1o9d Citations

Structural view of a fungal toxin acting on a 14-3-3 regulatory complex.

EMBO J 22 987-94 (2003)
Related entries: 1o9c, 1o9e, 1o9f

Cited: 187 times
EuropePMC logo PMID: 12606564

Abstract

The fungal phytotoxin fusicoccin stabilizes the interaction between the C-terminus of the plant plasma membrane H(+)-ATPase and 14-3-3 proteins, thus leading to permanent activation of the proton pump. This results in an irreversible opening of the stomatal pore, followed by wilting of plants. Here, we report the crystal structure of the ternary complex between a plant 14-3-3 protein, fusicoccin and a phosphopeptide derived from the C-terminus of the H(+)-ATPase. Comparison with the corresponding binary 14-3-3 complexes indicates no major conformational change induced by fusicoccin. The compound rather fills a cavity in the protein-phosphopeptide interaction surface. Isothermal titration calorimetry indicates that the toxin alone binds only weakly to 14-3-3 and that peptide and toxin mutually increase each others' binding affinity approximately 90-fold. These results are important for herbicide development but might have general implications for drug development, since rather than inhibiting protein-protein interactions, which is difficult to accomplish, it might be easier to reverse the strategy and stabilize protein-protein complexes. As the fusicoccin interaction shows, only low-affinity interactions would be required for this strategy.

Articles - 1o9d mentioned but not cited (5)

  1. Structural view of a fungal toxin acting on a 14-3-3 regulatory complex. Würtele M, Jelich-Ottmann C, Wittinghofer A, Oecking C. EMBO J 22 987-994 (2003)
  2. Structure of a 14-3-3σ-YAP phosphopeptide complex at 1.15 A resolution. Schumacher B, Skwarczynska M, Rose R, Ottmann C. Acta Crystallogr Sect F Struct Biol Cryst Commun 66 978-984 (2010)
  3. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach. Guo Z, Li B, Cheng LT, Zhou S, McCammon JA, Che J. J Chem Theory Comput 11 753-765 (2015)
  4. Structure of the complex of phosphorylated liver kinase B1 and 14-3-3ζ. Lu Y, Ding S, Zhou R, Wu J. Acta Crystallogr F Struct Biol Commun 73 196-201 (2017)
  5. Structure of the 14-3-3ζ-LKB1 fusion protein provides insight into a novel ligand-binding mode of 14-3-3. Ding S, Zhou R, Zhu Y. Acta Crystallogr F Struct Biol Commun 71 1114-1119 (2015)


Reviews citing this publication (47)

  1. 14-3-3 proteins: a historic overview. Aitken A. Semin Cancer Biol 16 162-172 (2006)
  2. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes. Mackintosh C. Biochem J 381 329-342 (2004)
  3. P-type ATPases. Palmgren MG, Nissen P. Annu Rev Biophys 40 243-266 (2011)
  4. Biology, structure and mechanism of P-type ATPases. Kühlbrandt W. Nat Rev Mol Cell Biol 5 282-295 (2004)
  5. The 14-3-3 cancer connection. Hermeking H. Nat Rev Cancer 3 931-943 (2003)
  6. In the light of stomatal opening: new insights into 'the Watergate'. Roelfsema MR, Hedrich R. New Phytol 167 665-691 (2005)
  7. Target identification for small bioactive molecules: finding the needle in the haystack. Ziegler S, Pries V, Hedberg C, Waldmann H. Angew Chem Int Ed Engl 52 2744-2792 (2013)
  8. Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms. Gardino AK, Smerdon SJ, Yaffe MB. Semin Cancer Biol 16 173-182 (2006)
  9. 14-3-3 proteins as signaling integration points for cell cycle control and apoptosis. Gardino AK, Yaffe MB. Semin Cell Dev Biol 22 688-695 (2011)
  10. Plasma Membrane H(+)-ATPase Regulation in the Center of Plant Physiology. Falhof J, Pedersen JT, Fuglsang AT, Palmgren M. Mol Plant 9 323-337 (2016)
  11. 14-3-3 proteins: a number of functions for a numbered protein. Bridges D, Moorhead GB. Sci STKE 2005 re10 (2005)
  12. Structural basis of 14-3-3 protein functions. Obsil T, Obsilova V. Semin Cell Dev Biol 22 663-672 (2011)
  13. Energization of transport processes in plants. roles of the plasma membrane H+-ATPase. Sondergaard TE, Schulz A, Palmgren MG. Plant Physiol 136 2475-2482 (2004)
  14. Interfacial inhibitors: targeting macromolecular complexes. Pommier Y, Marchand C. Nat Rev Drug Discov 11 25-36 (2011)
  15. Peptides mediating interaction networks: new leads at last. Neduva V, Russell RB, Russell RB. Curr Opin Biotechnol 17 465-471 (2006)
  16. Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? King GD, Scott Turner R. Exp Neurol 185 208-219 (2004)
  17. The plant plasma membrane proton pump ATPase: a highly regulated P-type ATPase with multiple physiological roles. Duby G, Boutry M. Pflugers Arch 457 645-655 (2009)
  18. Modulators of 14-3-3 Protein-Protein Interactions. Stevers LM, Sijbesma E, Botta M, MacKintosh C, Obsil T, Landrieu I, Cau Y, Wilson AJ, Karawajczyk A, Eickhoff J, Davis J, Hann M, O'Mahony G, Doveston RG, Brunsveld L, Ottmann C. J Med Chem 61 3755-3778 (2018)
