1nzb Citations

Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation.

Nucleic Acids Res 31 5449-60 (2003)
Related entries: 1ouq, 1q3u, 1q3v

Cited: 41 times
EuropePMC logo PMID: 12954782

Abstract

Escherichia coli phage P1 Cre recombinase catalyzes the site-specific recombination of DNA containing loxP sites. We report here two crystal structures of a wild-type Cre recombinase-loxP synaptic complex corresponding to two distinct reaction states: an initial pre-cleavage complex, trapped using a phosphorothioate modification at the cleavable scissile bond that prevents the recombination reaction, and a 3'-phosphotyrosine protein-DNA intermediate resulting from the first strand cleavage. In contrast to previously determined Cre complexes, both structures contain a full tetrameric complex in the asymmetric unit, unequivocally showing that the anti-parallel arrangement of the loxP sites is an intrinsic property of the Cre-loxP recombination synapse. The conformation of the spacer is different to the one observed for the symmetrized loxS site: a kink next to the scissile phosphate in the top strand of the pre-cleavage complex leads to unstacking of the TpG step and a widening of the minor groove. This side of the spacer is interacting with a 'cleavage-competent' Cre subunit, suggesting that the first cleavage occurs at the ApT step in the top strand. This is further confirmed by the structure of the 3'-phosphotyrosine intermediate, where the DNA is cleaved in the top strands and covalently linked to the 'cleavage-competent' subunits. The cleavage is followed by a movement of the C-terminal part containing the attacking Y324 and the helix N interacting with the 'non-cleaving' subunit. This rearrangement could be responsible for the interconversion of Cre subunits. Our results also suggest that the Cre-induced kink next to the scissile phosphodiester activates the DNA for cleavage at this position and facilitates strand transfer.

Reviews - 1nzb mentioned but not cited (1)

  1. Archaeal tyrosine recombinases. Badel C, Da Cunha V, Oberto J. FEMS Microbiol Rev 45 fuab004 (2021)

Articles - 1nzb mentioned but not cited (9)

  1. Crystal structure of a wild-type Cre recombinase-loxP synapse reveals a novel spacer conformation suggesting an alternative mechanism for DNA cleavage activation. Ennifar E, Meyer JE, Buchholz F, Stewart AF, Suck D. Nucleic Acids Res 31 5449-5460 (2003)
  2. Programmable Extracellular Vesicles for Macromolecule Delivery and Genome Modifications. Zhang X, Xu Q, Zi Z, Liu Z, Wan C, Crisman L, Shen J, Liu X. Dev Cell 55 784-801.e9 (2020)
  3. Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Karimova M, Splith V, Karpinski J, Pisabarro MT, Buchholz F. Sci Rep 6 30130 (2016)
  4. A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch. Duplus-Bottin H, Spichty M, Triqueneaux G, Place C, Mangeot PE, Ohlmann T, Vittoz F, Yvert G. Elife 10 e61268 (2021)
  5. Crystal structure of an engineered, HIV-specific recombinase for removal of integrated proviral DNA. Meinke G, Karpinski J, Buchholz F, Bohm A. Nucleic Acids Res 45 9726-9740 (2017)
  6. Structural snapshots of Xer recombination reveal activation by synaptic complex remodeling and DNA bending. Bebel A, Karaca E, Kumar B, Stark WM, Barabas O. Elife 5 e19706 (2016)
  7. Inaugural structure from the DUF3349 superfamily of proteins, Mycobacterium tuberculosis Rv0543c. Buchko GW, Phan I, Myler PJ, Terwilliger TC, Kim CY. Arch Biochem Biophys 506 150-156 (2011)
  8. Neural circuit analysis using a novel intersectional split intein-mediated split-Cre recombinase system. Khoo ATT, Kim PJ, Kim HM, Je HS. Mol Brain 13 101 (2020)
  9. Pairing of single mutations yields obligate Cre-type site-specific recombinases. Hoersten J, Ruiz-Gómez G, Lansing F, Rojo-Romanos T, Schmitt LT, Sonntag J, Pisabarro MT, Buchholz F. Nucleic Acids Res 50 1174-1186 (2022)


