1o9s Citations

Structure and catalytic mechanism of the human histone methyltransferase SET7/9.

Abstract

Acetylation, phosphorylation and methylation of the amino-terminal tails of histones are thought to be involved in the regulation of chromatin structure and function. With just one exception, the enzymes identified in the methylation of specific lysine residues on histones (histone methyltransferases) belong to the SET family. The high-resolution crystal structure of a ternary complex of human SET7/9 with a histone peptide and cofactor reveals that the peptide substrate and cofactor bind on opposite surfaces of the enzyme. The target lysine accesses the active site of the enzyme and the S-adenosyl-l-methionine (AdoMet) cofactor by inserting its side chain into a narrow channel that runs through the enzyme, connecting the two surfaces. Here we show from the structure and from solution studies that SET7/9, unlike most other SET proteins, is exclusively a mono-methylase. The structure indicates the molecular basis of the specificity of the enzyme for the histone target, and allows us to propose a model for the methylation reaction that accounts for the role of many of the residues that are invariant across the SET family.

Reviews - 1o9s mentioned but not cited (11)

  1. Many paths to methyltransfer: a chronicle of convergence. Schubert HL, Blumenthal RM, Cheng X. Trends Biochem Sci 28 329-335 (2003)
  2. The SET-domain protein superfamily: protein lysine methyltransferases. Dillon SC, Zhang X, Trievel RC, Cheng X. Genome Biol 6 227 (2005)
  3. Structural and sequence motifs of protein (histone) methylation enzymes. Cheng X, Collins RE, Zhang X. Annu Rev Biophys Biomol Struct 34 267-294 (2005)
  4. Inhibitors of Protein Methyltransferases and Demethylases. Kaniskan HÜ, Martini ML, Jin J. Chem Rev 118 989-1068 (2018)
  5. EZH2: biology, disease, and structure-based drug discovery. Tan JZ, Yan Y, Wang XX, Jiang Y, Xu HE. Acta Pharmacol Sin 35 161-174 (2014)
  6. Structure and function of SET and MYND domain-containing proteins. Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Int J Mol Sci 16 1406-1428 (2015)
  7. Structural dynamics of protein lysine methylation and demethylation. Cheng X, Zhang X. Mutat Res 618 102-115 (2007)
  8. Dynamics of histone lysine methylation: structures of methyl writers and erasers. Upadhyay AK, Cheng X. Prog Drug Res 67 107-124 (2011)
  9. Modulation of epigenetic targets for anticancer therapy: clinicopathological relevance, structural data and drug discovery perspectives. Andreoli F, Barbosa AJ, Parenti MD, Del Rio A. Curr Pharm Des 19 578-613 (2013)
  10. Diversity of the reaction mechanisms of SAM-dependent enzymes. Sun Q, Huang M, Wei Y. Acta Pharm Sin B 11 632-650 (2021)
  11. Methyltransferases: Functions and Applications. Abdelraheem E, Thair B, Varela RF, Jockmann E, Popadić D, Hailes HC, Ward JM, Iribarren AM, Lewkowicz ES, Andexer JN, Hagedoorn PL, Hanefeld U. Chembiochem 23 e202200212 (2022)

Articles - 1o9s mentioned but not cited (24)

  1. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Yap DB, Chu J, Berg T, Schapira M, Cheng SW, Moradian A, Morin RD, Mungall AJ, Meissner B, Boyle M, Marquez VE, Marra MA, Gascoyne RD, Humphries RK, Arrowsmith CH, Morin GB, Aparicio SA. Blood 117 2451-2459 (2011)
  2. Natural history of S-adenosylmethionine-binding proteins. Kozbial PZ, Mushegian AR. BMC Struct Biol 5 19 (2005)
  3. Specificity and mechanism of the histone methyltransferase Pr-Set7. Xiao B, Jing C, Kelly G, Walker PA, Muskett FW, Frenkiel TA, Martin SR, Sarma K, Reinberg D, Gamblin SJ, Wilson JR. Genes Dev 19 1444-1454 (2005)
  4. (R)-PFI-2 is a potent and selective inhibitor of SETD7 methyltransferase activity in cells. Barsyte-Lovejoy D, Li F, Oudhoff MJ, Tatlock JH, Dong A, Zeng H, Wu H, Freeman SA, Schapira M, Senisterra GA, Kuznetsova E, Marcellus R, Allali-Hassani A, Kennedy S, Lambert JP, Couzens AL, Aman A, Gingras AC, Al-Awar R, Fish PV, Gerstenberger BS, Roberts L, Benn CL, Grimley RL, Braam MJ, Rossi FM, Sudol M, Brown PJ, Bunnage ME, Owen DR, Zaph C, Vedadi M, Arrowsmith CH. Proc Natl Acad Sci U S A 111 12853-12858 (2014)
  5. Lysyl 5-hydroxylation, a novel histone modification, by Jumonji domain containing 6 (JMJD6). Unoki M, Masuda A, Dohmae N, Arita K, Yoshimatsu M, Iwai Y, Fukui Y, Ueda K, Hamamoto R, Shirakawa M, Sasaki H, Nakamura Y. J Biol Chem 288 6053-6062 (2013)
  6. Sinefungin derivatives as inhibitors and structure probes of protein lysine methyltransferase SETD2. Zheng W, Ibáñez G, Wu H, Blum G, Zeng H, Dong A, Li F, Hajian T, Allali-Hassani A, Amaya MF, Siarheyeva A, Yu W, Brown PJ, Schapira M, Vedadi M, Min J, Luo M. J Am Chem Soc 134 18004-18014 (2012)
  7. Structure of the catalytic domain of EZH2 reveals conformational plasticity in cofactor and substrate binding sites and explains oncogenic mutations. Wu H, Zeng H, Dong A, Li F, He H, Senisterra G, Seitova A, Duan S, Brown PJ, Vedadi M, Arrowsmith CH, Schapira M. PLoS One 8 e83737 (2013)
  8. How do SET-domain protein lysine methyltransferases achieve the methylation state specificity? Revisited by Ab initio QM/MM molecular dynamics simulations. Hu P, Wang S, Zhang Y. J Am Chem Soc 130 3806-3813 (2008)
  9. Structural Chemistry of Human SET Domain Protein Methyltransferases. Schapira M. Curr Chem Genomics 5 85-94 (2011)
  10. Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity. Guo HB, Guo H. Proc Natl Acad Sci U S A 104 8797-8802 (2007)
  11. Crystal structure of cardiac-specific histone methyltransferase SmyD1 reveals unusual active site architecture. Sirinupong N, Brunzelle J, Ye J, Pirzada A, Nico L, Yang Z. J Biol Chem 285 40635-40644 (2010)
  12. Structural and biochemical studies of human lysine methyltransferase Smyd3 reveal the important functional roles of its post-SET and TPR domains and the regulation of its activity by DNA binding. Xu S, Wu J, Sun B, Zhong C, Ding J. Nucleic Acids Res 39 4438-4449 (2011)
