1n1h Citations

RNA synthesis in a cage--structural studies of reovirus polymerase lambda3.

Cell 111 733-45 (2002)
Related entries: 1muk, 1mwh, 1n35, 1n38

Cited: 231 times
EuropePMC logo PMID: 12464184

Abstract

The reovirus polymerase and those of other dsRNA viruses function within the confines of a protein capsid to transcribe the tightly packed dsRNA genome segments. The crystal structure of the reovirus polymerase, lambda3, determined at 2.5 A resolution, shows a fingers-palm-thumb core, similar to those of other viral polymerases, surrounded by major N- and C-terminal elaborations, which create a cage-like structure, with four channels leading to the catalytic site. This "caged" polymerase has allowed us to visualize the results of several rounds of RNA polymerization directly in the crystals. A 5' cap binding site on the surface of lambda3 suggests a template retention mechanism by which attachment of the 5' end of the plus-sense strand facilitates insertion of the 3' end of the minus-sense strand into the template channel.

Reviews - 1n1h mentioned but not cited (4)

  1. Structural insights into the coupling of virion assembly and rotavirus replication. Trask SD, McDonald SM, Patton JT. Nat Rev Microbiol 10 165-177 (2012)
  2. RNA synthetic mechanisms employed by diverse families of RNA viruses. McDonald SM. Wiley Interdiscip Rev RNA 4 351-367 (2013)
  3. Structures of the Mononegavirales Polymerases. Liang B. J Virol 94 e00175-20 (2020)
  4. Regulation of rotavirus polymerase activity by inner capsid proteins. Gridley CL, Patton JT. Curr Opin Virol 9 31-38 (2014)

Articles - 1n1h mentioned but not cited (14)

  1. Structure of the L Protein of Vesicular Stomatitis Virus from Electron Cryomicroscopy. Liang B, Li Z, Jenni S, Rahmeh AA, Morin BM, Grant T, Grigorieff N, Harrison SC, Whelan SPJ. Cell 162 314-327 (2015)
  2. Molecular model of SARS coronavirus polymerase: implications for biochemical functions and drug design. Xu X, Liu Y, Weiss S, Arnold E, Sarafianos SG, Ding J. Nucleic Acids Res 31 7117-7130 (2003)
  3. Constraint-based, homology model of the extracellular domain of the epithelial Na+ channel α subunit reveals a mechanism of channel activation by proteases. Kashlan OB, Adelman JL, Okumura S, Blobner BM, Zuzek Z, Hughey RP, Kleyman TR, Grabe M. J Biol Chem 286 649-660 (2011)
  4. Structure of the Vesicular Stomatitis Virus L Protein in Complex with Its Phosphoprotein Cofactor. Jenni S, Bloyet LM, Diaz-Avalos R, Liang B, Whelan SPJ, Grigorieff N, Harrison SC. Cell Rep 30 53-60.e5 (2020)
  5. Mechanism of intraparticle synthesis of the rotavirus double-stranded RNA genome. Guglielmi KM, McDonald SM, Patton JT. J Biol Chem 285 18123-18128 (2010)
  6. RNA-dependent RNA polymerase of Japanese encephalitis virus binds the initiator nucleotide GTP to form a mechanistically important pre-initiation state. Surana P, Satchidanandam V, Nair DT. Nucleic Acids Res 42 2758-2773 (2014)
  7. In Situ Structures of the Polymerase Complex and RNA Genome Show How Aquareovirus Transcription Machineries Respond to Uncoating. Ding K, Nguyen L, Zhou ZH. J Virol 92 e00774-18 (2018)
  8. Prediction of Small Molecule Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus-2 RNA-dependent RNA Polymerase. Ahmad M, Dwivedy A, Mariadasse R, Tiwari S, Kar D, Jeyakanthan J, Biswal BK. ACS Omega 5 18356-18366 (2020)
  9. Ribovirus classification by a polymerase barcode sequence. Babaian A, Edgar R. PeerJ 10 e14055 (2022)
  10. Asymmetric reconstruction of mammalian reovirus reveals interactions among RNA, transcriptional factor µ2 and capsid proteins. Pan M, Alvarez-Cabrera AL, Kang JS, Wang L, Fan C, Zhou ZH. Nat Commun 12 4176 (2021)
  11. Mutational analysis of residues involved in nucleotide and divalent cation stabilization in the rotavirus RNA-dependent RNA polymerase catalytic pocket. Ogden KM, Ramanathan HN, Patton JT. Virology 431 12-20 (2012)
  12. Structural Insights into the Binding Modes of Viral RNA-Dependent RNA Polymerases Using a Function-Site Interaction Fingerprint Method for RNA Virus Drug Discovery. Zhao Z, Bourne PE. J Proteome Res 19 4698-4705 (2020)
  13. A tool for calculating binding-site residues on proteins from PDB structures. Hu J, Yan C. BMC Struct Biol 9 52 (2009)
  14. In situ structures of polymerase complex of mammalian reovirus illuminate RdRp activation and transcription regulation. Bao K, Zhang X, Li D, Sun W, Sun Z, Wang J, Zhu P. Proc Natl Acad Sci U S A 119 e2203054119 (2022)