  19. C-terminal binding: an expanded repertoire and function of 14-3-3 proteins. Coblitz B, Wu M, Shikano S, Li M. FEBS Lett 580 1531-1535 (2006)
  20. 14-3-3 and FHA domains mediate phosphoprotein interactions. Chevalier D, Morris ER, Walker JC. Annu Rev Plant Biol 60 67-91 (2009)
  21. Interfacial inhibition of macromolecular interactions: nature's paradigm for drug discovery. Pommier Y, Cherfils J. Trends Pharmacol Sci 26 138-145 (2005)
  22. The role of the plasma membrane H+-ATPase in plant-microbe interactions. Elmore JM, Coaker G. Mol Plant 4 416-427 (2011)
  23. Small-molecule stabilization of protein-protein interactions: an underestimated concept in drug discovery? Thiel P, Kaiser M, Ottmann C. Angew Chem Int Ed Engl 51 2012-2018 (2012)
  24. Plant 14-3-3 proteins as spiders in a web of phosphorylation. de Boer AH, van Kleeff PJ, Gao J. Protoplasma 250 425-440 (2013)
  25. 14-3-3 proteins in membrane protein transport. Mrowiec T, Schwappach B. Biol Chem 387 1227-1236 (2006)
  26. Rapid Auxin-Mediated Cell Expansion. Du M, Spalding EP, Gray WM. Annu Rev Plant Biol 71 379-402 (2020)
  27. How pathogens use linear motifs to perturb host cell networks. Via A, Uyar B, Brun C, Zanzoni A. Trends Biochem Sci 40 36-48 (2015)
  28. 14-3-3 proteins in plant-pathogen interactions. Lozano-Durán R, Robatzek S. Mol Plant Microbe Interact 28 511-518 (2015)
  29. 14-3-3 proteins: a number of functions for a numbered protein. Bridges D, Moorhead GB. Sci STKE 2004 re10 (2004)
  30. Direct and Propagated Effects of Small Molecules on Protein-Protein Interaction Networks. Cesa LC, Mapp AK, Gestwicki JE. Front Bioeng Biotechnol 3 119 (2015)
  31. CDPKs and 14-3-3 Proteins: Emerging Duo in Signaling. Ormancey M, Thuleau P, Mazars C, Cotelle V. Trends Plant Sci 22 263-272 (2017)
  32. The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases. Obsilova V, Obsil T. Int J Mol Sci 21 E8824 (2020)
  33. A survey of the year 2003 literature on applications of isothermal titration calorimetry. Cliff MJ, Gutierrez A, Ladbury JE. J Mol Recognit 17 513-523 (2004)
  34. Stabilization of protein-protein interaction complexes through small molecules. Zarzycka B, Kuenemann MA, Miteva MA, Nicolaes GAF, Vriend G, Sperandio O. Drug Discov Today 21 48-57 (2016)
  35. The role of 14-3-3 proteins in plant growth and response to abiotic stress. Huang Y, Wang W, Yu H, Peng J, Hu Z, Chen L. Plant Cell Rep 41 833-852 (2022)
  36. 14-3-3: A Case Study in PPI Modulation. Ballone A, Centorrino F, Ottmann C. Molecules 23 E1386 (2018)
  37. The Surprising Story of Fusicoccin: A Wilt-Inducing Phytotoxin, a Tool in Plant Physiology and a 14-3-3-Targeted Drug. Marra M, Camoni L, Visconti S, Fiorillo A, Evidente A. Biomolecules 11 1393 (2021)
  38. Assembly-Line Catalysis in Bifunctional Terpene Synthases. Faylo JL, Ronnebaum TA, Christianson DW. Acc Chem Res 54 3780-3791 (2021)
  39. Small molecules, peptides and natural products: getting a grip on 14-3-3 protein-protein modulation. Bartel M, Schäfer A, Stevers LM, Ottmann C. Future Med Chem 6 903-921 (2014)
  40. Module assembly for designing multivalent mid-sized inhibitors of protein-protein interactions. Ohkanda J. Chem Rec 13 561-575 (2013)
  41. Structural insights into the functional roles of 14-3-3 proteins. Obsilova V, Obsil T. Front Mol Biosci 9 1016071 (2022)
  42. 14-3-3σ and Its Modulators in Cancer. Aljabal G, Yap BK. Pharmaceuticals (Basel) 13 E441 (2020)
  43. From plant physiology to pharmacology: fusicoccin leaves the leaves. Camoni L, Visconti S, Aducci P, Marra M. Planta 249 49-57 (2019)
  44. In search of decoy/guardee to R genes: deciphering the role of sugars in defense against Fusarium wilt in chickpea. Gupta S, Chakraborti D, Basu D, Das S. Plant Signal Behav 5 1081-1087 (2010)
  45. Modulation of biomolecular interactions with complex-binding small molecules. Cai Z, Greene MI, Berezov A. Methods 46 39-46 (2008)
  46. The impact of plant-pathogen studies on medicinal drug discovery. Ottmann C, van der Hoorn RA, Kaiser M. Chem Soc Rev 41 3168-3178 (2012)
  47. Protein-protein interfaces in molecular glue-induced ternary complexes: classification, characterization, and prediction. Rui H, Ashton KS, Min J, Wang C, Potts PR. RSC Chem Biol 4 192-215 (2023)

Articles citing this publication (135)

  1. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, Blazevic D, Grefen C, Schumacher K, Oecking C, Harter K, Kudla J. Plant J 40 428-438 (2004)
  2. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Nühse TS, Stensballe A, Jensen ON, Peck SC. Mol Cell Proteomics 2 1234-1243 (2003)