  13. Ab initio quantum mechanical/molecular mechanical molecular dynamics simulation of enzyme catalysis: the case of histone lysine methyltransferase SET7/9. Wang S, Hu P, Zhang Y. J Phys Chem B 111 3758-3764 (2007)
  14. A chemical biology toolbox to study protein methyltransferases and epigenetic signaling. Scheer S, Ackloo S, Medina TS, Schapira M, Li F, Ward JA, Lewis AM, Northrop JP, Richardson PL, Kaniskan HÜ, Shen Y, Liu J, Smil D, McLeod D, Zepeda-Velazquez CA, Luo M, Jin J, Barsyte-Lovejoy D, Huber KVM, De Carvalho DD, Vedadi M, Zaph C, Brown PJ, Arrowsmith CH. Nat Commun 10 19 (2019)
  15. Bromo-deaza-SAH: a potent and selective DOT1L inhibitor. Yu W, Smil D, Li F, Tempel W, Fedorov O, Nguyen KT, Bolshan Y, Al-Awar R, Knapp S, Arrowsmith CH, Vedadi M, Brown PJ, Schapira M. Bioorg Med Chem 21 1787-1794 (2013)
  16. Targets in epigenetics: inhibiting the methyl writers of the histone code. Yost JM, Korboukh I, Liu F, Gao C, Jin J. Curr Chem Genomics 5 72-84 (2011)
  17. Crystal structures of histone and p53 methyltransferase SmyD2 reveal a conformational flexibility of the autoinhibitory C-terminal domain. Jiang Y, Sirinupong N, Brunzelle J, Yang Z. PLoS One 6 e21640 (2011)
  18. The Human Mixed Lineage Leukemia 5 (MLL5), a Sequentially and Structurally Divergent SET Domain-Containing Protein with No Intrinsic Catalytic Activity. Mas-Y-Mas S, Barbon M, Teyssier C, Déméné H, Carvalho JE, Bird LE, Lebedev A, Fattori J, Schubert M, Dumas C, Bourguet W, le Maire A. PLoS One 11 e0165139 (2016)
  19. Investigating d-lysine stereochemistry for epigenetic methylation, demethylation and recognition. Belle R, Al Temimi AHK, Kumar K, Pieters BJGE, Tumber A, Dunford JE, Johansson C, Oppermann U, Brown T, Schofield CJ, Hopkinson RJ, Paton RS, Kawamura A, Mecinović J. Chem Commun (Camb) 53 13264-13267 (2017)
  20. CX, DPX and PRIDE: WWW servers for the analysis and comparison of protein 3D structures. Vlahovicek K, Pintar A, Parthasarathi L, Carugo O, Pongor S. Nucleic Acids Res 33 W252-4 (2005)
  21. Lysine Possesses the Optimal Chain Length for Histone Lysine Methyltransferase Catalysis. Temimi AHKA, Reddy YV, White PB, Guo H, Qian P, Mecinović J. Sci Rep 7 16148 (2017)
  22. Lysine methylation of FEN1 by SET7 is essential for its cellular response to replicative stress. Thandapani P, Couturier AM, Yu Z, Li X, Couture JF, Li S, Masson JY, Richard S. Oncotarget 8 64918-64931 (2017)
  23. Deep Neural Network Classifier for Virtual Screening Inhibitors of (S)-Adenosyl-L-Methionine (SAM)-Dependent Methyltransferase Family. Li F, Wan X, Xing J, Tan X, Li X, Wang Y, Zhao J, Wu X, Liu X, Li Z, Luo X, Lu W, Zheng M. Front Chem 7 324 (2019)
  24. Identification of functionally relevant lysine residues that modulate human farnesoid X receptor activation. Sun AQ, Luo Y, Backos DS, Xu S, Balasubramaniyan N, Reigan P, Suchy FJ. Mol Pharmacol 83 1078-1086 (2013)


Reviews citing this publication (53)

  1. Regulation of chromatin by histone modifications. Bannister AJ, Kouzarides T. Cell Res 21 381-395 (2011)
  2. Regulation of histone methylation by demethylimination and demethylation. Klose RJ, Zhang Y. Nat Rev Mol Cell Biol 8 307-318 (2007)
  3. Chemical mechanisms of histone lysine and arginine modifications. Smith BC, Denu JM. Biochim Biophys Acta 1789 45-57 (2009)
  4. Chromatin dynamics at DNA replication, transcription and repair. Ehrenhofer-Murray AE. Eur J Biochem 271 2335-2349 (2004)
  5. One-carbon metabolism and epigenetics: understanding the specificity. Mentch SJ, Locasale JW. Ann N Y Acad Sci 1363 91-98 (2016)
  6. Epigenetics: mechanisms and implications for diabetic complications. Cooper ME, El-Osta A, El-Osta A. Circ Res 107 1403-1413 (2010)
  7. Epigenetics--an epicenter of gene regulation: histones and histone-modifying enzymes. Biel M, Wascholowski V, Giannis A. Angew Chem Int Ed Engl 44 3186-3216 (2005)
  8. The functional diversity of protein lysine methylation. Lanouette S, Mongeon V, Figeys D, Couture JF. Mol Syst Biol 10 724 (2014)
  9. LSD1: oxidative chemistry for multifaceted functions in chromatin regulation. Forneris F, Binda C, Battaglioli E, Mattevi A. Trends Biochem Sci 33 181-189 (2008)
  10. SET domains and histone methylation. Xiao B, Wilson JR, Gamblin SJ. Curr Opin Struct Biol 13 699-705 (2003)
  11. The control of histone lysine methylation in epigenetic regulation. Völkel P, Angrand PO. Biochimie 89 1-20 (2007)
  12. Diverse involvement of EZH2 in cancer epigenetics. Völkel P, Dupret B, Le Bourhis X, Angrand PO. Am J Transl Res 7 175-193 (2015)
  13. SET7/9 mediated methylation of non-histone proteins in mammalian cells. Pradhan S, Chin HG, Estève PO, Jacobsen SE. Epigenetics 4 383-387 (2009)
  14. Epigenetic regulation of stem cell differentiation. Wu H, Sun YE. Pediatr Res 59 21R-5R (2006)
  15. WRAD: enabler of the SET1-family of H3K4 methyltransferases. Ernst P, Vakoc CR. Brief Funct Genomics 11 217-226 (2012)
  16. Substrate and product specificities of SET domain methyltransferases. Del Rizzo PA, Trievel RC. Epigenetics 6 1059-1067 (2011)
  17. Chemical and Biochemical Perspectives of Protein Lysine Methylation. Luo M. Chem Rev 118 6656-6705 (2018)
  18. Structures of protein domains that create or recognize histone modifications. Bottomley MJ. EMBO Rep 5 464-469 (2004)
  19. Histone-modifying enzymes: encrypting an enigmatic epigenetic code. Couture JF, Trievel RC. Curr Opin Struct Biol 16 753-760 (2006)
  20. Structure and function of histone H3 lysine 9 methyltransferases and demethylases. Krishnan S, Horowitz S, Trievel RC. Chembiochem 12 254-263 (2011)
  21. Inner workings and regulatory inputs that control Polycomb repressive complex 2. O'Meara MM, Simon JA. Chromosoma 121 221-234 (2012)
  22. Structural and functional coordination of DNA and histone methylation. Cheng X. Cold Spring Harb Perspect Biol 6 a018747 (2014)
  23. Transcriptional regulation by the Set7 lysine methyltransferase. Keating ST, El-Osta A. Epigenetics 8 361-372 (2013)