Reviews citing this publication (45)

  1. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Te Velthuis AJ, Fodor E. Nat Rev Microbiol 14 479-493 (2016)
  2. Structures of influenza A proteins and insights into antiviral drug targets. Das K, Aramini JM, Ma LC, Krug RM, Arnold E. Nat Struct Mol Biol 17 530-538 (2010)
  3. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Bollati M, Alvarez K, Assenberg R, Baronti C, Canard B, Cook S, Coutard B, Decroly E, de Lamballerie X, Gould EA, Grard G, Grimes JM, Hilgenfeld R, Jansson AM, Malet H, Mancini EJ, Mastrangelo E, Mattevi A, Milani M, Moureau G, Neyts J, Owens RJ, Ren J, Selisko B, Speroni S, Steuber H, Stuart DI, Unge T, Bolognesi M. Antiviral Res 87 125-148 (2010)
  4. RNA Dependent RNA Polymerases: Insights from Structure, Function and Evolution. Venkataraman S, Prasad BVLS, Selvarajan R. Viruses 10 E76 (2018)
  5. Structure-function relationships among RNA-dependent RNA polymerases. Ng KK, Arnold JJ, Cameron CE. Curr Top Microbiol Immunol 320 137-156 (2008)
  6. Common and unique features of viral RNA-dependent polymerases. te Velthuis AJ. Cell Mol Life Sci 71 4403-4420 (2014)
  7. The flavivirus polymerase as a target for drug discovery. Malet H, Massé N, Selisko B, Romette JL, Alvarez K, Guillemot JC, Tolou H, Yap TL, Vasudevan S, Lescar J, Canard B. Antiviral Res 80 23-35 (2008)
  8. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Pflug A, Lukarska M, Resa-Infante P, Reich S, Cusack S. Virus Res 234 103-117 (2017)
  9. Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Kolakofsky D, Le Mercier P, Iseni F, Garcin D. Virology 318 463-473 (2004)
  10. Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes. Posthuma CC, Te Velthuis AJW, Snijder EJ. Virus Res 234 58-73 (2017)
  11. The oncogene eIF4E: using biochemical insights to target cancer. Carroll M, Borden KL. J Interferon Cytokine Res 33 227-238 (2013)
  12. Emerging themes in rotavirus cell entry, genome organization, transcription and replication. Jayaram H, Estes MK, Prasad BV. Virus Res 101 67-81 (2004)
  13. Animal cell invasion by a large nonenveloped virus: reovirus delivers the goods. Chandran K, Nibert ML. Trends Microbiol 11 374-382 (2003)
  14. The polymerase of negative-stranded RNA viruses. Morin B, Kranzusch PJ, Rahmeh AA, Whelan SP. Curr Opin Virol 3 103-110 (2013)
  15. The molecular biology of Bluetongue virus replication. Patel A, Roy P. Virus Res 182 5-20 (2014)
  16. From touchdown to transcription: the reovirus cell entry pathway. Danthi P, Guglielmi KM, Kirchner E, Mainou B, Stehle T, Dermody TS. Curr Top Microbiol Immunol 343 91-119 (2010)
  17. Functional mapping of bluetongue virus proteins and their interactions with host proteins during virus replication. Roy P. Cell Biochem Biophys 50 143-157 (2008)
  18. Towards a structural understanding of RNA synthesis by negative strand RNA viral polymerases. Reguera J, Gerlach P, Cusack S. Curr Opin Struct Biol 36 75-84 (2016)
  19. Structure and assembly of the influenza A virus ribonucleoprotein complex. Zheng W, Tao YJ. FEBS Lett 587 1206-1214 (2013)
  20. Fidelity Variants and RNA Quasispecies. Bordería AV, Rozen-Gagnon K, Vignuzzi M. Curr Top Microbiol Immunol 392 303-322 (2016)
  21. Bluetongue virus: dissection of the polymerase complex. Roy P. J Gen Virol 89 1789-1804 (2008)
  22. Role of motif B loop in allosteric regulation of RNA-dependent RNA polymerization activity. Garriga D, Ferrer-Orta C, Querol-Audí J, Oliva B, Verdaguer N. J Mol Biol 425 2279-2287 (2013)
