1n6h Citations

High resolution crystal structures of human Rab5a and five mutants with substitutions in the catalytically important phosphate-binding loop.

J Biol Chem 278 2452-60 (2003)
Related entries: 1n6i, 1n6k, 1n6l, 1n6n, 1n6o, 1n6p, 1n6r

Cited: 42 times
EuropePMC logo PMID: 12433916

Abstract

GTPase domain crystal structures of Rab5a wild type and five variants with mutations in the phosphate-binding loop are reported here at resolutions up to 1.5 A. Of particular interest, the A30P mutant was crystallized in complexes with GDP, GDP+AlF(3), and authentic GTP, respectively. The other variant crystals were obtained in complexes with a non-hydrolyzable GTP analog, GppNHp. All structures were solved in the same crystal form, providing an unusual opportunity to compare structures of small GTPases with different catalytic rates. The A30P mutant exhibits dramatically reduced GTPase activity and forms a GTP-bound complex stable enough for crystallographic analysis. Importantly, the A30P structure with bound GDP plus AlF(3) has been solved in the absence of a GTPase-activating protein, and it may resemble that of a transition state intermediate. Conformational changes are observed between the GTP-bound form and the transition state intermediate, mainly in the switch II region containing the catalytic Gln(79) residue and independent of A30P mutation-induced local alterations in the P-loop. The structures suggest an important catalytic role for a P-loop backbone amide group, which is eliminated in the A30P mutant, and support the notion that the transition state of GTPase-mediated GTP hydrolysis is of considerable dissociative character.

Reviews - 1n6h mentioned but not cited (1)

Articles - 1n6h mentioned but not cited (9)

  1. Crystal structure of the intraflagellar transport complex 25/27. Bhogaraju S, Taschner M, Taschner M, Morawetz M, Basquin C, Lorentzen E. EMBO J. 30 1907-1918 (2011)
  2. Analysis of the "thermodynamic information content" of a Homo sapiens structural database reveals hierarchical thermodynamic organization. Larson SA, Hilser VJ. Protein Sci 13 1787-1801 (2004)
  3. Denatured-state energy landscapes of a protein structural database reveal the energetic determinants of a framework model for folding. Wang S, Gu J, Larson SA, Whitten ST, Hilser VJ. J. Mol. Biol. 381 1184-1201 (2008)
  4. Exoenzyme S ADP-ribosylates Rab5 effector sites to uncouple intracellular trafficking. Simon NC, Barbieri JT. Infect. Immun. 82 21-28 (2014)
  5. Inverse control of Rab proteins by Yersinia ADP-ribosyltransferase and glycosyltransferase related to clostridial glucosylating toxins. Ost GS, Wirth C, Bogdanović X, Kao WC, Schorch B, Aktories PJK, Papatheodorou P, Schwan C, Schlosser A, Jank T, Hunte C, Aktories K. Sci Adv 6 eaaz2094 (2020)
  6. Structure of the Drosophila melanogaster Rab6 GTPase at 1.4 Å resolution. Walden M, Jenkins HT, Edwards TA. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67 744-748 (2011)
  7. Membrane Tethering Potency of Rab-Family Small GTPases Is Defined by the C-Terminal Hypervariable Regions. Ueda S, Tamura N, Mima J. Front Cell Dev Biol 8 577342 (2020)
  8. C9orf72, a protein associated with amyotrophic lateral sclerosis (ALS) is a guanine nucleotide exchange factor. Iyer S, Subramanian V, Acharya KR. PeerJ 6 e5815 (2018)
  9. Crystal structure of the GDP-bound GTPase domain of Rab5a from Leishmania donovani. Zohib M, Maheshwari D, Pal RK, Freitag-Pohl S, Biswal BK, Pohl E, Arora A. Acta Crystallogr F Struct Biol Commun 76 544-556 (2020)


Reviews citing this publication (4)

  1. GTP hydrolysis mechanism of Ras-like GTPases. Li G, Zhang XC. J. Mol. Biol. 340 921-932 (2004)
  2. Redox control of GTPases: from molecular mechanisms to functional significance in health and disease. Heo J. Antioxid. Redox Signal. 14 689-724 (2011)
  3. A survey on prediction of specificity-determining sites in proteins. Chakraborty A, Chakrabarti S. Brief. Bioinformatics 16 71-88 (2015)
  4. Invited review: Small GTPases and their GAPs. Mishra AK, Lambright DG. Biopolymers 105 431-448 (2016)

Articles citing this publication (28)

