1ngj Citations

Structural basis of the 70-kilodalton heat shock cognate protein ATP hydrolytic activity. II. Structure of the active site with ADP or ATP bound to wild type and mutant ATPase fragment.

J. Biol. Chem. 269 12899-907 (1994)
Related entries: 1nga, 1ngb, 1ngc, 1ngd, 1nge, 1ngf, 1ngg, 1ngh, 1ngi, 3hsc

Cited: 79 times
EuropePMC logo PMID: 8175707

Abstract

The ATPase fragment of the bovine 70-kDa heat shock cognate protein is an attractive construct in which to study its mechanism of ATP hydrolysis. The three-dimensional structure suggests several residues that might participate in the ATPase reaction. Four acidic residues (Asp-10, Glu-175, Asp-199, and Asp-206) have been individually mutated to both the cognate amine (asparagine/glutamine) and to serine, and the effects of the mutations on the kinetics of the ATPase activity (Wilbanks, S. M., DeLuca-Flaherty, C., and McKay, D. B. (1994) J. Biol. Chem. 269, 12893-12898) and the structure of the mutant ATPase fragments have been determined, typically to approximately 2.4 A resolution. Additionally, the structures of the wild type protein complexed with MgADP and Pi, MgAMPPNP (5'-adenylyl-beta, gamma-imidodiphosphate) and CaAMPPNP have been refined to 2.1, 2.4, and 2.4 A, respectively. Combined, these structures provide models for the prehydrolysis, MgATP-bound state and the post-hydrolysis, MgADP-bound state of the ATPase fragment. These models suggest a pathway for the hydrolytic reaction in which 1) the gamma phosphate of bound ATP reorients to form a beta, gamma-bidentate phosphate complex with the Mg2+ ion, allowing 2) in-line nucleophilic attack on the gamma phosphate by a H2O molecule or OH- ion, with 3) subsequent release of inorganic phosphate.

Articles - 1ngj mentioned but not cited (1)

  1. Structural basis of J cochaperone binding and regulation of Hsp70. Jiang J, Maes EG, Taylor AB, Wang L, Hinck AP, Lafer EM, Sousa R. Mol. Cell 28 422-433 (2007)


Reviews citing this publication (10)

  1. Structural and functional analysis of the Hsp70/Hsp40 chaperone system. Liu Q, Liang C, Zhou L. Protein Sci 29 378-390 (2020)
  2. Allostery in the Hsp70 chaperone proteins. Zuiderweg ER, Bertelsen EB, Rousaki A, Mayer MP, Gestwicki JE, Ahmad A. Top Curr Chem 328 99-153 (2013)
  3. Chaperones and foldases in endoplasmic reticulum stress signaling in plants. Gupta D, Tuteja N. Plant Signal Behav 6 232-236 (2011)
  4. Keep the traffic moving: mechanism of the Hsp70 motor. Sousa R, Lafer EM. Traffic 7 1596-1603 (2006)
  5. Energy use by biological protein transport pathways. Alder NN, Theg SM. Trends Biochem. Sci. 28 442-451 (2003)
  6. Actin-related proteins (Arps): conformational switches for chromatin-remodeling machines? Boyer LA, Peterson CL. Bioessays 22 666-672 (2000)
  7. The Hsp70 and Hsp60 chaperone machines. Bukau B, Horwich AL. Cell 92 351-366 (1998)
  8. The Hsp90 complex--a super-chaperone machine as a novel drug target. Scheibel T, Buchner J. Biochem. Pharmacol. 56 675-682 (1998)
  9. Characterising non-covalent interactions with the Cambridge Structural Database. Lommerse JP, Taylor R. J. Enzym. Inhib. 11 223-243 (1997)
  10. Molecular chaperones in cellular protein folding. Hartl FU, Martin J. Curr. Opin. Struct. Biol. 5 92-102 (1995)

Articles citing this publication (68)