Reviews citing this publication (1)

  1. Mechanisms of site-specific recombination. Grindley ND, Whiteson KL, Rice PA. Annu Rev Biochem 75 567-605 (2006)

Articles citing this publication (30)

  1. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Karpinski J, Hauber I, Chemnitz J, Schäfer C, Paszkowski-Rogacz M, Chakraborty D, Beschorner N, Hofmann-Sieber H, Lange UC, Grundhoff A, Hackmann K, Schrock E, Abi-Ghanem J, Pisabarro MT, Surendranath V, Schambach A, Lindner C, van Lunzen J, Hauber J, Buchholz F. Nat Biotechnol 34 401-409 (2016)
  2. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision. Martin-Ortigosa S, Peterson DJ, Valenstein JS, Lin VS, Trewyn BG, Lyznik LA, Wang K. Plant Physiol 164 537-547 (2014)
  3. Capturing reaction paths and intermediates in Cre-loxP recombination using single-molecule fluorescence. Pinkney JN, Zawadzki P, Mazuryk J, Arciszewska LK, Sherratt DJ, Kapanidis AN. Proc Natl Acad Sci U S A 109 20871-20876 (2012)
  4. Preferential synapsis of loxP sites drives ordered strand exchange in Cre-loxP site-specific recombination. Ghosh K, Lau CK, Gupta K, Van Duyne GD. Nat Chem Biol 1 275-282 (2005)
  5. DNA topology and geometry in Flp and Cre recombination. Vetcher AA, Lushnikov AY, Navarra-Madsen J, Scharein RG, Lyubchenko YL, Darcy IK, Levene SD. J Mol Biol 357 1089-1104 (2006)
  6. Real-time single-molecule tethered particle motion experiments reveal the kinetics and mechanisms of Cre-mediated site-specific recombination. Fan HF. Nucleic Acids Res 40 6208-6222 (2012)
  7. A genetic assay for transcription errors reveals multilayer control of RNA polymerase II fidelity. Irvin JD, Kireeva ML, Gotte DR, Shafer BK, Huang I, Kashlev M, Strathern JN. PLoS Genet 10 e1004532 (2014)
  8. Transposase-DNA Complex Structures Reveal Mechanisms for Conjugative Transposition of Antibiotic Resistance. Rubio-Cosials A, Schulz EC, Lambertsen L, Smyshlyaev G, Rojas-Cordova C, Forslund K, Karaca E, Bebel A, Bork P, Barabas O. Cell 173 208-220.e20 (2018)
  9. A Cre Transcription Fidelity Reporter Identifies GreA as a Major RNA Proofreading Factor in Escherichia coli. Bubunenko MG, Court CB, Rattray AJ, Gotte DR, Kireeva ML, Irizarry-Caro JA, Li X, Jin DJ, Court DL, Strathern JN, Kashlev M. Genetics 206 179-187 (2017)
  10. Engineering of a target site-specific recombinase by a combined evolution- and structure-guided approach. Abi-Ghanem J, Chusainow J, Karimova M, Spiegel C, Hofmann-Sieber H, Hauber J, Buchholz F, Pisabarro MT. Nucleic Acids Res 41 2394-2403 (2013)
  11. High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Bessen JL, Afeyan LK, Dančík V, Koblan LW, Thompson DB, Leichner C, Clemons PA, Liu DR. Nat Commun 10 1937 (2019)
  12. Real-time single-molecule tethered particle motion analysis reveals mechanistic similarities and contrasts of Flp site-specific recombinase with Cre and λ Int. Fan HF, Ma CH, Jayaram M. Nucleic Acids Res 41 7031-7047 (2013)
  13. Reversed DNA strand cleavage specificity in initiation of Cre-LoxP recombination induced by the His289Ala active-site substitution. Gelato KA, Martin SS, Baldwin EP. J Mol Biol 354 233-245 (2005)
  14. Measurements of DNA-loop formation via Cre-mediated recombination. Shoura MJ, Vetcher AA, Giovan SM, Bardai F, Bharadwaj A, Kesinger MR, Levene SD. Nucleic Acids Res 40 7452-7464 (2012)