  24. The promise and failures of epigenetic therapies for cancer treatment. Bojang P, Ramos KS. Cancer Treat Rev 40 153-169 (2014)
  25. Histone modification enzymes: novel targets for cancer drugs. Kristeleit R, Stimson L, Workman P, Aherne W. Expert Opin Emerg Drugs 9 135-154 (2004)
  26. Targeting protein lysine methylation and demethylation in cancers. He Y, Korboukh I, Jin J, Huang J. Acta Biochim Biophys Sin (Shanghai) 44 70-79 (2012)
  27. Cracking the histone code: one, two, three methyls, you're out! Dutnall RN. Mol Cell 12 3-4 (2003)
  28. S-Adenosylmethionine-dependent alkylation reactions: when are radical reactions used? Lin H. Bioorg Chem 39 161-170 (2011)
  29. On your histone mark, SET, methylate! Binda O. Epigenetics 8 457-463 (2013)
  30. Acetylation- and Methylation-Related Epigenetic Proteins in the Context of Their Targets. Javaid N, Choi S. Genes (Basel) 8 E196 (2017)
  31. Molecular basis for substrate recognition by lysine methyltransferases and demethylases. Del Rizzo PA, Trievel RC. Biochim Biophys Acta 1839 1404-1415 (2014)
  32. Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits. Basavarajappa BS, Subbanna S. Brain Sci 6 E12 (2016)
  33. Plant epigenetic mechanisms: role in abiotic stress and their generational heritability. Sudan J, Raina M, Singh R. 3 Biotech 8 172 (2018)
  34. The Expanding Constellation of Histone Post-Translational Modifications in the Epigenetic Landscape. Cavalieri V. Genes (Basel) 12 1596 (2021)
  35. Chromatin modifications as targets for new anticancer drugs. Schäfer S, Jung M. Arch Pharm (Weinheim) 338 347-357 (2005)
  36. Host Methyltransferases and Demethylases: Potential New Epigenetic Targets for HIV Cure Strategies and Beyond. Boehm D, Ott M. AIDS Res Hum Retroviruses 33 S8-S22 (2017)
  37. Histone Methylation Regulation in Neurodegenerative Disorders. Basavarajappa BS, Subbanna S. Int J Mol Sci 22 4654 (2021)
  38. Metabolic memory: implications for diabetic vascular complications. Cooper ME. Pediatr Diabetes 10 343-346 (2009)
  39. A tale of chromatin and transcription in 100 structures. Cramer P. Cell 159 985-994 (2014)
  40. Methyltransferase Inhibitors: Competing with, or Exploiting the Bound Cofactor. Ferreira de Freitas R, Ivanochko D, Schapira M. Molecules 24 E4492 (2019)
  41. Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Maas MN, Hintzen JCJ, Porzberg MRB, Mecinović J. Int J Mol Sci 21 E9451 (2020)
  42. Viral-encoded enzymes that target host chromatin functions. Wei H, Zhou MM. Biochim Biophys Acta 1799 296-301 (2010)
  43. Gain-of-function mutation of chromatin regulators as a tumorigenic mechanism and an opportunity for therapeutic intervention. Shen C, Vakoc CR. Curr Opin Oncol 27 57-63 (2015)
  44. Histone H3K4 Methyltransferases as Targets for Drug-Resistant Cancers. Yang L, Jin M, Jeong KW. Biology (Basel) 10 581 (2021)
  45. Form, Fabric, and Function of a Flagellum-Associated Cytoskeletal Structure. Morriswood B. Cells 4 726-747 (2015)
  46. The missing linker: emerging trends for H1 variant-specific functions. Prendergast L, Reinberg D. Genes Dev 35 40-58 (2021)
  47. Lysine methylation and the regulation of p53. Carr SM, Munro S, La Thangue NB. Essays Biochem 52 79-92 (2012)
  48. Stepping inside the realm of epigenetic modifiers. Blum R. Biomol Concepts 6 119-136 (2015)
  49. A Structural Perspective on Gene Repression by Polycomb Repressive Complex 2. Liu X. Subcell Biochem 96 519-562 (2021)
  50. Alzheimer's Disease-Related Epigenetic Changes: Novel Therapeutic Targets. Paniri A, Hosseini MM, Akhavan-Niaki H. Mol Neurobiol (2023)
  51. H3 histone methylation landscape in male urogenital cancers: from molecular mechanisms to epigenetic biomarkers and therapeutic targets. Burlibasa L, Nicu AT, Chifiriuc MC, Medar C, Petrescu A, Jinga V, Stoica I. Front Cell Dev Biol 11 1181764 (2023)
  52. H3K4 trimethylation regulates cancer immunity: a promising therapeutic target in combination with immunotherapy. Xiao C, Fan T, Zheng Y, Tian H, Deng Z, Liu J, Li C, He J. J Immunother Cancer 11 e005693 (2023)
  53. The role of SET domain containing lysine methyltransferase 7 in tumorigenesis and development. Yang S, Wang X, Bai J, Duan B. Cell Cycle 22 269-275 (2023)

Articles citing this publication (155)

  1. Regulation of p53 activity through lysine methylation. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D. Nature 432 353-360 (2004)
  2. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Sneeringer CJ, Scott MP, Kuntz KW, Knutson SK, Pollock RM, Richon VM, Copeland RA. Proc Natl Acad Sci U S A 107 20980-20985 (2010)
  3. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Sanders SL, Portoso M, Mata J, Bähler J, Allshire RC, Kouzarides T. Cell 119 603-614 (2004)
  4. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El-Osta A, El-Osta A. Diabetes 58 1229-1236 (2009)
  5. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y. Mol Cell 25 801-812 (2007)
  6. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). McCabe MT, Graves AP, Ganji G, Diaz E, Halsey WS, Jiang Y, Smitheman KN, Ott HM, Pappalardi MB, Allen KE, Chen SB, Della Pietra A, Dul E, Hughes AM, Gilbert SA, Thrall SH, Tummino PJ, Kruger RG, Brandt M, Schwartz B, Creasy CL. Proc Natl Acad Sci U S A 109 2989-2994 (2012)
  7. Histone Methylation Dynamics and Gene Regulation Occur through the Sensing of One-Carbon Metabolism. Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D, Gómez Padilla P, Ables G, Bamman MM, Thalacker-Mercer AE, Nichenametla SN, Locasale JW. Cell Metab 22 861-873 (2015)
  8. Silencing by plant Polycomb-group genes requires dispersed trimethylation of histone H3 at lysine 27. Schubert D, Primavesi L, Bishopp A, Roberts G, Doonan J, Jenuwein T, Goodrich J. EMBO J 25 4638-4649 (2006)
  9. Structural basis for the product specificity of histone lysine methyltransferases. Zhang X, Yang Z, Khan SI, Horton JR, Tamaru H, Selker EU, Cheng X. Mol Cell 12 177-185 (2003)