  1. Crystal structure of a translation termination complex formed with release factor RF2. Korostelev A, Asahara H, Lancaster L, Laurberg M, Hirschi A, Zhu J, Trakhanov S, Scott WG, Noller HF. Proc. Natl. Acad. Sci. U.S.A. 105 19684-19689 (2008)
  2. Structure of the APPL1 BAR-PH domain and characterization of its interaction with Rab5. Zhu G, Chen J, Liu J, Brunzelle JS, Huang B, Wakeham N, Terzyan S, Li X, Rao Z, Li G, Zhang XC. EMBO J. 26 3484-3493 (2007)
  3. Structural basis of Rab5-Rabaptin5 interaction in endocytosis. Zhu G, Zhai P, Liu J, Terzyan S, Li G, Zhang XC. Nat. Struct. Mol. Biol. 11 975-983 (2004)
  4. The structural GDP/GTP cycle of Rab11 reveals a novel interface involved in the dynamics of recycling endosomes. Pasqualato S, Senic-Matuglia F, Renault L, Goud B, Salamero J, Cherfils J. J. Biol. Chem. 279 11480-11488 (2004)
  5. MSDsite: a database search and retrieval system for the analysis and viewing of bound ligands and active sites. Golovin A, Dimitropoulos D, Oldfield T, Rachedi A, Henrick K. Proteins 58 190-199 (2005)
  6. Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal Autoantigen 1 (EEA1). Mishra A, Eathiraj S, Corvera S, Lambright DG. Proc. Natl. Acad. Sci. U.S.A. 107 10866-10871 (2010)
  7. Detection of functionally important regions in "hypothetical proteins" of known structure. Nimrod G, Schushan M, Steinberg DM, Ben-Tal N. Structure 16 1755-1763 (2008)
  8. Insight into the molecular switch mechanism of human Rab5a from molecular dynamics simulations. Wang JF, Chou KC. Biochem. Biophys. Res. Commun. 390 608-612 (2009)
  9. Mechanism of free radical nitric oxide-mediated Ras guanine nucleotide dissociation. Heo J, Prutzman KC, Mocanu V, Campbell SL. J. Mol. Biol. 346 1423-1440 (2005)
  10. Tyrosine phosphorylation of the Rab24 GTPase in cultured mammalian cells. Ding J, Soule G, Overmeyer JH, Maltese WA. Biochem. Biophys. Res. Commun. 312 670-675 (2003)
  11. The crystal structure of the small GTPase Rab11b reveals critical differences relative to the Rab11a isoform. Scapin SM, Carneiro FR, Alves AC, Medrano FJ, Guimarães BG, Zanchin NI. J. Struct. Biol. 154 260-268 (2006)
  12. Mutant N143P reveals how Na+ activates thrombin. Niu W, Chen Z, Bush-Pelc LA, Bah A, Gandhi PS, Di Cera E. J. Biol. Chem. 284 36175-36185 (2009)
  13. Ribosome-induced tuning of GTP hydrolysis by a translational GTPase. Maracci C, Peske F, Dannies E, Pohl C, Rodnina MV. Proc. Natl. Acad. Sci. U.S.A. 111 14418-14423 (2014)
  14. Structure of the extremely slow GTPase Rab6A in the GTP bound form at 1.8A resolution. Bergbrede T, Pylypenko O, Rak A, Alexandrov K. J. Struct. Biol. 152 235-238 (2005)
  15. Phosphorylation of Rab5a protein by protein kinase Cϵ is crucial for T-cell migration. Ong ST, Freeley M, Skubis-Zegadło J, Fazil MH, Kelleher D, Fresser F, Baier G, Verma NK, Long A. J. Biol. Chem. 289 19420-19434 (2014)
  16. GDP-bound and nucleotide-free intermediates of the guanine nucleotide exchange in the Rab5·Vps9 system. Uejima T, Ihara K, Goh T, Ito E, Sunada M, Ueda T, Nakano A, Wakatsuki S. J. Biol. Chem. 285 36689-36697 (2010)
  17. The Legionella pneumophila GTPase activating protein LepB accelerates Rab1 deactivation by a non-canonical hydrolytic mechanism. Mishra AK, Del Campo CM, Collins RE, Roy CR, Lambright DG. J. Biol. Chem. 288 24000-24011 (2013)
  18. Molecular mechanism of Ras-related protein Rab-5A and effect of mutations in the catalytically active phosphate-binding loop. Khan FI, Aamir M, Wei DQ, Ahmad F, Hassan MI. J. Biomol. Struct. Dyn. 35 105-118 (2017)
  19. Functional study on GTP hydrolysis by the GTP-binding protein from Sulfolobus solfataricus, a member of the HflX family. Huang B, Wu H, Hao N, Blombach F, van der Oost J, Li X, Zhang XC, Rao Z. J. Biochem. 148 103-113 (2010)
  20. High resolution crystal structures of human Rab4a in its active and inactive conformations. Huber SK, Scheidig AJ. FEBS Lett. 579 2821-2829 (2005)
  21. Identification of PLP2 and RAB5C as novel TPD52 binding partners through yeast two-hybrid screening. Shahheydari H, Frost S, Smith BJ, Groblewski GE, Chen Y, Byrne JA. Mol. Biol. Rep. 41 4565-4572 (2014)
  22. Purification and characterization of Ras related protein, Rab5a from Tinospora cordifolia. Amir M, Wahiduzzaman, Dar MA, Haque MA, Islam A, Ahmad F, Hassan MI. Int. J. Biol. Macromol. 82 471-479 (2016)
  23. Ehrlichia type IV secretion system effector Etf-2 binds to active RAB5 and delays endosome maturation. Yan Q, Lin M, Huang W, Teymournejad O, Johnson JM, Hays FA, Liang Z, Li G, Rikihisa Y. Proc. Natl. Acad. Sci. U.S.A. 115 E8977-E8986 (2018)
  24. Identification of the Binding Sites on Rab5 and p110beta Phosphatidylinositol 3-kinase. Whitecross DE, Anderson DH. Sci Rep 7 16194 (2017)
  25. Structural plasticity mediates distinct GAP-dependent GTP hydrolysis mechanisms in Rab33 and Rab5. Majumdar S, Acharya A, Prakash B. FEBS J. 284 4358-4375 (2017)
  26. Common hydrogen bond interactions in diverse phosphoryl transfer active sites. Summerton JC, Martin GM, Evanseck JD, Chapman MS. PLoS ONE 9 e108310 (2014)
  27. Poly(ADP-ribose) Polymerase 1 Mediates Rab5 Inactivation after DNA Damage. Mashimo M, Morozumi A, Nobeyama A, Kanzaki M, Negi S, Kato J, Moss J, Nomura A, Fujii T. Int J Mol Sci 23 7827 (2022)
  28. Structural and Biophysical Characterization of Rab5a from Leishmania Donovani. Maheshwari D, Yadav R, Rastogi R, Jain A, Tripathi S, Mukhopadhyay A, Arora A. Biophys. J. 115 1217-1230 (2018)