  3. 14-3-3-affinity purification of over 200 human phosphoproteins reveals new links to regulation of cellular metabolism, proliferation and trafficking. Pozuelo Rubio M, Geraghty KM, Wong BH, Wood NT, Campbell DG, Morrice N, Mackintosh C. Biochem J 379 395-408 (2004)
  4. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+ -ATPase by preventing interaction with 14-3-3 protein. Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK. Plant Cell 19 1617-1634 (2007)
  5. Structural snapshots of the mechanism and inhibition of a guanine nucleotide exchange factor. Renault L, Guibert B, Cherfils J. Nature 426 525-530 (2003)
  6. Phytotoxicity and innate immune responses induced by Nep1-like proteins. Qutob D, Kemmerling B, Brunner F, Küfner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nürnberger T. Plant Cell 18 3721-3744 (2006)
  7. Constitutive activation of a plasma membrane H(+)-ATPase prevents abscisic acid-mediated stomatal closure. Merlot S, Leonhardt N, Fenzi F, Valon C, Costa M, Piette L, Vavasseur A, Genty B, Boivin K, Müller A, Giraudat J, Leung J. EMBO J 26 3216-3226 (2007)
  8. Temporal analysis of sucrose-induced phosphorylation changes in plasma membrane proteins of Arabidopsis. Niittylä T, Fuglsang AT, Palmgren MG, Frommer WB, Schulze WX. Mol Cell Proteomics 6 1711-1726 (2007)
  9. Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Macdonald N, Welburn JP, Noble ME, Nguyen A, Yaffe MB, Clynes D, Moggs JG, Orphanides G, Thomson S, Edmunds JW, Clayton AL, Endicott JA, Mahadevan LC. Mol Cell 20 199-211 (2005)
  10. Structure of a 14-3-3 coordinated hexamer of the plant plasma membrane H+ -ATPase by combining X-ray crystallography and electron cryomicroscopy. Ottmann C, Marco S, Jaspert N, Marcon C, Schauer N, Weyand M, Vandermeeren C, Duby G, Boutry M, Wittinghofer A, Rigaud JL, Oecking C. Mol Cell 25 427-440 (2007)
  11. Xanthomonas T3S Effector XopN Suppresses PAMP-Triggered Immunity and Interacts with a Tomato Atypical Receptor-Like Kinase and TFT1. Kim JG, Li X, Roden JA, Taylor KW, Aakre CD, Su B, Lalonde S, Kirik A, Chen Y, Baranage G, McLane H, Martin GB, Mudgett MB. Plant Cell 21 1305-1323 (2009)
  12. Land plants acquired active stomatal control early in their evolutionary history. Ruszala EM, Beerling DJ, Franks PJ, Chater C, Casson SA, Gray JE, Hetherington AM. Curr Biol 21 1030-1035 (2011)
  13. Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis. Ottmann C, Yasmin L, Weyand M, Veesenmeyer JL, Diaz MH, Palmer RH, Francis MS, Hauser AR, Wittinghofer A, Hallberg B. EMBO J 26 902-913 (2007)
  14. Fusicoccins are biosynthesized by an unusual chimera diterpene synthase in fungi. Toyomasu T, Tsukahara M, Kaneko A, Niida R, Mitsuhashi W, Dairi T, Kato N, Sassa T. Proc Natl Acad Sci U S A 104 3084-3088 (2007)
  15. Impaired binding of 14-3-3 to C-RAF in Noonan syndrome suggests new approaches in diseases with increased Ras signaling. Molzan M, Schumacher B, Ottmann C, Baljuls A, Polzien L, Weyand M, Thiel P, Rose R, Rose M, Kuhenne P, Kaiser M, Rapp UR, Kuhlmann J, Ottmann C. Mol Cell Biol 30 4698-4711 (2010)
  16. Characterization and small-molecule stabilization of the multisite tandem binding between 14-3-3 and the R domain of CFTR. Stevers LM, Lam CV, Leysen SF, Meijer FA, van Scheppingen DS, de Vries RM, Carlile GW, Milroy LG, Thomas DY, Brunsveld L, Ottmann C. Proc Natl Acad Sci U S A 113 E1152-61 (2016)
  17. Activation of the plant plasma membrane H+-ATPase by phosphorylation and binding of 14-3-3 proteins converts a dimer into a hexamer. Kanczewska J, Marco S, Vandermeeren C, Maudoux O, Rigaud JL, Boutry M. Proc Natl Acad Sci U S A 102 11675-11680 (2005)
  18. A fast brassinolide-regulated response pathway in the plasma membrane of Arabidopsis thaliana. Caesar K, Elgass K, Chen Z, Huppenberger P, Witthöft J, Schleifenbaum F, Blatt MR, Oecking C, Harter K. Plant J 66 528-540 (2011)
  19. Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins. Bustos DM, Iglesias AA. Proteins 63 35-42 (2006)
  20. A novel norindenoisoquinoline structure reveals a common interfacial inhibitor paradigm for ternary trapping of the topoisomerase I-DNA covalent complex. Marchand C, Antony S, Kohn KW, Cushman M, Ioanoviciu A, Staker BL, Burgin AB, Stewart L, Pommier Y. Mol Cancer Ther 5 287-295 (2006)
  21. The binding site for regulatory 14-3-3 protein in plant plasma membrane H+-ATPase: involvement of a region promoting phosphorylation-independent interaction in addition to the phosphorylation-dependent C-terminal end. Fuglsang AT, Borch J, Bych K, Jahn TP, Roepstorff P, Palmgren MG. J Biol Chem 278 42266-42272 (2003)