  10. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Wang H, An W, Cao R, Xia L, Erdjument-Bromage H, Chatton B, Tempst P, Roeder RG, Zhang Y. Mol Cell 12 475-487 (2003)
  11. Structural basis of oncogenic histone H3K27M inhibition of human polycomb repressive complex 2. Justin N, Zhang Y, Tarricone C, Martin SR, Chen S, Underwood E, De Marco V, Haire LF, Walker PA, Reinberg D, Wilson JR, Gamblin SJ. Nat Commun 7 11316 (2016)
  12. Localized domains of G9a-mediated histone methylation are required for silencing of neuronal genes. Roopra A, Qazi R, Schoenike B, Daley TJ, Morrison JF. Mol Cell 14 727-738 (2004)
  13. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). He J, Kallin EM, Tsukada Y, Zhang Y. Nat Struct Mol Biol 15 1169-1175 (2008)
  14. PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Hyllus D, Stein C, Schnabel K, Schiltz E, Imhof A, Dou Y, Hsieh J, Bauer UM. Genes Dev 21 3369-3380 (2007)
  15. Di- and tri- but not monomethylation on histone H3 lysine 36 marks active transcription of genes involved in flowering time regulation and other processes in Arabidopsis thaliana. Xu L, Zhao Z, Dong A, Soubigou-Taconnat L, Renou JP, Steinmetz A, Shen WH. Mol Cell Biol 28 1348-1360 (2008)
  16. Structural biology of human H3K9 methyltransferases. Wu H, Min J, Lunin VV, Antoshenko T, Dombrovski L, Zeng H, Allali-Hassani A, Campagna-Slater V, Vedadi M, Arrowsmith CH, Plotnikov AN, Schapira M. PLoS One 5 e8570 (2010)
  17. Histone H3 recognition and presentation by the WDR5 module of the MLL1 complex. Ruthenburg AJ, Wang W, Graybosch DM, Li H, Allis CD, Patel DJ, Verdine GL. Nat Struct Mol Biol 13 704-712 (2006)
  18. Regulation of NF-kappaB activity through lysine monomethylation of p65. Ea CK, Baltimore D. Proc Natl Acad Sci U S A 106 18972-18977 (2009)
  19. Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit. Yang XD, Huang B, Li M, Lamb A, Kelleher NL, Chen LF. EMBO J 28 1055-1066 (2009)
  20. Structural basis for the requirement of additional factors for MLL1 SET domain activity and recognition of epigenetic marks. Southall SM, Wong PS, Odho Z, Roe SM, Wilson JR. Mol Cell 33 181-191 (2009)
  21. Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Couture JF, Collazo E, Brunzelle JS, Trievel RC. Genes Dev 19 1455-1465 (2005)
  22. Structural basis for lower lysine methylation state-specific readout by MBT repeats of L3MBTL1 and an engineered PHD finger. Li H, Fischle W, Wang W, Duncan EM, Liang L, Murakami-Ishibe S, Allis CD, Patel DJ. Mol Cell 28 677-691 (2007)
  23. On the mechanism of multiple lysine methylation by the human mixed lineage leukemia protein-1 (MLL1) core complex. Patel A, Dharmarajan V, Vought VE, Cosgrove MS. J Biol Chem 284 24242-24256 (2009)
  24. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor. Marango J, Shimoyama M, Nishio H, Meyer JA, Min DJ, Sirulnik A, Martinez-Martinez Y, Chesi M, Bergsagel PL, Zhou MM, Waxman S, Leibovitch BA, Walsh MJ, Licht JD. Blood 111 3145-3154 (2008)
  25. In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. Collins RE, Tachibana M, Tamaru H, Smith KM, Jia D, Zhang X, Selker EU, Shinkai Y, Cheng X. J Biol Chem 280 5563-5570 (2005)
  26. Structural basis for the methylation site specificity of SET7/9. Couture JF, Collazo E, Hauk G, Trievel RC. Nat Struct Mol Biol 13 140-146 (2006)
  27. The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation. Qiao Q, Li Y, Chen Z, Wang M, Reinberg D, Xu RM. J Biol Chem 286 8361-8368 (2011)
  28. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Han Z, Guo L, Wang H, Shen Y, Deng XW, Chai J. Mol Cell 22 137-144 (2006)
  29. Using a neural network and spatial clustering to predict the location of active sites in enzymes. Gutteridge A, Bartlett GJ, Thornton JM. J Mol Biol 330 719-734 (2003)
  30. Distinguishing hyperglycemic changes by Set7 in vascular endothelial cells. Okabe J, Orlowski C, Balcerczyk A, Tikellis C, Thomas MC, Cooper ME, El-Osta A, El-Osta A. Circ Res 110 1067-1076 (2012)
  31. SDG714, a histone H3K9 methyltransferase, is involved in Tos17 DNA methylation and transposition in rice. Ding Y, Wang X, Su L, Zhai J, Cao S, Zhang D, Liu C, Bi Y, Qian Q, Cheng Z, Chu C, Cao X. Plant Cell 19 9-22 (2007)
  32. Specificity analysis-based identification of new methylation targets of the SET7/9 protein lysine methyltransferase. Dhayalan A, Kudithipudi S, Rathert P, Jeltsch A. Chem Biol 18 111-120 (2011)
  33. Structural basis of the recognition of a methylated histone tail by JMJD2A. Chen Z, Zang J, Kappler J, Hong X, Crawford F, Wang Q, Lan F, Jiang C, Whetstine J, Dai S, Hansen K, Shi Y, Zhang G. Proc Natl Acad Sci U S A 104 10818-10823 (2007)
  34. Control of the hippo pathway by Set7-dependent methylation of Yap. Oudhoff MJ, Freeman SA, Couzens AL, Antignano F, Kuznetsova E, Min PH, Northrop JP, Lehnertz B, Barsyte-Lovejoy D, Vedadi M, Arrowsmith CH, Nishina H, Gold MR, Rossi FM, Gingras AC, Zaph C. Dev Cell 26 188-194 (2013)
  35. Choline deficiency alters global histone methylation and epigenetic marking at the Re1 site of the calbindin 1 gene. Mehedint MG, Niculescu MD, Craciunescu CN, Zeisel SH. FASEB J 24 184-195 (2010)
  36. Epigenetic mechanisms for nutrition determinants of later health outcomes. Zeisel SH. Am J Clin Nutr 89 1488S-1493S (2009)
  37. Ischemic insults promote epigenetic reprogramming of mu opioid receptor expression in hippocampal neurons. Formisano L, Noh KM, Miyawaki T, Mashiko T, Bennett MV, Zukin RS. Proc Natl Acad Sci U S A 104 4170-4175 (2007)
  38. Substrate specificity and kinetic mechanism of mammalian G9a histone H3 methyltransferase. Patnaik D, Chin HG, Estève PO, Benner J, Jacobsen SE, Pradhan S. J Biol Chem 279 53248-53258 (2004)
  39. Yeast Jhd2p is a histone H3 Lys4 trimethyl demethylase. Liang G, Klose RJ, Gardner KE, Zhang Y. Nat Struct Mol Biol 14 243-245 (2007)
  40. MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Sebastian S, Sreenivas P, Sambasivan R, Cheedipudi S, Kandalla P, Pavlath GK, Dhawan J. Proc Natl Acad Sci U S A 106 4719-4724 (2009)
