1naf Citations

The structure of the GGA1-GAT domain reveals the molecular basis for ARF binding and membrane association of GGAs.

Dev Cell 4 321-32 (2003)
Cited: 39 times
EuropePMC logo PMID: 12636914

Abstract

The GGAs are a family of clathrin adaptor proteins involved in vesicular transport between the trans-Golgi network and endosomal system. Here we confirm reports that GGAs are targeted to the Golgi via interaction between the GGA-GAT domain and ARF-GTP, and we present the structure of the GAT domain of human GGA1, completing the structural description of the folded domains of GGA proteins. The GGA-GAT domain possesses an all alpha-helical fold with a "paper clip" topology comprising two independent subdomains. Structure-based mutagenesis demonstrates that ARF1-GTP binding by GGAs is exclusively governed by the N-terminal "hook" subdomain, and, using an in vitro recruitment assay, we show that ARF-GTP binding by this small structure is required and sufficient for Golgi targeting of GGAs.

Reviews - 1naf mentioned but not cited (1)

  1. Structure of Golgi transport proteins. Kümmel D, Reinisch KM. Cold Spring Harb Perspect Biol 3 (2011)

Articles - 1naf mentioned but not cited (2)

  1. The dipeptidyl peptidase IV inhibitors vildagliptin and K-579 inhibit a phospholipase C: a case of promiscuous scaffolds in proteins. Chakraborty S, Rendón-Ramírez A, Ásgeirsson B, Dutta M, Ghosh AS, Oda M, Venkatramani R, Rao BJ, Dandekar AM, Goñi FM. F1000Res 2 286 (2013)
  2. Integrative Approach for Computationally Inferring Interactions between the Alpha and Beta Subunits of the Calcium-Activated Potassium Channel (BK): a Docking Study. González J, Gálvez A, Morales L, Barreto GE, Capani F, Sierra O, Torres Y. Bioinform Biol Insights 7 73-82 (2013)


Reviews citing this publication (13)

  1. ARF proteins: roles in membrane traffic and beyond. D'Souza-Schorey C, Chavrier P. Nat. Rev. Mol. Cell Biol. 7 347-358 (2006)
  2. Ubiquitin-binding domains. Hurley JH, Lee S, Prag G. Biochem. J. 399 361-372 (2006)
  3. Adaptors for clathrin coats: structure and function. Owen DJ, Collins BM, Evans PR. Annu. Rev. Cell Dev. Biol. 20 153-191 (2004)
  4. The GGA proteins: adaptors on the move. Bonifacino JS. Nat. Rev. Mol. Cell Biol. 5 23-32 (2004)
  5. Role of ubiquitylation in cellular membrane transport. Staub O, Rotin D. Physiol. Rev. 86 669-707 (2006)
  6. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Hawkes C, Kar S. Brain Res. Brain Res. Rev. 44 117-140 (2004)
  7. Membrane recruitment of effector proteins by Arf and Rab GTPases. Kawasaki M, Nakayama K, Wakatsuki S. Curr. Opin. Struct. Biol. 15 681-689 (2005)
  8. The structure and function of GGAs, the traffic controllers at the TGN sorting crossroads. Nakayama K, Wakatsuki S. Cell Struct. Funct. 28 431-442 (2003)
  9. Structures of Ras superfamily effector complexes: What have we learnt in two decades? Mott HR, Owen D. Crit. Rev. Biochem. Mol. Biol. 50 85-133 (2015)
  10. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases. Wang Y, MacDonald RG, Thinakaran G, Kar S. Mol. Neurobiol. 54 2636-2658 (2017)
  11. ARF GTPases and Their Ubiquitous Role in Intracellular Trafficking Beyond the Golgi. Adarska P, Wong-Dilworth L, Bottanelli F. Front Cell Dev Biol 9 679046 (2021)
  12. Cargo Sorting at the trans-Golgi Network for Shunting into Specific Transport Routes: Role of Arf Small G Proteins and Adaptor Complexes. Tan JZA, Gleeson PA. Cells 8 (2019)
  13. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Front Cell Dev Biol 11 1243038 (2023)

Articles citing this publication (23)