  1. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Cell 90 65-75 (1997)
  2. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER. Proc. Natl. Acad. Sci. U.S.A. 106 8471-8476 (2009)
  3. Structural basis of interdomain communication in the Hsc70 chaperone. Jiang J, Prasad K, Lafer EM, Sousa R. Mol. Cell 20 513-524 (2005)
  4. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Swain JF, Dinler G, Sivendran R, Montgomery DL, Stotz M, Gierasch LM. Mol. Cell 26 27-39 (2007)
  5. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1. Liu Q, Hendrickson WA. Cell 131 106-120 (2007)
  6. Structure of the Hsp110:Hsc70 nucleotide exchange machine. Schuermann JP, Jiang J, Cuellar J, Llorca O, Wang L, Gimenez LE, Jin S, Taylor AB, Demeler B, Morano KA, Hart PJ, Valpuesta JM, Lafer EM, Sousa R. Mol. Cell 31 232-243 (2008)
  7. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L, Liu Q. Nat. Struct. Mol. Biol. 20 900-907 (2013)
  8. Allosteric regulation of Hsp70 chaperones by a proline switch. Vogel M, Bukau B, Mayer MP. Mol. Cell 21 359-367 (2006)
  9. Partitioning of plasmid R1. The ParM protein exhibits ATPase activity and interacts with the centromere-like ParR-parC complex. Jensen RB, Gerdes K. J. Mol. Biol. 269 505-513 (1997)
  10. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. Rousaki A, Miyata Y, Jinwal UK, Dickey CA, Gestwicki JE, Zuiderweg ER. J. Mol. Biol. 411 614-632 (2011)
  11. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones. Zhuravleva A, Gierasch LM. Proc. Natl. Acad. Sci. U.S.A. 108 6987-6992 (2011)
  12. Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Sriram M, Osipiuk J, Freeman B, Morimoto R, Joachimiak A. Structure 5 403-414 (1997)
  13. Mechanism of clathrin basket dissociation: separate functions of protein domains of the DnaJ homologue auxilin. Holstein SE, Ungewickell H, Ungewickell E. J. Cell Biol. 135 925-937 (1996)
  14. Structural basis for GroEL-assisted protein folding from the crystal structure of (GroEL-KMgATP)14 at 2.0A resolution. Wang J, Boisvert DC. J. Mol. Biol. 327 843-855 (2003)
  15. Allostery in Hsp70 chaperones is transduced by subdomain rotations. Bhattacharya A, Kurochkin AV, Yip GN, Zhang Y, Bertelsen EB, Zuiderweg ER. J. Mol. Biol. 388 475-490 (2009)
  16. Synapsin I is structurally similar to ATP-utilizing enzymes. Esser L, Wang CR, Hosaka M, Smagula CS, Südhof TC, Deisenhofer J. EMBO J. 17 977-984 (1998)
  17. In vivo expression of mammalian BiP ATPase mutants causes disruption of the endoplasmic reticulum. Hendershot LM, Wei JY, Gaut JR, Lawson B, Freiden PJ, Murti KG. Mol. Biol. Cell 6 283-296 (1995)
  18. The dissociation of ATP from hsp70 of Saccharomyces cerevisiae is stimulated by both Ydj1p and peptide substrates. Ziegelhoffer T, Lopez-Buesa P, Craig EA. J. Biol. Chem. 270 10412-10419 (1995)
  19. Tissue-specific expression of dominant negative mutant Drosophila HSC70 causes developmental defects and lethality. Elefant F, Palter KB. Mol. Biol. Cell 10 2101-2117 (1999)
  20. The mitochondrial protein import motor: dissociation of mitochondrial hsp70 from its membrane anchor requires ATP binding rather than ATP hydrolysis. Horst M, Oppliger W, Feifel B, Schatz G, Glick BS. Protein Sci. 5 759-767 (1996)
  21. The first archaeal ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. Hansen T, Reichstein B, Schmid R, Schönheit P. J. Bacteriol. 184 5955-5965 (2002)