  41. Letter Point mutation E1099K in MMSET/NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies. Oyer JA, Huang X, Zheng Y, Shim J, Ezponda T, Carpenter Z, Allegretta M, Okot-Kotber CI, Patel JP, Melnick A, Levine RL, Ferrando A, Mackerell AD, Kelleher NL, Licht JD, Popovic R. Leukemia 28 198-201 (2014)
  42. Structure of the conserved core of the yeast Dot1p, a nucleosomal histone H3 lysine 79 methyltransferase. Sawada K, Yang Z, Horton JR, Collins RE, Zhang X, Cheng X. J Biol Chem 279 43296-43306 (2004)
  43. Mechanism of multiple lysine methylation by the SET domain enzyme Rubisco LSMT. Trievel RC, Flynn EM, Houtz RL, Hurley JH. Nat Struct Biol 10 545-552 (2003)
  44. Histone trimethylation by Set1 is coordinated by the RRM, autoinhibitory, and catalytic domains. Schlichter A, Cairns BR. EMBO J 24 1222-1231 (2005)
  45. Methyltransferase Set7/9 maintains transcription and euchromatin structure at islet-enriched genes. Deering TG, Ogihara T, Trace AP, Maier B, Mirmira RG. Diabetes 58 185-193 (2009)
  46. The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. Tao Y, Neppl RL, Huang ZP, Chen J, Tang RH, Cao R, Zhang Y, Jin SW, Wang DZ. J Cell Biol 194 551-565 (2011)
  47. Structural origins for the product specificity of SET domain protein methyltransferases. Couture JF, Dirk LM, Brunzelle JS, Houtz RL, Trievel RC. Proc Natl Acad Sci U S A 105 20659-20664 (2008)
  48. Structure of the yeast Hst2 protein deacetylase in ternary complex with 2'-O-acetyl ADP ribose and histone peptide. Zhao K, Chai X, Marmorstein R. Structure 11 1403-1411 (2003)
  49. Structure and autoregulation of the yeast Hst2 homolog of Sir2. Zhao K, Chai X, Clements A, Marmorstein R. Nat Struct Biol 10 864-871 (2003)
  50. The trithorax-group protein Lid is a histone H3 trimethyl-Lys4 demethylase. Lee N, Zhang J, Klose RJ, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. Nat Struct Mol Biol 14 341-343 (2007)
  51. The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Pagans S, Kauder SE, Kaehlcke K, Sakane N, Schroeder S, Dormeyer W, Trievel RC, Verdin E, Schnolzer M, Ott M. Cell Host Microbe 7 234-244 (2010)
  52. Transcriptional control in cardiac progenitors: Tbx1 interacts with the BAF chromatin remodeling complex and regulates Wnt5a. Chen L, Fulcoli FG, Ferrentino R, Martucciello S, Illingworth EA, Baldini A. PLoS Genet 8 e1002571 (2012)
  53. Arabidopsis Histone Lysine Methyltransferases. Pontvianne F, Blevins T, Pikaard CS. Adv Bot Res 53 1-22 (2010)
  54. Pdx-1 links histone H3-Lys-4 methylation to RNA polymerase II elongation during activation of insulin transcription. Francis J, Chakrabarti SK, Garmey JC, Mirmira RG. J Biol Chem 280 36244-36253 (2005)
  55. Trimethylation of histone H3 lysine 36 by human methyltransferase PRDM9 protein. Eram MS, Bustos SP, Lima-Fernandes E, Siarheyeva A, Senisterra G, Hajian T, Chau I, Duan S, Wu H, Dombrovski L, Schapira M, Arrowsmith CH, Vedadi M. J Biol Chem 289 12177-12188 (2014)
  56. Biochemical reconstitution and phylogenetic comparison of human SET1 family core complexes involved in histone methylation. Shinsky SA, Monteith KE, Viggiano S, Cosgrove MS. J Biol Chem 290 6361-6375 (2015)
  57. Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription. Jih G, Iglesias N, Currie MA, Bhanu NV, Paulo JA, Gygi SP, Garcia BA, Moazed D. Nature 547 463-467 (2017)
  58. Demethylation of histone H3K36 and H3K9 by Rph1: a vestige of an H3K9 methylation system in Saccharomyces cerevisiae? Klose RJ, Gardner KE, Liang G, Erdjument-Bromage H, Tempst P, Zhang Y. Mol Cell Biol 27 3951-3961 (2007)
  59. Histone H3 lysine 4 methyltransferases and demethylases in self-renewal and differentiation of stem cells. Gu B, Lee MG. Cell Biosci 3 39 (2013)
  60. Methylation by Set9 modulates FoxO3 stability and transcriptional activity. Calnan DR, Webb AE, White JL, Stowe TR, Goswami T, Shi X, Espejo A, Bedford MT, Gozani O, Gygi SP, Brunet A. Aging (Albany NY) 4 462-479 (2012)
  61. Congress Chromatin and transcription: histones continue to make their marks. Jaskelioff M, Peterson CL. Nat Cell Biol 5 395-399 (2003)
  62. Tissue-specific histone modification and transcription factor binding in alpha globin gene expression. De Gobbi M, Anguita E, Hughes J, Sloane-Stanley JA, Sharpe JA, Koch CM, Dunham I, Gibbons RJ, Wood WG, Higgs DR. Blood 110 4503-4510 (2007)
  63. Dysregulation of AKT Pathway by SMYD2-Mediated Lysine Methylation on PTEN. Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. Neoplasia 17 367-373 (2015)
  64. Trilogies of histone lysine methylation as epigenetic landmarks of the eukaryotic genome. Lachner M, Sengupta R, Schotta G, Jenuwein T. Cold Spring Harb Symp Quant Biol 69 209-218 (2004)
  65. Catalytic roles for carbon-oxygen hydrogen bonding in SET domain lysine methyltransferases. Couture JF, Hauk G, Thompson MJ, Blackburn GM, Trievel RC. J Biol Chem 281 19280-19287 (2006)
  66. Structure of human SMYD2 protein reveals the basis of p53 tumor suppressor methylation. Wang L, Li L, Zhang H, Luo X, Dai J, Zhou S, Gu J, Zhu J, Atadja P, Lu C, Li E, Zhao K. J Biol Chem 286 38725-38737 (2011)
  67. SET7/9 regulates cancer cell proliferation by influencing β-catenin stability. Shen C, Wang D, Liu X, Gu B, Du Y, Wei FZ, Cao LL, Song B, Lu X, Yang Q, Zhu Q, Hou T, Li M, Wang L, Wang H, Zhao Y, Yang Y, Zhu WG. FASEB J 29 4313-4323 (2015)
  68. Enzymatic mechanism and product specificity of SET-domain protein lysine methyltransferases. Zhang X, Bruice TC. Proc Natl Acad Sci U S A 105 5728-5732 (2008)
  69. HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model. Matsushita Y, Araki K, Omotuyi Oi, Mukae T, Ueda H. Br J Pharmacol 170 991-998 (2013)
  70. Evolving Catalytic Properties of the MLL Family SET Domain. Zhang Y, Mittal A, Reid J, Reich S, Gamblin SJ, Wilson JR. Structure 23 1921-1933 (2015)
  71. Multiple lysine methylation of PCAF by Set9 methyltransferase. Masatsugu T, Yamamoto K. Biochem Biophys Res Commun 381 22-26 (2009)