  22. Interaction of 14-3-3 proteins with the estrogen receptor alpha F domain provides a drug target interface. De Vries-van Leeuwen IJ, da Costa Pereira D, Flach KD, Piersma SR, Haase C, Bier D, Yalcin Z, Michalides R, Feenstra KA, Jiménez CR, de Greef TF, Brunsveld L, Ottmann C, Zwart W, de Boer AH. Proc Natl Acad Sci U S A 110 8894-8899 (2013)
  23. Structure of the p53 C-terminus bound to 14-3-3: implications for stabilization of the p53 tetramer. Schumacher B, Mondry J, Thiel P, Weyand M, Ottmann C. FEBS Lett 584 1443-1448 (2010)
  24. A semisynthetic fusicoccane stabilizes a protein-protein interaction and enhances the expression of K+ channels at the cell surface. Anders C, Higuchi Y, Koschinsky K, Bartel M, Schumacher B, Thiel P, Nitta H, Preisig-Müller R, Schlichthörl G, Renigunta V, Ohkanda J, Daut J, Kato N, Ottmann C. Chem Biol 20 583-593 (2013)
  25. Identification and structure of small-molecule stabilizers of 14-3-3 protein-protein interactions. Rose R, Erdmann S, Bovens S, Wolf A, Rose M, Hennig S, Waldmann H, Ottmann C. Angew Chem Int Ed Engl 49 4129-4132 (2010)
  26. 14-3-3 proteins: regulation of signal-induced events. Ferl RJ. Physiol Plant 120 173-178 (2004)
  27. 14-3-3zeta C-terminal stretch changes its conformation upon ligand binding and phosphorylation at Thr232. Obsilova V, Herman P, Vecer J, Sulc M, Teisinger J, Obsil T. J Biol Chem 279 4531-4540 (2004)
  28. The Breakdown of Stored Triacylglycerols Is Required during Light-Induced Stomatal Opening. McLachlan DH, Lan J, Geilfus CM, Dodd AN, Larson T, Baker A, Hõrak H, Kollist H, He Z, Graham I, Mickelbart MV, Hetherington AM. Curr Biol 26 707-712 (2016)
  29. Auxin-mediated root branching is determined by the form of available nitrogen. Meier M, Liu Y, Lay-Pruitt KS, Takahashi H, von Wirén N. Nat Plants 6 1136-1145 (2020)
  30. Soybean 14-3-3 gene family: identification and molecular characterization. Li X, Dhaubhadel S. Planta 233 569-582 (2011)
  31. Plasma membrane H(+)-ATPase and 14-3-3 isoforms of Arabidopsis leaves: evidence for isoform specificity in the 14-3-3/H(+)-ATPase interaction. Alsterfjord M, Sehnke PC, Arkell A, Larsson H, Svennelid F, Rosenquist M, Ferl RJ, Sommarin M, Larsson C. Plant Cell Physiol 45 1202-1210 (2004)
  32. The 14-3-3 isoforms chi and epsilon differentially bind client proteins from developing Arabidopsis seed. Swatek KN, Graham K, Agrawal GK, Thelen JJ. J Proteome Res 10 4076-4087 (2011)
  33. A structural rationale for selective stabilization of anti-tumor interactions of 14-3-3 proteins by cotylenin A. Ottmann C, Weyand M, Sassa T, Inoue T, Kato N, Wittinghofer A, Oecking C. J Mol Biol 386 913-919 (2009)
  34. AMPK and AKT protein kinases hierarchically phosphorylate the N-terminus of the FOXO1 transcription factor, modulating interactions with 14-3-3 proteins. Saline M, Badertscher L, Wolter M, Lau R, Gunnarsson A, Jacso T, Norris T, Ottmann C, Snijder A. J Biol Chem 294 13106-13116 (2019)
  35. Abscisic acid and 14-3-3 proteins control K channel activity in barley embryonic root. van den Wijngaard PW, Sinnige MP, Roobeek I, Reumer A, Schoonheim PJ, Mol JN, Wang M, De Boer AH. Plant J 41 43-55 (2005)
  36. Small-Molecule Stabilization of 14-3-3 Protein-Protein Interactions Stimulates Axon Regeneration. Kaplan A, Morquette B, Kroner A, Leong S, Madwar C, Sanz R, Banerjee SL, Antel J, Bisson N, David S, Fournier AE. Neuron 93 1082-1093.e5 (2017)
  37. Involvement of 14-3-3 in tubulin instability and impaired axon development is mediated by Tau. Joo Y, Schumacher B, Landrieu I, Bartel M, Smet-Nocca C, Jang A, Choi HS, Jeon NL, Chang KA, Kim HS, Ottmann C, Suh YH. FASEB J 29 4133-4144 (2015)
  38. Molecular mechanism of 14-3-3 protein-mediated inhibition of plant nitrate reductase. Lambeck IC, Fischer-Schrader K, Niks D, Roeper J, Chi JC, Hille R, Schwarz G. J Biol Chem 287 4562-4571 (2012)
  39. Genome-wide identification, classification, and expression analysis of 14-3-3 gene family in Populus. Tian F, Wang T, Xie Y, Zhang J, Hu J. PLoS One 10 e0123225 (2015)
  40. Single-cell damage elicits regional, nematode-restricting ethylene responses in roots. Marhavý P, Kurenda A, Siddique S, Dénervaud Tendon V, Zhou F, Holbein J, Hasan MS, Grundler FM, Farmer EE, Geldner N. EMBO J 38 e100972 (2019)
  41. Arabidopsis H+-ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation. Kumari A, Chételat A, Nguyen CT, Farmer EE. Proc Natl Acad Sci U S A 116 20226-20231 (2019)
  42. Novel brain 14-3-3 interacting proteins involved in neurodegenerative disease. Mackie S, Aitken A. FEBS J 272 4202-4210 (2005)
  43. Specificity of ε and non-ε isoforms of arabidopsis 14-3-3 proteins towards the H+-ATPase and other targets. Pallucca R, Visconti S, Camoni L, Cesareni G, Melino S, Panni S, Torreri P, Aducci P. PLoS One 9 e90764 (2014)