  22. Investigating a back door mechanism of actin phosphate release by steered molecular dynamics. Wriggers W, Schulten K. Proteins 35 262-273 (1999)
  23. Identification of an allosteric pocket on human hsp70 reveals a mode of inhibition of this therapeutically important protein. Rodina A, Patel PD, Kang Y, Patel Y, Baaklini I, Wong MJ, Taldone T, Yan P, Yang C, Maharaj R, Gozman A, Patel MR, Patel HJ, Chirico W, Erdjument-Bromage H, Talele TT, Young JC, Chiosis G. Chem. Biol. 20 1469-1480 (2013)
  24. Crystal structure of the Acidaminococcus fermentans 2-hydroxyglutaryl-CoA dehydratase component A. Locher KP, Hans M, Yeh AP, Schmid B, Buckel W, Rees DC. J. Mol. Biol. 307 297-308 (2001)
  25. Structural insight into signal conversion and inactivation by NTPDase2 in purinergic signaling. Zebisch M, Sträter N. Proc. Natl. Acad. Sci. U.S.A. 105 6882-6887 (2008)
  26. A role for molecular chaperone Hsc70 in reovirus outer capsid disassembly. Ivanovic T, Agosto MA, Chandran K, Nibert ML. J. Biol. Chem. 282 12210-12219 (2007)
  27. Letter Did tRNA synthetase classes arise on opposite strands of the same gene? Carter CW, Duax WL. Mol. Cell 10 705-708 (2002)
  28. Stability and dynamics of G-actin: back-door water diffusion and behavior of a subdomain 3/4 loop. Wriggers W, Schulten K. Biophys. J. 73 624-639 (1997)
  29. ATP-induced conformational changes in Hsp70: molecular dynamics and experimental validation of an in silico predicted conformation. Woo HJ, Jiang J, Lafer EM, Sousa R. Biochemistry 48 11470-11477 (2009)
  30. NMR study of nucleotide-induced changes in the nucleotide binding domain of Thermus thermophilus Hsp70 chaperone DnaK: implications for the allosteric mechanism. Revington M, Holder TM, Zuiderweg ER. J. Biol. Chem. 279 33958-33967 (2004)
  31. Biochemical and structural studies on the high affinity of Hsp70 for ADP. Arakawa A, Handa N, Shirouzu M, Yokoyama S. Protein Sci. 20 1367-1379 (2011)
  32. ATPase-defective derivatives of Escherichia coli DnaK that behave differently with respect to ATP-induced conformational change and peptide release. Barthel TK, Zhang J, Walker GC. J. Bacteriol. 183 5482-5490 (2001)
  33. Nucleotide-dependent movements of the kinesin motor domain predicted by simulated annealing. Wriggers W, Schulten K. Biophys. J. 75 646-661 (1998)
  34. The carboxyl-terminal lobe of Hsc70 ATPase domain is sufficient for binding to BAG1. Brive L, Takayama S, Briknarová K, Homma S, Ishida SK, Reed JC, Ely KR. Biochem. Biophys. Res. Commun. 289 1099-1105 (2001)
  35. Nucleotide binding by Lhs1p is essential for its nucleotide exchange activity and for function in vivo. de Keyzer J, Steel GJ, Hale SJ, Humphries D, Stirling CJ. J. Biol. Chem. 284 31564-31571 (2009)
  36. Isoform-selective Genetic Inhibition of Constitutive Cytosolic Hsp70 Activity Promotes Client Tau Degradation Using an Altered Co-chaperone Complement. Fontaine SN, Rauch JN, Nordhues BA, Assimon VA, Stothert AR, Jinwal UK, Sabbagh JJ, Chang L, Stevens SM, Zuiderweg ER, Gestwicki JE, Dickey CA. J. Biol. Chem. 290 13115-13127 (2015)
  37. ATP-dependent glucokinase from the hyperthermophilic bacterium Thermotoga maritima represents an extremely thermophilic ROK glucokinase with high substrate specificity. Hansen T, Schönheit P. FEMS Microbiol. Lett. 226 405-411 (2003)
  38. Structure of glycerol dehydratase reactivase: a new type of molecular chaperone. Liao DI, Reiss L, Turner I, Dotson G. Structure 11 109-119 (2003)