  72. Dominant alleles identify SET domain residues required for histone methyltransferase of Polycomb repressive complex 2. Joshi P, Carrington EA, Wang L, Ketel CS, Miller EL, Jones RS, Simon JA. J Biol Chem 283 27757-27766 (2008)
  73. Nutritional control of epigenetic processes in yeast and human cells. Sadhu MJ, Guan Q, Li F, Sales-Lee J, Iavarone AT, Hammond MC, Cande WZ, Rine J. Genetics 195 831-844 (2013)
  74. Synthesis and biological validation of novel synthetic histone/protein methyltransferase inhibitors. Mai A, Valente S, Cheng D, Perrone A, Ragno R, Simeoni S, Sbardella G, Brosch G, Nebbioso A, Conte M, Altucci L, Bedford MT. ChemMedChem 2 987-991 (2007)
  75. Bioinformatic Identification of Novel Methyltransferases. Petrossian T, Clarke S. Epigenomics 1 163-175 (2009)
  76. Identification of three histone methyltransferases in Drosophila: dG9a is a suppressor of PEV and is required for gene silencing. Mis J, Ner SS, Grigliatti TA. Mol Genet Genomics 275 513-526 (2006)
  77. In Vitro and In Vivo Enzyme Activity Screening via RNA-Based Fluorescent Biosensors for S-Adenosyl-l-homocysteine (SAH). Su Y, Hickey SF, Keyser SG, Hammond MC. J Am Chem Soc 138 7040-7047 (2016)
  78. Characterization of the PR domain of RIZ1 histone methyltransferase. Derunes C, Briknarová K, Geng L, Li S, Gessner CR, Hewitt K, Wu S, Huang S, Woods VI, Ely KR. Biochem Biophys Res Commun 333 925-934 (2005)
  79. Structural insights of the specificity and catalysis of a viral histone H3 lysine 27 methyltransferase. Qian C, Wang X, Manzur K, Sachchidanand, Farooq A, Zeng L, Wang R, Zhou MM. J Mol Biol 359 86-96 (2006)
  80. CG hypomethylation in Lsh-/- mouse embryonic fibroblasts is associated with de novo H3K4me1 formation and altered cellular plasticity. Yu W, Briones V, Lister R, McIntosh C, Han Y, Lee EY, Ren J, Terashima M, Leighty RM, Ecker JR, Muegge K. Proc Natl Acad Sci U S A 111 5890-5895 (2014)
  81. Structural insights into estrogen receptor α methylation by histone methyltransferase SMYD2, a cellular event implicated in estrogen signaling regulation. Jiang Y, Trescott L, Holcomb J, Zhang X, Brunzelle J, Sirinupong N, Shi X, Yang Z. J Mol Biol 426 3413-3425 (2014)
  82. SET7/9 catalytic mutants reveal the role of active site water molecules in lysine multiple methylation. Del Rizzo PA, Couture JF, Dirk LM, Strunk BS, Roiko MS, Brunzelle JS, Houtz RL, Trievel RC. J Biol Chem 285 31849-31858 (2010)
  83. A chemiluminescence-based method for identification of histone lysine methyltransferase inhibitors. Quinn AM, Allali-Hassani A, Vedadi M, Simeonov A. Mol Biosyst 6 782-788 (2010)
  84. Direct methylation of FXR by Set7/9, a lysine methyltransferase, regulates the expression of FXR target genes. Balasubramaniyan N, Ananthanarayanan M, Suchy FJ. Am J Physiol Gastrointest Liver Physiol 302 G937-47 (2012)
  85. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer. Zhang Y, Liu J, Lin J, Zhou L, Song Y, Wei B, Luo X, Chen Z, Chen Y, Xiong J, Xu X, Ding L, Ye Q. Oncotarget 7 9859-9875 (2016)
  86. Chromatin boundaries require functional collaboration between the hSET1 and NURF complexes. Li X, Wang S, Li Y, Deng C, Steiner LA, Xiao H, Wu C, Bungert J, Gallagher PG, Felsenfeld G, Qiu Y, Huang S. Blood 118 1386-1394 (2011)
  87. Crystal structures of the human histone H4K20 methyltransferases SUV420H1 and SUV420H2. Wu H, Siarheyeva A, Zeng H, Lam R, Dong A, Wu XH, Li Y, Schapira M, Vedadi M, Min J. FEBS Lett 587 3859-3868 (2013)
  88. Development and validation of reagents and assays for EZH2 peptide and nucleosome high-throughput screens. Diaz E, Machutta CA, Chen S, Jiang Y, Nixon C, Hofmann G, Key D, Sweitzer S, Patel M, Wu Z, Creasy CL, Kruger RG, LaFrance L, Verma SK, Pappalardi MB, Le B, Van Aller GS, McCabe MT, Tummino PJ, Pope AJ, Thrall SH, Schwartz B, Brandt M. J Biomol Screen 17 1279-1292 (2012)
  89. Development of novel bisubstrate-type inhibitors of histone methyltransferase SET7/9. Mori S, Iwase K, Iwanami N, Tanaka Y, Kagechika H, Hirano T. Bioorg Med Chem 18 8158-8166 (2010)
  90. Direct evidence for methyl group coordination by carbon-oxygen hydrogen bonds in the lysine methyltransferase SET7/9. Horowitz S, Yesselman JD, Al-Hashimi HM, Trievel RC. J Biol Chem 286 18658-18663 (2011)
  91. Transcriptional activity of the islet β cell factor Pdx1 is augmented by lysine methylation catalyzed by the methyltransferase Set7/9. Maganti AV, Maier B, Tersey SA, Sampley ML, Mosley AL, Özcan S, Pachaiyappan B, Woster PM, Hunter CS, Stein R, Mirmira RG. J Biol Chem 290 9812-9822 (2015)
  92. A glutamate/aspartate switch controls product specificity in a protein arginine methyltransferase. Debler EW, Jain K, Warmack RA, Feng Y, Clarke SG, Blobel G, Stavropoulos P. Proc Natl Acad Sci U S A 113 2068-2073 (2016)
  93. Quantum chemical modeling of enzymatic reactions: the case of histone lysine methyltransferase. Georgieva P, Himo F. J Comput Chem 31 1707-1714 (2010)
  94. Methylation of UHRF1 by SET7 is essential for DNA double-strand break repair. Hahm JY, Kim JY, Park JW, Kang JY, Kim KB, Kim SR, Cho H, Seo SB. Nucleic Acids Res 47 184-196 (2019)
  95. Recognition of ribosomal protein L11 by the protein trimethyltransferase PrmA. Demirci H, Gregory ST, Dahlberg AE, Jogl G. EMBO J 26 567-577 (2007)
  96. Primers on chromatin. Lall S. Nat Struct Mol Biol 14 1110-1115 (2007)
  97. Regulation of Transcription Factor Yin Yang 1 by SET7/9-mediated Lysine Methylation. Zhang WJ, Wu XN, Shi TT, Xu HT, Yi J, Shen HF, Huang MF, Shu XY, Wang FF, Peng BL, Xiao RQ, Gao WW, Ding JC, Liu W. Sci Rep 6 21718 (2016)
  98. SET7/9 promotes multiple malignant processes in breast cancer development via RUNX2 activation and is negatively regulated by TRIM21. Si W, Zhou J, Zhao Y, Zheng J, Cui L. Cell Death Dis 11 151 (2020)
  99. Elements of the polycomb repressor SU(Z)12 needed for histone H3-K27 methylation, the interface with E(Z), and in vivo function. Rai AN, Vargas ML, Wang L, Andersen EF, Miller EL, Simon JA. Mol Cell Biol 33 4844-4856 (2013)