  23. Structure and function of RNA replication. Ortín J, Parra F. Annu Rev Microbiol 60 305-326 (2006)
  24. RNA Synthesis and Capping by Non-segmented Negative Strand RNA Viral Polymerases: Lessons From a Prototypic Virus. Ogino T, Green TJ. Front Microbiol 10 1490 (2019)
  25. Bluetongue virus structure and assembly. Roy P. Curr Opin Virol 24 115-123 (2017)
  26. The ins and outs of four-tunneled Reoviridae RNA-dependent RNA polymerases. McDonald SM, Tao YJ, Patton JT. Curr Opin Struct Biol 19 775-782 (2009)
  27. Polymerases of hepatitis C viruses and flaviviruses: structural and mechanistic insights and drug development. Caillet-Saguy C, Lim SP, Shi PY, Lescar J, Bressanelli S. Antiviral Res 105 8-16 (2014)
  28. Mechanisms of reovirus-induced cell death and tissue injury: role of apoptosis and virus-induced perturbation of host-cell signaling and transcription factor activation. Clarke P, Debiasi RL, Goody R, Hoyt CC, Richardson-Burns S, Tyler KL. Viral Immunol 18 89-115 (2005)
  29. Orthoreovirus and Aquareovirus core proteins: conserved enzymatic surfaces, but not protein-protein interfaces. Kim J, Tao Y, Reinisch KM, Harrison SC, Nibert ML. Virus Res 101 15-28 (2004)
  30. Whither structural biology? Harrison SC. Nat Struct Mol Biol 11 12-15 (2004)
  31. 3D structures of fungal partitiviruses. Nibert ML, Tang J, Xie J, Collier AM, Ghabrial SA, Baker TS, Tao YJ. Adv Virus Res 86 59-85 (2013)
  32. Potential for Improving Potency and Specificity of Reovirus Oncolysis with Next-Generation Reovirus Variants. Mohamed A, Johnston RN, Shmulevitz M. Viruses 7 6251-6278 (2015)
  33. Function, Architecture, and Biogenesis of Reovirus Replication Neoorganelles. Tenorio R, Fernández de Castro I, Knowlton JJ, Zamora PF, Sutherland DM, Risco C, Dermody TS. Viruses 11 E288 (2019)
  34. Synthesis and Translation of Viral mRNA in Reovirus-Infected Cells: Progress and Remaining Questions. Lemay G. Viruses 10 E671 (2018)
  35. Transcriptional Control and mRNA Capping by the GDP Polyribonucleotidyltransferase Domain of the Rabies Virus Large Protein. Ogino T, Green TJ. Viruses 11 E504 (2019)
  36. Advances in the Development of Antiviral Compounds for Rotavirus Infections. Tohmé MJ, Delgui LR. mBio 12 e00111-21 (2021)
  37. Flavivirus RNA synthesis in vitro. Padmanabhan R, Takhampunya R, Teramoto T, Choi KH. Methods 91 20-34 (2015)
  38. Structural organization of viral RNA-dependent RNA polymerases. Shatskaya GS, Dmitrieva TM. Biochemistry (Mosc) 78 231-235 (2013)
  39. Flaviviridae viruses use a common molecular mechanism to escape nucleoside analogue inhibitors. Valdés JJ, Butterill PT, Růžek D. Biochem Biophys Res Commun 492 652-658 (2017)
  40. Revisiting Viral RNA-Dependent RNA Polymerases: Insights from Recent Structural Studies. Ramaswamy K, Rashid M, Ramasamy S, Jayavelu T, Venkataraman S. Viruses 14 2200 (2022)
  41. Cystoviral RNA-directed RNA polymerases: Regulation of RNA synthesis on multiple time and length scales. Alphonse S, Ghose R. Virus Res 234 135-152 (2017)
  42. Biochemistry of the Respiratory Syncytial Virus L Protein Embedding RNA Polymerase and Capping Activities. Sutto-Ortiz P, Eléouët JF, Ferron F, Decroly E. Viruses 15 341 (2023)
  43. Captivating Perplexities of Spinareovirinae 5' RNA Caps. Kniert J, Lin QF, Shmulevitz M. Viruses 13 294 (2021)
  44. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses. Azad K, Banerjee M, Johnson JE. Annu Rev Virol 4 221-240 (2017)
  45. [Function of influenza virus RNA polymerase based on structure]. Naito T, Kawaguchi A, Nagata K. Uirusu 59 1-11 (2009)