  44. The overlap of small molecule and protein binding sites within families of protein structures. Davis FP, Sali A. PLoS Comput Biol 6 e1000668 (2010)
  45. Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms. Gogl G, Tugaeva KV, Eberling P, Kostmann C, Trave G, Sluchanko NN. Nat Commun 12 1677 (2021)
  46. Modulating protein-protein interactions with small molecules: the importance of binding hotspots. Thangudu RR, Bryant SH, Panchenko AR, Madej T. J Mol Biol 415 443-453 (2012)
  47. Stabilizer-Guided Inhibition of Protein-Protein Interactions. Milroy LG, Bartel M, Henen MA, Leysen S, Adriaans JM, Brunsveld L, Landrieu I, Ottmann C. Angew Chem Int Ed Engl 54 15720-15724 (2015)
  48. Activation of NF-κB signalling by fusicoccin-induced dimerization. Skwarczynska M, Molzan M, Ottmann C. Proc Natl Acad Sci U S A 110 E377-86 (2013)
  49. Combining peptide recognition specificity and context information for the prediction of the 14-3-3-mediated interactome in S. cerevisiae and H. sapiens. Panni S, Montecchi-Palazzi L, Kiemer L, Cabibbo A, Paoluzi S, Santonico E, Landgraf C, Volkmer-Engert R, Bachi A, Castagnoli L, Cesareni G. Proteomics 11 128-143 (2011)
  50. Small-molecule modulators of 14-3-3 protein-protein interactions. Ottmann C. Bioorg Med Chem 21 4058-4062 (2013)
  51. The Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 directly influence the DNA damage-dependent functions of Rad53. Usui T, Petrini JH. Proc Natl Acad Sci U S A 104 2797-2802 (2007)
  52. An optimised small-molecule stabiliser of the 14-3-3-PMA2 protein-protein interaction. Richter A, Rose R, Hedberg C, Waldmann H, Ottmann C. Chemistry 18 6520-6527 (2012)
  53. Exploring the Influence of Domain Architecture on the Catalytic Function of Diterpene Synthases. Pemberton TA, Chen M, Harris GG, Chou WK, Duan L, Köksal M, Genshaft AS, Cane DE, Christianson DW. Biochemistry 56 2010-2023 (2017)
  54. Multisite phosphorylation of 14-3-3 proteins by calcium-dependent protein kinases. Swatek KN, Wilson RS, Ahsan N, Tritz RL, Thelen JJ. Biochem J 459 15-25 (2014)
  55. Strategies to search and design stabilizers of protein-protein interactions: a feasibility study. Block P, Weskamp N, Wolf A, Klebe G. Proteins 68 170-186 (2007)
  56. Arabidopsis 14-3-3 epsilon members contribute to polarity of PIN auxin carrier and auxin transport-related development. Keicher J, Jaspert N, Weckermann K, Möller C, Throm C, Kintzi A, Oecking C. Elife 6 e24336 (2017)
  57. Structural insights of the MLF1/14-3-3 interaction. Molzan M, Weyand M, Rose R, Ottmann C. FEBS J 279 563-571 (2012)
  58. Cooperativity basis for small-molecule stabilization of protein-protein interactions. de Vink PJ, Andrei SA, Higuchi Y, Ottmann C, Milroy LG, Brunsveld L. Chem Sci 10 2869-2874 (2019)
  59. Rationally Designed Semisynthetic Natural Product Analogues for Stabilization of 14-3-3 Protein-Protein Interactions. Andrei SA, de Vink P, Sijbesma E, Han L, Brunsveld L, Kato N, Ottmann C, Higuchi Y. Angew Chem Int Ed Engl 57 13470-13474 (2018)
  60. The serine-rich domain from Crk-associated substrate (p130cas) is a four-helix bundle. Briknarová K, Nasertorabi F, Havert ML, Eggleston E, Hoyt DW, Li C, Olson AJ, Vuori K, Ely KR. J Biol Chem 280 21908-21914 (2005)
  61. Scaffold Function of Ca2+-Dependent Protein Kinase: Tobacco Ca2+-DEPENDENT PROTEIN KINASE1 Transfers 14-3-3 to the Substrate REPRESSION OF SHOOT GROWTH after Phosphorylation. Ito T, Nakata M, Fukazawa J, Ishida S, Takahashi Y. Plant Physiol 165 1737-1750 (2014)
  62. Fusicoccin Activates KAT1 Channels by Stabilizing Their Interaction with 14-3-3 Proteins. Saponaro A, Porro A, Chaves-Sanjuan A, Nardini M, Rauh O, Thiel G, Moroni A, Moroni A. Plant Cell 29 2570-2580 (2017)
  63. The phytotoxin fusicoccin promotes platelet aggregation via 14-3-3-glycoprotein Ib-IX-V interaction. Camoni L, Di Lucente C, Visconti S, Aducci P. Biochem J 436 429-436 (2011)
  64. Two widely expressed plasma membrane H(+)-ATPase isoforms of Nicotiana tabacum are differentially regulated by phosphorylation of their penultimate threonine. Bobik K, Duby G, Nizet Y, Vandermeeren C, Stiernet P, Kanczewska J, Boutry M. Plant J 62 291-301 (2010)
  65. An Arabidopsis quiescin-sulfhydryl oxidase regulates cation homeostasis at the root symplast-xylem interface. Alejandro S, Rodríguez PL, Bellés JM, Yenush L, García-Sanchez MJ, Fernández JA, Serrano R. EMBO J 26 3203-3215 (2007)
  66. Identification and functional analysis of brassicicene C biosynthetic gene cluster in Alternaria brassicicola. Minami A, Tajima N, Higuchi Y, Toyomasu T, Sassa T, Kato N, Dairi T. Bioorg Med Chem Lett 19 870-874 (2009)