  39. Lobe IB of the ATPase domain of Kar2p/BiP interacts with Ire1p to negatively regulate the unfolded protein response in Saccharomyces cerevisiae. Todd-Corlett A, Jones E, Seghers C, Gething MJ. J. Mol. Biol. 367 770-787 (2007)
  40. Crystal structure of the nucleotide-binding domain of mortalin, the mitochondrial Hsp70 chaperone. Amick J, Schlanger SE, Wachnowsky C, Moseng MA, Emerson CC, Dare M, Luo WI, Ithychanda SS, Nix JC, Cowan JA, Page RC, Misra S. Protein Sci. 23 833-842 (2014)
  41. E. coli chaperones DnaK, Hsp33 and Spy inhibit bacterial functional amyloid assembly. Evans ML, Schmidt JC, Ilbert M, Doyle SM, Quan S, Bardwell JC, Jakob U, Wickner S, Chapman MR. Prion 5 323-334 (2011)
  42. Mutational analysis of arginine 177 in the nucleotide binding site of beta-actin. Schüler H, Nyåkern M, Schutt CE, Lindberg U, Karlsson R. Eur. J. Biochem. 267 4054-4062 (2000)
  43. A role for an Hsp70 nucleotide exchange factor in the regulation of synaptic vesicle endocytosis. Morgan JR, Jiang J, Oliphint PA, Jin S, Gimenez LE, Busch DJ, Foldes AE, Zhuo Y, Sousa R, Lafer EM. J. Neurosci. 33 8009-8021 (2013)
  44. HSP70 colocalizes with PLK1 at the centrosome and disturbs spindle dynamics in cells arrested in mitosis by arsenic trioxide. Chen YJ, Lai KC, Kuo HH, Chow LP, Yih LH, Lee TC. Arch. Toxicol. 88 1711-1723 (2014)
  45. Modeling and docking studies on novel mutants (K71L and T204V) of the ATPase domain of human heat shock 70 kDa protein 1. Elengoe A, Naser MA, Hamdan S, Hamdan S. Int J Mol Sci 15 6797-6814 (2014)
  46. Structural studies of ROK fructokinase YdhR from Bacillus subtilis: insights into substrate binding and fructose specificity. Nocek B, Stein AJ, Jedrzejczak R, Cuff ME, Li H, Volkart L, Joachimiak A. J. Mol. Biol. 406 325-342 (2011)
  47. Identifying, cloning and structural analysis of differentially expressed genes upon Puccinia infection of Festuca rubra var. rubra. Ergen NZ, Dinler G, Shearman RC, Budak H. Gene 393 145-152 (2007)
  48. Dancing through Life: Molecular Dynamics Simulations and Network-Centric Modeling of Allosteric Mechanisms in Hsp70 and Hsp110 Chaperone Proteins. Stetz G, Verkhivker GM. PLoS ONE 10 e0143752 (2015)
  49. Identification and characterization of the ATP-binding site in human pancreatic glucokinase. Marotta DE, Anand GR, Anderson TA, Miller SP, Okar DA, Levitt DG, Lange AJ. Arch. Biochem. Biophys. 436 23-31 (2005)
  50. Letter TROSY-driven NMR backbone assignments of the 381-residue nucleotide-binding domain of the Thermus Thermophilus DnaK molecular chaperone. Revington M, Zuiderweg ER. J. Biomol. NMR 30 113-114 (2004)
  51. Direct inter-subdomain interactions switch between the closed and open forms of the Hsp70 nucleotide-binding domain in the nucleotide-free state. Shida M, Arakawa A, Ishii R, Kishishita S, Takagi T, Kukimoto-Niino M, Sugano S, Tanaka A, Shirouzu M, Yokoyama S. Acta Crystallogr. D Biol. Crystallogr. 66 223-232 (2010)
  52. The active Hsc70/tau complex can be exploited to enhance tau turnover without damaging microtubule dynamics. Fontaine SN, Martin MD, Akoury E, Assimon VA, Borysov S, Nordhues BA, Sabbagh JJ, Cockman M, Gestwicki JE, Zweckstetter M, Dickey CA. Hum. Mol. Genet. 24 3971-3981 (2015)
  53. Constraints imposed by transmembrane domains affect enzymatic activity of membrane-associated human CD39/NTPDase1 mutants. Musi E, Islam N, Drosopoulos JH. Arch. Biochem. Biophys. 461 30-39 (2007)