Articles citing this publication (168)

  1. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. Yap TL, Xu T, Chen YL, Malet H, Egloff MP, Canard B, Vasudevan SG, Lescar J. J Virol 81 4753-4765 (2007)
  2. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Gong P, Peersen OB. Proc Natl Acad Sci U S A 107 22505-22510 (2010)
  3. Crystal structure of the polymerase PA(C)-PB1(N) complex from an avian influenza H5N1 virus. He X, Zhou J, Bartlam M, Zhang R, Ma J, Lou Z, Li X, Li J, Joachimiak A, Zeng Z, Ge R, Rao Z, Liu Y. Nature 454 1123-1126 (2008)
  4. Organization of the influenza virus replication machinery. Moeller A, Kirchdoerfer RN, Potter CS, Carragher B, Wilson IA. Science 338 1631-1634 (2012)
  5. The structure of the RNA-dependent RNA polymerase from bovine viral diarrhea virus establishes the role of GTP in de novo initiation. Choi KH, Groarke JM, Young DC, Kuhn RJ, Smith JL, Pevear DC, Rossmann MG. Proc Natl Acad Sci U S A 101 4425-4430 (2004)
  6. Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. Zhang X, Walker SB, Chipman PR, Nibert ML, Baker TS. Nat Struct Biol 10 1011-1018 (2003)
  7. Mechanism for coordinated RNA packaging and genome replication by rotavirus polymerase VP1. Lu X, McDonald SM, Tortorici MA, Tao YJ, Vasquez-Del Carpio R, Nibert ML, Patton JT, Harrison SC. Structure 16 1678-1688 (2008)
  8. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Fabrega C, Hausmann S, Shen V, Shuman S, Lima CD. Mol Cell 13 77-89 (2004)
  9. Insights into strand displacement and processivity from the crystal structure of the protein-primed DNA polymerase of bacteriophage phi29. Kamtekar S, Berman AJ, Wang J, Lázaro JM, de Vega M, Blanco L, Salas M, Steitz TA. Mol Cell 16 609-618 (2004)
  10. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. Aftab SO, Ghouri MZ, Masood MU, Haider Z, Khan Z, Ahmad A, Munawar N. J Transl Med 18 275 (2020)
  11. Putative autocleavage of outer capsid protein micro1, allowing release of myristoylated peptide micro1N during particle uncoating, is critical for cell entry by reovirus. Odegard AL, Chandran K, Zhang X, Parker JS, Baker TS, Nibert ML. J Virol 78 8732-8745 (2004)
  12. The structure of a birnavirus polymerase reveals a distinct active site topology. Pan J, Vakharia VN, Tao YJ. Proc Natl Acad Sci U S A 104 7385-7390 (2007)
  13. Insights into the structure, mechanism, and regulation of scavenger mRNA decapping activity. Gu M, Fabrega C, Liu SW, Liu H, Kiledjian M, Lima CD. Mol Cell 14 67-80 (2004)
  14. Sequential structures provide insights into the fidelity of RNA replication. Ferrer-Orta C, Arias A, Pérez-Luque R, Escarmís C, Domingo E, Verdaguer N. Proc Natl Acad Sci U S A 104 9463-9468 (2007)
  15. Mammalian reovirus, a nonfusogenic nonenveloped virus, forms size-selective pores in a model membrane. Agosto MA, Ivanovic T, Nibert ML. Proc Natl Acad Sci U S A 103 16496-16501 (2006)