  67. Regulation of the plant plasma membrane H+-ATPase by its C-terminal domain: what do we know for sure? Speth C, Jaspert N, Marcon C, Oecking C. Eur J Cell Biol 89 145-151 (2010)
  68. Identification of Two Secondary Ligand Binding Sites in 14-3-3 Proteins Using Fragment Screening. Sijbesma E, Skora L, Leysen S, Brunsveld L, Koch U, Nussbaumer P, Jahnke W, Ottmann C. Biochemistry 56 3972-3982 (2017)
  69. The wheat TabZIP2 transcription factor is activated by the nutrient starvation-responsive SnRK3/CIPK protein kinase. Luang S, Sornaraj P, Bazanova N, Jia W, Eini O, Hussain SS, Kovalchuk N, Agarwal PK, Hrmova M, Lopato S. Plant Mol Biol 96 543-561 (2018)
  70. Exposed loop domains of complexed 14-3-3 proteins contribute to structural diversity and functional specificity. Sehnke PC, Laughner B, Cardasis H, Powell D, Ferl RJ. Plant Physiol 140 647-660 (2006)
  71. Small-molecule screening yields a compound that inhibits the cancer-associated transcription factor Hes1 via the PHB2 chaperone. Perron A, Nishikawa Y, Iwata J, Shimojo H, Takaya J, Kobayashi K, Imayoshi I, Mbenza NM, Takenoya M, Kageyama R, Kodama Y, Uesugi M. J Biol Chem 293 8285-8294 (2018)
  72. The Agrobacterium vitis T-6b oncoprotein induces auxin-independent cell expansion in tobacco. Clément B, Pollmann S, Weiler E, Urbanczyk-Wochniak E, Otten L. Plant J 45 1017-1027 (2006)
  73. Tyrosine phosphorylation inhibits the interaction of 14-3-3 proteins with the plant plasma membrane H+-ATPase. Giacometti S, Camoni L, Albumi C, Visconti S, De Michelis MI, Aducci P. Plant Biol (Stuttg) 6 422-431 (2004)
  74. Applicability of superfolder YFP bimolecular fluorescence complementation in vitro. Ottmann C, Weyand M, Wolf A, Kuhlmann J, Ottmann C. Biol Chem 390 81-90 (2009)
  75. The phytotoxin fusicoccin differently regulates 14-3-3 proteins association to mode III targets. Paiardini A, Aducci P, Cervoni L, Cutruzzolà F, Di Lucente C, Janson G, Pascarella S, Rinaldo S, Visconti S, Camoni L. IUBMB Life 66 52-62 (2014)
  76. A Member of the 14-3-3 Gene Family in Brachypodium distachyon, BdGF14d, Confers Salt Tolerance in Transgenic Tobacco Plants. He Y, Zhang Y, Chen L, Wu C, Luo Q, Zhang F, Wei Q, Li K, Chang J, Yang G, He G. Front Plant Sci 8 340 (2017)
  77. Involvement of 14-3-3 protein post-translational modifications in Giardia duodenalis encystation. Lalle M, Bavassano C, Fratini F, Cecchetti S, Boisguerin P, Crescenzi M, Pozio E. Int J Parasitol 40 201-213 (2010)
  78. Normal mode analysis based on an elastic network model for biomolecules in the Protein Data Bank, which uses dihedral angles as independent variables. Wako H, Endo S. Comput Biol Chem 44 22-30 (2013)
  79. Phosphopeptide-dependent labeling of 14-3-3 ζ proteins by fusicoccin-based fluorescent probes. Takahashi M, Kawamura A, Kato N, Nishi T, Hamachi I, Ohkanda J. Angew Chem Int Ed Engl 51 509-512 (2012)
  80. Polycations globally enhance binding of 14-3-3omega to target proteins in spinach leaves. Shen W, Huber SC. Plant Cell Physiol 47 764-771 (2006)
  81. 14-3-3 proteins inactivate DAPK2 by promoting its dimerization and protecting key regulatory phosphosites. Horvath M, Petrvalska O, Herman P, Obsilova V, Obsil T. Commun Biol 4 986 (2021)
  82. Chemical ligation of epoxide-containing fusicoccins and peptide fragments guided by 14-3-3 protein. Maki T, Kawamura A, Kato N, Ohkanda J. Mol Biosyst 9 940-943 (2013)
  83. Delineation of exoenzyme S residues that mediate the interaction with 14-3-3 and its biological activity. Yasmin L, Jansson AL, Panahandeh T, Palmer RH, Francis MS, Hallberg B. FEBS J 273 638-646 (2006)
  84. SWTY--a general peptide probe for homogeneous solution binding assay of 14-3-3 proteins. Wu M, Coblitz B, Shikano S, Long S, Cockrell LM, Fu H, Li M. Anal Biochem 349 186-196 (2006)
  85. Small-Molecule-Induced and Cooperative Enzyme Assembly on a 14-3-3 Scaffold. den Hamer A, Lemmens LJ, Nijenhuis MA, Ottmann C, Merkx M, de Greef TF, Brunsveld L. Chembiochem 18 331-335 (2017)
  86. The proton pump interactor (Ppi) gene family of Arabidopsis thaliana: expression pattern of Ppi1 and characterisation of knockout mutants for Ppi1 and 2. Anzi C, Pelucchi P, Vazzola V, Murgia I, Gomarasca S, Piccoli MB, Morandini P. Plant Biol (Stuttg) 10 237-249 (2008)
  87. Structural and functional analysis of phytotoxin toxoflavin-degrading enzyme. Jung WS, Lee J, Kim MI, Ma J, Nagamatsu T, Goo E, Kim H, Hwang I, Han J, Rhee S. PLoS One 6 e22443 (2011)
  88. The phytotoxin fusicoccin, a selective stabilizer of 14-3-3 interactions? Camoni L, Visconti S, Aducci P. IUBMB Life 65 513-517 (2013)