  15. Predicting knot or catenane type of site-specific recombination products. Buck D, Flapan E. J Mol Biol 374 1186-1199 (2007)
  16. Protein-induced local DNA bends regulate global topology of recombination products. Du Q, Livshits A, Kwiatek A, Jayaram M, Vologodskii A. J Mol Biol 368 170-182 (2007)
  17. Correction of a Factor VIII genomic inversion with designer-recombinases. Lansing F, Mukhametzyanova L, Rojo-Romanos T, Iwasawa K, Kimura M, Paszkowski-Rogacz M, Karpinski J, Grass T, Sonntag J, Schneider PM, Günes C, Hoersten J, Schmitt LT, Rodriguez-Muela N, Knöfler R, Takebe T, Buchholz F. Nat Commun 13 422 (2022)
  18. Intein-mediated Cre protein assembly for transgene excision in hybrid progeny of transgenic Arabidopsis. Ge J, Wang L, Yang C, Ran L, Wen M, Fu X, Fan D, Luo K. Plant Cell Rep 35 2045-2053 (2016)
  19. Multiple levels of affinity-dependent DNA discrimination in Cre-LoxP recombination. Gelato KA, Martin SS, Wong S, Baldwin EP. Biochemistry 45 12216-12226 (2006)
  20. Single molecule TPM analysis of the catalytic pentad mutants of Cre and Flp site-specific recombinases: contributions of the pentad residues to the pre-chemical steps of recombination. Fan HF, Cheng YS, Ma CH, Jayaram M. Nucleic Acids Res 43 3237-3255 (2015)
  21. Insights into the preferential order of strand exchange in the Cre/loxP recombinase system: impact of the DNA spacer flanking sequence and flexibility. Abi-Ghanem J, Samsonov SA, Pisabarro MT. J Comput Aided Mol Des 29 271-282 (2015)
  22. Mechanisms of Cre recombinase synaptic complex assembly and activation illuminated by Cryo-EM. Stachowski K, Norris AS, Potter D, Wysocki VH, Foster MP. Nucleic Acids Res 50 1753-1769 (2022)
  23. Nearest-neighbor amino acids of specificity-determining residues influence the activity of engineered Cre-type recombinases. Soni A, Augsburg M, Buchholz F, Pisabarro MT. Sci Rep 10 13985 (2020)
  24. Analysis of spacer regions derived from intramolecular recombination between heterologous loxP sites. Jung UJ, Park S, Lee G, Shin HJ, Kwon MH. Biochem Biophys Res Commun 363 183-189 (2007)
  25. Conformational dynamics promotes disordered regions from function-dispensable to essential in evolved site-specific DNA recombinases. Guillén-Pingarrón C, Guillem-Gloria PM, Soni A, Ruiz-Gómez G, Augsburg M, Buchholz F, Anselmi M, Pisabarro MT. Comput Struct Biotechnol J 20 989-1001 (2022)
  26. Loop-closure kinetics reveal a stable, right-handed DNA intermediate in Cre recombination. Shoura MJ, Giovan SM, Vetcher AA, Ziraldo R, Hanke A, Levene SD. Nucleic Acids Res 48 4371-4381 (2020)
  27. Comment Lox and Cre sandwich. Lee L, Sadowski PD. Nat Chem Biol 1 246-247 (2005)
  28. The modified castor bean catalase intron is incompletely spliced in tobacco and Arabidopsis. Ma H, Lin Z, Hu Y. Plant Sci 181 188-194 (2011)
  29. Design of time-delayed safety switches for CRISPR gene therapy. Sun D. Sci Rep 11 16908 (2021)
  30. Structural and functional characterization of MrpR, the master repressor of the Bacillus subtilis prophage SPβ. Kohm K, Jalomo-Khayrova E, Krüger A, Basu S, Steinchen W, Bange G, Frunzke J, Hertel R, Commichau FM, Czech L. Nucleic Acids Res 51 9452-9474 (2023)