Primary Proton Acceptor. Han CT, Song J, Chan T, Pruett C, Han S. Biophys J 118 1838-1849 (2020)
  303. Formation and Reactivity of New Isoporphyrins: Implications for Understanding the Tyr-His Cross-Link Cofactor Biogenesis in Cytochrome c Oxidase. Ehudin MA, Senft L, Franke A, Ivanović-Burmazović I, Karlin KD. J Am Chem Soc 141 10632-10643 (2019)
  304. GPCR/endocytosis/ERK signaling/S2R is involved in the regulation of the internalization, mitochondria-targeting and -activating properties of human salivary histatin 1. Ma D, Sun W, Fu C, Nazmi K, Veerman ECI, Jaspers RT, Bolscher JGM, Bikker FJ, Wu G. Int J Oral Sci 14 42 (2022)
  305. Geometric preferences of crosslinked protein-derived cofactors reveal a high propensity for near-sequence pairs. Swain MD, Benson DE. Proteins 59 64-71 (2005)
  306. Hydronium Ions Accompanying Buried Acidic Residues Lead to High Apparent Dielectric Constants in the Interior of Proteins. Wu X, Brooks BR. J Phys Chem B 122 6215-6223 (2018)
  307. Improved production of β-carotene in light-powered Escherichia coli by co-expression of Gloeobacter rhodopsin expression. Lee CY, Chen KW, Chiang CL, Kao HY, Yu HC, Lee HC, Chen WL. Microb Cell Fact 22 207 (2023)
  308. Mitochondrial versus nuclear gene expression and membrane protein assembly: The case of subunit 2 of yeast cytochrome c oxidase. Rubalcava-Gracia D, Vázquez-Acevedo M, Funes S, Pérez-Martínez X, González-Halphen D. Mol. Biol. Cell (2018)
  309. Monomeric structure of an active form of bovine cytochrome c oxidase. Shinzawa-Itoh K, Sugimura T, Misaki T, Tadehara Y, Yamamoto S, Hanada M, Yano N, Nakagawa T, Uene S, Yamada T, Aoyama H, Yamashita E, Tsukihara T, Yoshikawa S, Muramoto K. Proc. Natl. Acad. Sci. U.S.A. 116 19945-19951 (2019)
  310. Pacman Compounds: From Energy Transfer to Cooperative Catalysis. Lang P, Schwalbe M. Chemistry 23 17398-17412 (2017)
  311. Probing the Proton-Loading Site of Cytochrome C Oxidase Using Time-Resolved Fourier Transform Infrared Spectroscopy. Gorbikova E, Samsonov SA, Kalendar R. Molecules 25 (2020)
  312. Progress report on molecular biometallics (1996-2000), a project of the priority areas for research under the auspices of the Japanese Government. Kitagawa T. J. Biol. Inorg. Chem. 5 410-415 (2000)
  313. Quantification of Local Electric Field Changes at the Active Site of Cytochrome c Oxidase by Fourier Transform Infrared Spectroelectrochemical Titrations. Baserga F, Dragelj J, Kozuch J, Mohrmann H, Knapp EW, Stripp ST, Heberle J. Front Chem 9 669452 (2021)
  314. Recent advances in tuning redox properties of electron transfer centers in metalloenzymes catalyzing oxygen reduction reaction and H2 oxidation important for fuel cells design. Vilbert AC, Liu Y, Dai H, Lu Y. Curr Opin Electrochem 30 100780 (2021)
  315. Reconstruction of absolute absorption spectrum of reduced heme a in cytochrome C oxidase from bovine heart. Dyuba AV, Vygodina TV, Konstantinov AA. Biochemistry (Mosc) 78 1358-1365 (2013)
  316. Redox-linked conformational changes in bovine heart cytochrome c oxidase: picosecond time-resolved fluorescence studies of cyanide complex. Das TK, Mazumdar S. Biopolymers 57 316-322 (2000)
  317. Reservoir pH replica exchange. Damjanovic A, Miller BT, Okur A, Brooks BR. J Chem Phys 149 072321 (2018)
  318. Simulating the slow to fast switch in cytochrome c oxidase catalysis by introducing a loop flip near the enzyme's cytochrome c (substrate) binding site. Alleyne T, Ignacio DN, Sampson VB, Ashe D, Wilson M. Biotechnol. Appl. Biochem. 64 677-685 (2017)
  319. Structural basis for safe and efficient energy conversion in a respiratory supercomplex. Kao WC, Ortmann de Percin Northumberland C, Cheng TC, Ortiz J, Durand A, von Loeffelholz O, Schilling O, Biniossek ML, Klaholz BP, Hunte C. Nat Commun 13 545 (2022)
  320. Structure of Yak Lactoperoxidase at 1.55 Å Resolution. Viswanathan V, Rani C, Ahmad N, Singh PK, Sharma P, Kaur P, Sharma S, Singh TP. Protein J 40 8-18 (2021)
  321. Substrate binding-dissociation and intermolecular electron transfer in cytochrome c oxidase are driven by energy-dependent conformational changes in the enzyme and substrate. Ashe D, Alleyne T, Sampson V. Biotechnol. Appl. Biochem. 59 213-222 (2012)
  322. Supramolecular bioinorganic chemistry: model complexes of cytochrome C oxidase meet functional surfaces. Bröring M. Angew. Chem. Int. Ed. Engl. 46 6222-6224 (2007)
  323. Temperature-dependent structural transition following X-ray-induced metal center reduction in oxidized cytochrome c oxidase. Ishigami I, Russi S, Cohen A, Yeh SR, Rousseau DL. J Biol Chem 298 101799 (2022)
  324. The Influence of Metabolic Inhibitors, Antibiotics, and Microgravity on Intact Cell MALDI-TOF Mass Spectra of the Cyanobacterium Synechococcus Sp. UPOC S4. Šebela M, Raus M, Ondřej V, Hašler P. Molecules 26 1683 (2021)
  325. The influence of temperature and osmolyte on the catalytic cycle of cytochrome c oxidase. Kornblatt JA, Hill BC, Marden MC. Eur. J. Biochem. 270 253-260 (2003)
  326. The reductive phase of Rhodobacter sphaeroides cytochrome c oxidase disentangled by CO ligation. Mohrmann H, Dragelj J, Baserga F, Knapp EW, Stripp ST, Heberle J. Phys Chem Chem Phys (2017)
  327. X-ray structures of catalytic intermediates of cytochrome c oxidase provide insights into its O2 activation and unidirectional proton-pump mechanisms. Shimada A, Etoh Y, Kitoh-Fujisawa R, Sasaki A, Shinzawa-Itoh K, Hiromoto T, Yamashita E, Muramoto K, Tsukihara T, Yoshikawa S. J Biol Chem 295 5818-5833 (2020)


Related citations provided by authors (2)

  1. The whole structure of the 13-subunit oxidized cytochrome c oxidase at 2.8 A.. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S Science 272 1136-44 (1996)
  2. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A.. Tsukihara T, Aoyama H, Yamashita E, Tomizaki T, Yamaguchi H, Shinzawa-Itoh K, Nakashima R, Yaono R, Yoshikawa S Science 269 1069-74 (1995)