  1. Interactions of GGA3 with the ubiquitin sorting machinery. Puertollano R, Bonifacino JS. Nat. Cell Biol. 6 244-251 (2004)
  2. Structural basis for Arl1-dependent targeting of homodimeric GRIP domains to the Golgi apparatus. Panic B, Perisic O, Veprintsev DB, Williams RL, Munro S. Mol. Cell 12 863-874 (2003)
  3. PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Wang J, Sun HQ, Macia E, Kirchhausen T, Watson H, Bonifacino JS, Yin HL. Mol. Biol. Cell 18 2646-2655 (2007)
  4. Molecular mechanism of membrane recruitment of GGA by ARF in lysosomal protein transport. Shiba T, Kawasaki M, Takatsu H, Nogi T, Matsugaki N, Igarashi N, Suzuki M, Kato R, Nakayama K, Wakatsuki S. Nat. Struct. Biol. 10 386-393 (2003)
  5. Structural basis for recruitment of GRIP domain golgin-245 by small GTPase Arl1. Wu M, Lu L, Hong W, Song H. Nat. Struct. Mol. Biol. 11 86-94 (2004)
  6. Structural and functional analysis of ataxin-2 and ataxin-3. Albrecht M, Golatta M, Wüllner U, Lengauer T. Eur. J. Biochem. 271 3155-3170 (2004)
  7. WAVE regulatory complex activation by cooperating GTPases Arf and Rac1. Koronakis V, Hume PJ, Humphreys D, Liu T, Hørning O, Jensen ON, McGhie EJ. Proc. Natl. Acad. Sci. U.S.A. 108 14449-14454 (2011)
  8. The Vps27/Hse1 complex is a GAT domain-based scaffold for ubiquitin-dependent sorting. Prag G, Watson H, Kim YC, Beach BM, Ghirlando R, Hummer G, Bonifacino JS, Hurley JH. Dev. Cell 12 973-986 (2007)
  9. Structural mechanism for ubiquitinated-cargo recognition by the Golgi-localized, gamma-ear-containing, ADP-ribosylation-factor-binding proteins. Prag G, Lee S, Mattera R, Arighi CN, Beach BM, Bonifacino JS, Hurley JH. Proc. Natl. Acad. Sci. U.S.A. 102 2334-2339 (2005)
  10. The GAT domains of clathrin-associated GGA proteins have two ubiquitin binding motifs. Bilodeau PS, Winistorfer SC, Allaman MM, Surendhran K, Kearney WR, Robertson AD, Piper RC. J. Biol. Chem. 279 54808-54816 (2004)
  11. Structural basis for binding of accessory proteins by the appendage domain of GGAs. Collins BM, Praefcke GJ, Robinson MS, Owen DJ. Nat. Struct. Biol. 10 607-613 (2003)
  12. Molecular mechanism of ubiquitin recognition by GGA3 GAT domain. Kawasaki M, Shiba T, Shiba Y, Yamaguchi Y, Matsugaki N, Igarashi N, Suzuki M, Kato R, Kato K, Nakayama K, Wakatsuki S. Genes Cells 10 639-654 (2005)
  13. Epidermal growth factor-dependent phosphorylation of the GGA3 adaptor protein regulates its recruitment to membranes. Kametaka S, Mattera R, Bonifacino JS. Mol. Cell. Biol. 25 7988-8000 (2005)
  14. The role of cargo proteins in GGA recruitment. Hirst J, Seaman MN, Buschow SI, Robinson MS. Traffic 8 594-604 (2007)
  15. The trihelical bundle subdomain of the GGA proteins interacts with multiple partners through overlapping but distinct sites. Mattera R, Puertollano R, Smith WJ, Bonifacino JS. J. Biol. Chem. 279 31409-31418 (2004)
  16. COG6 interacts with a subset of the Golgi SNAREs and is important for the Golgi complex integrity. Kudlyk T, Willett R, Pokrovskaya ID, Lupashin V. Traffic 14 194-204 (2013)
  17. Tom1 (target of Myb 1) is a novel negative regulator of interleukin-1- and tumor necrosis factor-induced signaling pathways. Yamakami M, Yokosawa H. Biol. Pharm. Bull. 27 564-566 (2004)
  18. Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia. Kon S, Minegishi N, Tanabe K, Watanabe T, Funaki T, Wong WF, Sakamoto D, Higuchi Y, Kiyonari H, Asano K, Iwakura Y, Fukumoto M, Osato M, Sanada M, Ogawa S, Nakamura T, Satake M. J. Clin. Invest. 123 1123-1137 (2013)
  19. Lsb5p interacts with actin regulators Sla1p and Las17p, ubiquitin and Arf3p to couple actin dynamics to membrane trafficking processes. Costa R, Warren DT, Ayscough KR. Biochem. J. 387 649-658 (2005)
  20. Crystal structure of human GGA1 GAT domain complexed with the GAT-binding domain of Rabaptin5. Zhu G, Zhai P, He X, Wakeham N, Rodgers K, Li G, Tang J, Zhang XC. EMBO J. 23 3909-3917 (2004)
  21. Multiple phosphorylation events regulate the subcellular localization of GGA1. McKay MM, Kahn RA. Traffic 5 102-116 (2004)
  22. Activation of Gαi at the Golgi by GIV/Girdin imposes finiteness in Arf1 signaling. Lo IC, Gupta V, Midde KK, Taupin V, Lopez-Sanchez I, Kufareva I, Abagyan R, Randazzo PA, Farquhar MG, Ghosh P. Dev. Cell 33 189-203 (2015)
  23. Active GTPase Pulldown Protocol. Baker MJ, Rubio I. Methods Mol Biol 2262 117-135 (2021)