  89. Functional analyses of cytochrome P450 genes responsible for the early steps of brassicicene C biosynthesis. Hashimoto M, Higuchi Y, Takahashi S, Osada H, Sakaki T, Toyomasu T, Sassa T, Kato N, Dairi T. Bioorg Med Chem Lett 19 5640-5643 (2009)
  90. Fusicoccin activates pathogen-responsive gene expression independently of common resistance signalling pathways, but increases disease symptoms in Pseudomonas syringae-infected tomato plants. Singh J, Roberts MR. Planta 219 261-269 (2004)
  91. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Castillejo MÁ, Bani M, Rubiales D. Phytochemistry 115 44-58 (2015)
  92. Expression of a translationally fused TAP-tagged plasma membrane proton pump in Arabidopsis thaliana. Rodrigues RB, Sabat G, Minkoff BB, Burch HL, Nguyen TT, Sussman MR. Biochemistry 53 566-578 (2014)
  93. Ribosomal protein NtRPL17 interacts with kinesin-12 family protein NtKRP and functions in the regulation of embryo/seed size and radicle growth. Tian S, Wu J, Liu Y, Huang X, Li F, Wang Z, Sun MX. J Exp Bot 68 5553-5564 (2017)
  94. Electrostatic interactions play a minor role in the binding of ExoS to 14-3-3 proteins. Yasmin L, Veesenmeyer JL, Diaz MH, Francis MS, Ottmann C, Palmer RH, Hauser AR, Hallberg B. Biochem J 427 217-224 (2010)
  95. Mechanism of proton transport by plant plasma membrane proton ATPases. Buch-Pedersen MJ, Palmgren MG. J Plant Res 116 507-515 (2003)
  96. Role of the 14-3-3 C-terminal region in the interaction with the plasma membrane H+-ATPase. Visconti S, Camoni L, Marra M, Aducci P. Plant Cell Physiol 49 1887-1897 (2008)
  97. Exploration of biosynthetic access to the shared precursor of the fusicoccane diterpenoid family. Arens J, Engels B, Klopries S, Jennewein S, Ottmann C, Schulz F. Chem Commun (Camb) 49 4337-4339 (2013)
  98. Molecular Dynamics Investigations Suggest a Non-specific Recognition Strategy of 14-3-3σ Protein by Tweezer: Implication for the Inhibition Mechanism. Shi M, Xu D. Front Chem 7 237 (2019)
  99. Synthetic studies on dicyclopenta[a,d]cyclooctane terpenoids: construction of the core structure of fusicoccins and ophiobolins on the route involving a Wagner-Meerwein rearrangement. Michalak M, Michalak K, Urbanczyk-Lipkowska Z, Wicha J. J Org Chem 76 7497-7509 (2011)
  100. Tenuazonic acid from Stemphylium loti inhibits the plant plasma membrane H+ -ATPase by a mechanism involving the C-terminal regulatory domain. Bjørk PK, Rasmussen SA, Gjetting SK, Havshøi NW, Petersen TI, Ipsen JØ, Larsen TO, Fuglsang AT. New Phytol 226 770-784 (2020)
  101. The interaction between casein kinase Ialpha and 14-3-3 is phosphorylation dependent. Clokie S, Falconer H, Mackie S, Dubois T, Aitken A. FEBS J 276 6971-6984 (2009)
  102. A model for the interaction between plant GAPN and 14-3-3zeta using protein-protein docking calculations, electrostatic potentials and kinetics. Bustos DM, Iglesias AA. J Mol Graph Model 23 490-502 (2005)
  103. A new client for 14-3-3 proteins: GmMYB176, an R1 MYB transcription factor. Dhaubhadel S, Li X. Plant Signal Behav 5 921-923 (2010)
  104. Fusicoccin counteracts the toxic effect of cadmium on the growth of maize coleoptile segments. Kurtyka R, Kita A, Karcz W. Arch Environ Contam Toxicol 61 568-577 (2011)
  105. Molecular Analysis of 14-3-3 Genes in Citrus sinensis and Their Responses to Different Stresses. Lyu S, Chen G, Pan D, Chen J, She W. Int J Mol Sci 22 E568 (2021)
  106. The crystal structure of Giardia duodenalis 14-3-3 in the apo form: when protein post-translational modifications make the difference. Fiorillo A, di Marino D, Bertuccini L, Via A, Pozio E, Camerini S, Ilari A, Lalle M. PLoS One 9 e92902 (2014)
  107. Analysis of Interactions Stabilized by Fusicoccin A Reveals an Expanded Suite of Potential 14-3-3 Binding Partners. Sengupta A, Liriano J, Miller BG, Frederich JH. ACS Chem Biol 15 305-310 (2020)
  108. Functional alterations due to amino acid changes and evolutionary comparative analysis of ARPKD and ADPKD genes. Edrees BM, Athar M, Abduljaleel Z, Al-Allaf FA, Taher MM, Khan W, Bouazzaoui A, Al-Harbi N, Safar R, Al-Edressi H, Alansary K, Anazi A, Altayeb N, Ahmed MA. Genom Data 10 127-134 (2016)
  109. Fusicoccin affects cytochrome c leakage and cytosolic 14-3-3 accumulation independent of H-ATPase activation. Malerba M, Crosti P, Cerana R, Bianchetti R. Physiol Plant 120 386-394 (2004)
  110. Molecular characterization of a novel 14-3-3 protein gene (Hb14-3-3c) from Hevea brasiliensis. Yang ZP, Li HL, Guo D, Tian WM, Peng SQ. Mol Biol Rep 39 4491-4497 (2012)
  111. Spodoptera littoralis oral secretions inhibit the activity of Phaseolus lunatus plasma membrane H+-ATPase. Camoni L, Barbero F, Aducci P, Maffei ME. PLoS One 13 e0202142 (2018)