  54. Mutational analysis of the energetics of the GrpE.DnaK binding interface: equilibrium association constants by sedimentation velocity analytical ultracentrifugation. Gelinas AD, Toth J, Bethoney KA, Stafford WF, Harrison CJ. J. Mol. Biol. 339 447-458 (2004)
  55. The Helicobacter pylori genome: from sequence analysis to structural and functional predictions. Pawłowski K, Zhang B, Rychlewski L, Godzik A. Proteins 36 20-30 (1999)
  56. Functional diversity between HSP70 paralogs caused by variable interactions with specific co-chaperones. Serlidaki D, van Waarde MAWH, Rohland L, Wentink AS, Dekker SL, Kamphuis MJ, Boertien JM, Brunsting JF, Nillegoda NB, Bukau B, Mayer MP, Kampinga HH, Bergink S. J Biol Chem 295 7301-7316 (2020)
  57. Identification of sequence similarity between 60 kDa and 70 kDa molecular chaperones: evidence for a common evolutionary background? Flores AI, Cuezva JM. Biochem. J. 322 ( Pt 2) 641-647 (1997)
  58. MAPK1 of Leishmania donovani interacts and phosphorylates HSP70 and HSP90 subunits of foldosome complex. Kaur P, Garg M, Hombach-Barrigah A, Clos J, Goyal N. Sci Rep 7 10202 (2017)
  59. The specialized Hsp70 (HscA) interdomain linker binds to its nucleotide-binding domain and stimulates ATP hydrolysis in both cis and trans configurations. Alderson TR, Kim JH, Cai K, Frederick RO, Tonelli M, Markley JL. Biochemistry 53 7148-7159 (2014)
  60. Combining multi-mutant and modular thermodynamic cycles to measure energetic coupling networks in enzyme catalysis. Carter CW, Chandrasekaran SN, Weinreb V, Li L, Williams T. Struct Dyn 4 032101 (2017)
  61. Common functionally important motions of the nucleotide-binding domain of Hsp70. Gołaś EI, Czaplewski C, Scheraga HA, Liwo A. Proteins 83 282-299 (2015)
  62. Effect of lysine methylation and other ATPase modulators on the active site of myosin subfragment 1. Bivin DB, Ue K, Khoroshev M, Morales M. Proc. Natl. Acad. Sci. U.S.A. 91 8665-8669 (1994)
  63. Characterization of three heat shock protein 70 genes from Liriomyza trifolii and expression during thermal stress and insect development. Chang YW, Zhang XX, Chen JY, Lu MX, Gong WR, Du YZ. Bull Entomol Res 109 150-159 (2019)
  64. Isolation of a Latimeria menadoensis heat shock protein 70 (Lmhsp70) that has all the features of an inducible gene and encodes a functional molecular chaperone. Modisakeng KW, Jiwaji M, Pesce ER, Robert J, Amemiya CT, Dorrington RA, Blatch GL. Mol. Genet. Genomics 282 185-196 (2009)
  65. The effect of monovalent ions on polyphosphate binding to Escherichia coli exopolyphosphatase. Bolesch DG, Keasling JD. Biochem. Biophys. Res. Commun. 274 236-241 (2000)
  66. Disrupted Hydrogen-Bond Network and Impaired ATPase Activity in an Hsc70 Cysteine Mutant. O'Donnell JP, Marsh HM, Sondermann H, Sevier CS. Biochemistry 57 1073-1086 (2018)
  67. Systematic investigation of sequence and structural motifs that recognize ATP. Chen K, Wang D, Kurgan L. Comput Biol Chem 56 131-141 (2015)
  68. Probing the Structural Dynamics of the Catalytic Domain of Human Soluble Guanylate Cyclase. Khalid RR, Maryam A, Sezerman OU, Mylonas E, Siddiqi AR, Kokkinidis M. Sci Rep 10 9488 (2020)


Related citations provided by authors (1)

  1. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein.. Flaherty KM, DeLuca-Flaherty C, McKay DB Nature 346 623-8 (1990)