  100. Fluorescence-based methods for screening writers and readers of histone methyl marks. Allali-Hassani A, Wasney GA, Siarheyeva A, Hajian T, Arrowsmith CH, Vedadi M. J Biomol Screen 17 71-84 (2012)
  101. SET8 recognizes the sequence RHRK20VLRDN within the N terminus of histone H4 and mono-methylates lysine 20. Yin Y, Liu C, Tsai SN, Zhou B, Ngai SM, Zhu G. J Biol Chem 280 30025-30031 (2005)
  102. Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins. Xu S, Zhong C, Zhang T, Ding J. J Mol Cell Biol 3 293-300 (2011)
  103. The Saccharomyces cerevisiae histone demethylase Jhd1 fine-tunes the distribution of H3K36me2. Fang J, Hogan GJ, Liang G, Lieb JD, Zhang Y. Mol Cell Biol 27 5055-5065 (2007)
  104. Histone modification in the TGFbetaRII gene promoter and its significance for responsiveness to HDAC inhibitor in lung cancer cell lines. Osada H, Tatematsu Y, Sugito N, Horio Y, Takahashi T. Mol Carcinog 44 233-241 (2005)
  105. Select human cancer mutants of NRMT1 alter its catalytic activity and decrease N-terminal trimethylation. Shields KM, Tooley JG, Petkowski JJ, Wilkey DW, Garbett NC, Merchant ML, Cheng A, Schaner Tooley CE. Protein Sci 26 1639-1652 (2017)
  106. A novel route to product specificity in the Suv4-20 family of histone H4K20 methyltransferases. Southall SM, Cronin NB, Wilson JR. Nucleic Acids Res 42 661-671 (2014)
  107. Identification of lysine 37 of histone H2B as a novel site of methylation. Gardner KE, Zhou L, Parra MA, Chen X, Strahl BD. PLoS One 6 e16244 (2011)
  108. Methylation of transcription factor YY2 regulates its transcriptional activity and cell proliferation. Wu XN, Shi TT, He YH, Wang FF, Sang R, Ding JC, Zhang WJ, Shu XY, Shen HF, Yi J, Gao X, Liu W. Cell Discov 3 17035 (2017)
  109. Development of homogeneous nonradioactive methyltransferase and demethylase assays targeting histone H3 lysine 4. Gauthier N, Caron M, Pedro L, Arcand M, Blouin J, Labonté A, Normand C, Paquet V, Rodenbrock A, Roy M, Rouleau N, Beaudet L, Padrós J, Rodriguez-Suarez R. J Biomol Screen 17 49-58 (2012)
  110. Rubisco in complex with Rubisco large subunit methyltransferase. Raunser S, Magnani R, Huang Z, Houtz RL, Trievel RC, Penczek PA, Walz T. Proc Natl Acad Sci U S A 106 3160-3165 (2009)
  111. SET7/9 inhibits oncogenic activities through regulation of Gli-1 expression in breast cancer. Song Y, Zhang J, Tian T, Fu X, Wang W, Li S, Shi T, Suo A, Ruan Z, Guo H, Yao Y. Tumour Biol 37 9311-9322 (2016)
  112. Characterization of HIV Tat modifications using novel methyl-lysine-specific antibodies. Pagans S, Sakane N, Schnölzer M, Ott M. Methods 53 91-96 (2011)
  113. An asparagine/glycine switch governs product specificity of human N-terminal methyltransferase NTMT2. Dong C, Dong G, Li L, Zhu L, Tempel W, Liu Y, Huang R, Min J. Commun Biol 1 183 (2018)
  114. Automethylation of SUV39H2, an oncogenic histone lysine methyltransferase, regulates its binding affinity to substrate proteins. Piao L, Nakakido M, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R. Oncotarget 7 22846-22856 (2016)
  115. Expansion and further delineation of the SETD5 phenotype leading to global developmental delay, variable dysmorphic features, and reduced penetrance. Powis Z, Farwell Hagman KD, Mroske C, McWalter K, Cohen JS, Colombo R, Serretti A, Fatemi A, David KL, Reynolds J, Immken L, Nagakura H, Cunniff CM, Payne K, Barbaro-Dieber T, Gripp KW, Baker L, Stamper T, Aleck KA, Jordan ES, Hersh JH, Burton J, Wentzensen IM, Guillen Sacoto MJ, Willaert R, Cho MT, Petrik I, Huether R, Tang S. Clin Genet 93 752-761 (2018)
  116. Histone H3 Lysine 9 Methyltransferase DIM5 Is Required for the Development and Virulence of Botrytis cinerea. Zhang X, Liu X, Zhao Y, Cheng J, Xie J, Fu Y, Jiang D, Chen T. Front Microbiol 7 1289 (2016)
  117. SETD4 Regulates Cell Quiescence and Catalyzes the Trimethylation of H4K20 during Diapause Formation in Artemia. Dai L, Ye S, Li HW, Chen DF, Wang HL, Jia SN, Lin C, Yang JS, Yang F, Nagasawa H, Yang WJ. Mol Cell Biol 37 e00453-16 (2017)
  118. Targeted gene suppression by inducing de novo DNA methylation in the gene promoter. Ma AN, Wang H, Guo R, Wang YX, Li W, Cui J, Wang G, Hoffman AR, Hu JF. Epigenetics Chromatin 7 20 (2014)
  119. Two protein lysine methyltransferases methylate outer membrane protein B from Rickettsia. Abeykoon AH, Chao CC, Wang G, Gucek M, Yang DC, Ching WM. J Bacteriol 194 6410-6418 (2012)
  120. Structures of three MORN repeat proteins and a re-evaluation of the proposed lipid-binding properties of MORN repeats. Sajko S, Grishkovskaya I, Kostan J, Graewert M, Setiawan K, Trübestein L, Niedermüller K, Gehin C, Sponga A, Puchinger M, Gavin AC, Leonard TA, Svergun DI, Smith TK, Morriswood B, Djinovic-Carugo K. PLoS One 15 e0242677 (2020)
  121. Two Loops Undergoing Concerted Dynamics Regulate the Activity of the ASH1L Histone Methyltransferase. Rogawski DS, Ndoj J, Cho HJ, Maillard I, Grembecka J, Cierpicki T. Biochemistry 54 5401-5413 (2015)
  122. Auto-methylation of the mouse DNA-(cytosine C5)-methyltransferase Dnmt3a at its active site cysteine residue. Siddique AN, Jurkowska RZ, Jurkowski TP, Jeltsch A. FEBS J 278 2055-2063 (2011)
  123. Catalytic and functional roles of conserved amino acids in the SET domain of the S. cerevisiae lysine methyltransferase Set1. Williamson K, Schneider V, Jordan RA, Mueller JE, Henderson Pozzi M, Bryk M. PLoS One 8 e57974 (2013)
  124. Disruption of Methionine Metabolism in Drosophila melanogaster Impacts Histone Methylation and Results in Loss of Viability. Liu M, Barnes VL, Pile LA. G3 (Bethesda) 6 121-132 (2015)
  125. Label-free measurement of histone lysine methyltransferases activity by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Guitot K, Scarabelli S, Drujon T, Bolbach G, Amoura M, Burlina F, Jeltsch A, Sagan S, Guianvarc'h D. Anal Biochem 456 25-31 (2014)