  112. Effect of K+ and Ca2+ on the indole-3-acetic acid- and fusicoccin-induced growth and membrane potential in maize coleoptile cells. Siemieniuk A, Karcz W. AoB Plants 7 plv070 (2015)
  113. Fusicocca-3(16),10(14)-diene, and beta- and delta-araneosenes, new fusicoccin biosynthesis-related diterpene hydrocarbons from Phomopsis amygdali. Sassa T, Kenmoku H, Nakayama K, Kato N. Biosci Biotechnol Biochem 68 1608-1610 (2004)
  114. Heterologous fermentation of a diterpene from Alternaria brassisicola. Arens J, Bergs D, Mewes M, Merz J, Schembecker G, Schulz F. Mycology 5 207-219 (2014)
  115. Identification of 14-3-3 epsilon as a regulator of the neural apoptotic pathway for chronic-stress-induced depression. Zhao Y, Coulson EJ, Su X, Zhang J, Sha B, Xu H, Deng Y, Chen Y, Cao J, Wang Y, Wang S. iScience 24 102043 (2021)
  116. Probing the 14-3-3 Isoform-Specificity Profile of Protein-Protein Interactions Stabilized by Fusicoccin A. Sengupta A, Liriano J, Bienkiewicz EA, Miller BG, Frederich JH. ACS Omega 5 25029-25035 (2020)
  117. Effects of fusicoccin on ion fluxes in guard cells. MacRobbie EA, Smyth WD. New Phytol 186 636-647 (2010)
  118. On the role of residue phosphorylation in 14-3-3 partners: AANAT as a case study. Masone D, Uhart M, Bustos DM. Sci Rep 7 46114 (2017)
  119. Structural Effects of Fusicoccin upon Upregulation of 14-3-3-Phospholigand Interaction and Cytotoxic Activity. Ohkanda J, Kusumoto A, Punzalan L, Masuda R, Wang C, Parvatkar P, Akase D, Aida M, Uesugi M, Higuchi Y, Kato N. Chemistry 24 16066-16071 (2018)
  120. A plant plasma-membrane H+-ATPase promotes yeast TORC1 activation via its carboxy-terminal tail. Saliba E, Primo C, Guarini N, André B. Sci Rep 11 4788 (2021)
  121. Fragment-based exploration of the 14-3-3/Amot-p130 interface. Centorrino F, Andlovic B, Cossar P, Brunsveld L, Ottmann C. Curr Res Struct Biol 4 21-28 (2022)
  122. Modular access to functionalized 5-8-5 fused ring systems via a photoinduced cycloisomerization reaction. Salvati AE, Law JA, Liriano J, Frederich JH. Chem Sci 9 5389-5393 (2018)
  123. NtKRP, a kinesin-12 protein, regulates embryo/seed size and seed germination via involving in cell cycle progression at the G2/M transition. Tian S, Wu J, Li F, Zou J, Liu Y, Zhou B, Bai Y, Sun MX. Sci Rep 6 35641 (2016)
  124. Compensatory Protection of Thioredoxin-Deficient Cells from Etoposide-Induced Cell Death by Selenoprotein W via Interaction with 14-3-3. Kang H, Jeon YH, Ham M, Ko K, Kim IY. Int J Mol Sci 22 10338 (2021)
  125. Fusicoccin (FC)-Induced Rapid Growth, Proton Extrusion and Membrane Potential Changes in Maize (Zea mays L.) Coleoptile Cells: Comparison to Auxin Responses. Polak M, Karcz W. Int J Mol Sci 22 5017 (2021)
  126. Fusicoccin counteracts inhibitory effects of high temperature on auxin-induced growth and proton extrusion in maize coleoptile segments. Karcz W, Burdach Z, Lekacz H, Polak M. Plant Signal Behav 3 821-822 (2008)
  127. Interaction of an IκBα Peptide with 14-3-3. Wolter M, Santo DL, Herman P, Ballone A, Centorrino F, Obsil T, Ottmann C. ACS Omega 5 5380-5388 (2020)
  128. The Integration of Proteome-Wide PTM Data with Protein Structural and Sequence Features Identifies Phosphorylations that Mediate 14-3-3 Interactions. Egbert CM, Warr LR, Pennington KL, Thornton MM, Vaughan AJ, Ashworth SW, Heaton MJ, English N, Torres MP, Andersen JL. J Mol Biol 435 167890 (2023)
  129. 14-3-3 proteins are luciferases candidate proteins from lanternfish Diaphus watasei. Yano D, Bessho-Uehara M, Paitio J, Iwasaka M, Oba Y. Photochem Photobiol Sci 22 263-277 (2023)
  130. Crystal structure of potato 14-3-3 protein St14f revealed the importance of helix I in StFDL1 recognition. Harada KI, Furuita K, Yamashita E, Taoka KI, Tsuji H, Fujiwara T, Nakagawa A, Kojima C. Sci Rep 12 11596 (2022)
  131. Investigation of the potential role of fusicoccin, a fungal phytotoxin, in mitigating salt stress in onion roots. Çavuşoğlu K, Çavuşoğlu D. Sci Rep 13 9801 (2023)
  132. Plasma membrane H+-ATPases promote TORC1 activation in plant suspension cells. Primo C, Navarre C, Chaumont F, André B. iScience 25 104238 (2022)
  133. Salinity-Induced Cytosolic Alkaline Shifts in Arabidopsis Roots Require the SOS Pathway. Rombolá-Caldentey B, Andrés Z, Waadt R, Quintero FJ, Schumacher K, Pardo JM. Int J Mol Sci 24 3549 (2023)
  134. The effect of DC electric field on the elongation growth, proton extrusion and membrane potential of Zea mays L. coleoptile cells; a laboratory study. Karcz W, Burdach Z. BMC Plant Biol 22 389 (2022)
  135. Towards Understanding the Involvement of H+-ATPase in Programmed Cell Death of Psammosilene tunicoides after Oxalic Acid Application. Jiang X, Mohammadi MA, Qin Y, Zhang Z. Molecules 26 6957 (2021)