  126. Modeling a new water channel that allows SET9 to dimethylate p53. Bai Q, Shen Y, Yao X, Wang F, Du Y, Wang Q, Jin N, Hai J, Hu T, Yang J. PLoS One 6 e19856 (2011)
  127. Set7 facilitates hepatitis C virus replication via enzymatic activity-dependent attenuation of the IFN-related pathway. Han T, Wan Y, Wang J, Zhao P, Yuan Y, Wang L, She Y, Broering R, Lu M, Ye L, Zhu Y. J Immunol 194 2757-2768 (2015)
  128. Small-molecule inhibitors of the protein methyltransferase SET7/9 identified in a high-throughput screen. Francis NJ, Rowlands M, Workman P, Jones K, Aherne W. J Biomol Screen 17 1102-1109 (2012)
  129. QM/MM MD and free energy simulations of G9a-like protein (GLP) and its mutants: understanding the factors that determine the product specificity. Chu Y, Yao J, Guo H. PLoS One 7 e37674 (2012)
  130. Probing multiple enzymatic methylation events in real time with NMR spectroscopy. Usher ET, Namitz KEW, Cosgrove MS, Showalter SA. Biophys J 120 4710-4721 (2021)
  131. The structure of the RbBP5 β-propeller domain reveals a surface with potential nucleic acid binding sites. Mittal A, Hobor F, Zhang Y, Martin SR, Gamblin SJ, Ramos A, Wilson JR. Nucleic Acids Res 46 3802-3812 (2018)
  132. Mediator complex (MED) 7: a biomarker associated with good prognosis in invasive breast cancer, especially ER+ luminal subtypes. Joseph C, Macnamara O, Craze M, Russell R, Provenzano E, Nolan CC, Diez-Rodriguez M, Sonbul SN, Aleskandarany MA, Green AR, Rakha EA, Ellis IO, Mukherjee A. Br J Cancer 118 1142-1151 (2018)
  133. Reversible white matter lesions associated with mutant EHMT1 and Kleefstra syndrome. He X, Caluseriu O, Srivastava R, Denny AM, Bolduc FV. Neurol Genet 2 e58 (2016)
  134. Structure-guided mutational analysis reveals the functional requirements for product specificity of DOT1 enzymes. Dindar G, Anger AM, Mehlhorn C, Hake SB, Janzen CJ. Nat Commun 5 5313 (2014)
  135. The identification and structure of an N-terminal PR domain show that FOG1 is a member of the PRDM family of proteins. Clifton MK, Westman BJ, Thong SY, O'Connell MR, Webster MW, Shepherd NE, Quinlan KG, Crossley M, Blobel GA, Mackay JP. PLoS One 9 e106011 (2014)
  136. Histone Methyltransferases Useful in Gastric Cancer Research. Reyes DA, Sarría VMS, Salazar-Viedma M, D'Afonseca V. Cancer Inform 20 11769351211039862 (2021)
  137. Histone Modifications Regulate the Developmental Expression of Human Hepatic UDP-Glucuronosyltransferase 1A1. Nie YL, Meng XG, Liu JY, Yan L, Wang P, Bi HZ, Kan QC, Zhang LR. Drug Metab Dispos 45 1372-1378 (2017)
  138. Using 'biased-privileged' scaffolds to identify lysine methyltransferase inhibitors. Kashyap S, Sandler J, Peters U, Martinez EJ, Kapoor TM. Bioorg Med Chem 22 2253-2260 (2014)
  139. Investigation of the methylation of Numb by the SET8 protein lysine methyltransferase. Weirich S, Kusevic D, Kudithipudi S, Jeltsch A. Sci Rep 5 13813 (2015)
  140. Exploring the origin of the catalytic power and product specificity of SET domain protein methyltransferase. Lima AH, Alves CN, Prasad R, Lameira J. Mol Biosyst 12 2980-2983 (2016)
  141. SetD7 (Set7/9) is a novel target of PPARγ that promotes the adaptive pancreatic β-cell glycemic response. Jetton TL, Flores-Bringas P, Leahy JL, Gupta D. J Biol Chem 297 101250 (2021)
  142. Steric Clash in the SET Domain of Histone Methyltransferase NSD1 as a Cause of Sotos Syndrome and Its Genetic Heterogeneity in a Brazilian Cohort. Ha K, Anand P, Lee JA, Jones JR, Kim CA, Bertola DR, Labonne JD, Layman LC, Wenzel W, Kim HG. Genes (Basel) 7 E96 (2016)
  143. Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2. Kalinić M, Zloh M, Erić S. J Comput Aided Mol Des 28 1109-1128 (2014)
  144. Fine-tuning of lysine side chain modulates the activity of histone lysine methyltransferases. Al Temimi AHK, Merx J, van Noortwijk CJ, Proietti G, Buijs R, White PB, Rutjes FPJT, Boltje TJ, Mecinović J. Sci Rep 10 21574 (2020)
  145. Interaction of SET domains with histones and nucleic acid structures in active chromatin. Krajewski WA, Vassiliev OL. Clin Epigenetics 2 17-25 (2011)
  146. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs. Chu Y, Guo H. Interdiscip Sci 7 309-318 (2015)
  147. Set2-mediated H3K36 methylation states redundantly repress the production of antisense transcripts: role in transcription regulation. Mei YC, Feng J, He F, Li YM, Liu Y, Li F, Chen Y, Du HN. FEBS Open Bio 11 2225-2235 (2021)
  148. SETD7 promotes lateral plate mesoderm formation by modulating the Wnt/β-catenin signaling pathway. Wang D, Li Y, Xu C, Wang H, Huang X, Jin X, Ren S, Gao J, Tong J, Liu J, Zhou J, Shi L. iScience 26 106917 (2023)
  149. Insights into the stereoselectivity of human SETD7 methyltransferase. Tang B, Li B, Li B, Qin J, Zhao J, Xu J, Qiu Y, Wu Z, Fang M. RSC Adv 9 9218-9227 (2019)
  150. Investigation of in vitro histone H3 glycosylation using H3 tail peptides. Merx J, Hintzen JCJ, Proietti G, Elferink H, Wang Y, Porzberg MRB, Sondag D, Bilgin N, Park J, Mecinović J, Boltje TJ. Sci Rep 12 19251 (2022)
  151. Lysine methylation of FEN1 by SET7 is essential for its cellular response to replicative stress. Thandapani P, Couturier AM, Yu Z, Li X, Couture JF, Li S, Masson JY, Richard S. Oncotarget (2017)
  152. Parallel functional annotation of cancer-associated missense mutations in histone methyltransferases. Canning AJ, Viggiano S, Fernandez-Zapico ME, Cosgrove MS. Sci Rep 12 18487 (2022)
  153. Purification, crystallization and X-ray crystallographic studies on a putative methyltransferase, YtqB, from Bacillus subtilis. Park SC, Song WS, Wi J, Yoon SI. Acta Crystallogr F Struct Biol Commun 70 482-484 (2014)
  154. QM/MM MD and free energy simulation study of methyl transfer processes catalyzed by PKMTs and PRMTs. Chu Y, Guo H. Interdiscip Sci (2015)
  155. Unraveling the Role of the Tyrosine Tetrad from the Binding Site of the Epigenetic Writer MLL3 in the Catalytic Mechanism and Methylation Multiplicity. Blanco-Esperguez K, Tuñón I, Kästner J, Mendizábal F, Miranda-Rojas S. Int J Mol Sci 23 10339 (2022)