  16. X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. McClain B, Settembre E, Temple BR, Bellamy AR, Harrison SC. J Mol Biol 397 587-599 (2010)
  17. Expression, purification, and characterization of SARS coronavirus RNA polymerase. Cheng A, Zhang W, Xie Y, Jiang W, Arnold E, Sarafianos SG, Ding J. Virology 335 165-176 (2005)
  18. Reovirus nonstructural protein mu NS recruits viral core surface proteins and entering core particles to factory-like inclusions. Broering TJ, Kim J, Miller CL, Piggott CD, Dinoso JB, Nibert ML, Parker JS. J Virol 78 1882-1892 (2004)
  19. Structure of the Respiratory Syncytial Virus Polymerase Complex. Gilman MSA, Liu C, Fung A, Behera I, Jordan P, Rigaux P, Ysebaert N, Tcherniuk S, Sourimant J, Eléouët JF, Sutto-Ortiz P, Decroly E, Roymans D, Jin Z, McLellan JS. Cell 179 193-204.e14 (2019)
  20. Activation mechanism of a noncanonical RNA-dependent RNA polymerase. Garriga D, Navarro A, Querol-Audí J, Abaitua F, Rodríguez JF, Verdaguer N. Proc Natl Acad Sci U S A 104 20540-20545 (2007)
  21. eIF4E3 acts as a tumor suppressor by utilizing an atypical mode of methyl-7-guanosine cap recognition. Osborne MJ, Volpon L, Kornblatt JA, Culjkovic-Kraljacic B, Baguet A, Borden KL. Proc Natl Acad Sci U S A 110 3877-3882 (2013)
  22. Mechanism of RNA synthesis initiation by the vesicular stomatitis virus polymerase. Morin B, Rahmeh AA, Whelan SP. EMBO J 31 1320-1329 (2012)
  23. In situ structures of the segmented genome and RNA polymerase complex inside a dsRNA virus. Zhang X, Ding K, Yu X, Chang W, Sun J, Zhou ZH. Nature 527 531-534 (2015)
  24. The structure of an RNAi polymerase links RNA silencing and transcription. Salgado PS, Koivunen MR, Makeyev EV, Bamford DH, Stuart DI, Grimes JM. PLoS Biol 4 e434 (2006)
  25. Backbone model of an aquareovirus virion by cryo-electron microscopy and bioinformatics. Cheng L, Zhu J, Hui WH, Zhang X, Honig B, Fang Q, Zhou ZH. J Mol Biol 397 852-863 (2010)
  26. Atomic structure reveals the unique capsid organization of a dsRNA virus. Pan J, Dong L, Lin L, Ochoa WF, Sinkovits RS, Havens WM, Nibert ML, Baker TS, Ghabrial SA, Tao YJ. Proc Natl Acad Sci U S A 106 4225-4230 (2009)
  27. Features of reovirus outer capsid protein mu1 revealed by electron cryomicroscopy and image reconstruction of the virion at 7.0 Angstrom resolution. Zhang X, Ji Y, Zhang L, Harrison SC, Marinescu DC, Nibert ML, Baker TS. Structure 13 1545-1557 (2005)
  28. Structure of the human metapneumovirus polymerase phosphoprotein complex. Pan J, Qian X, Lattmann S, El Sahili A, Yeo TH, Jia H, Cressey T, Ludeke B, Noton S, Kalocsay M, Fearns R, Lescar J. Nature 577 275-279 (2020)
  29. Molecular basis for nucleotide conservation at the ends of the dengue virus genome. Selisko B, Potisopon S, Agred R, Priet S, Varlet I, Thillier Y, Sallamand C, Debart F, Vasseur JJ, Canard B. PLoS Pathog 8 e1002912 (2012)
  30. Assembly of a functional Machupo virus polymerase complex. Kranzusch PJ, Schenk AD, Rahmeh AA, Radoshitzky SR, Bavari S, Walz T, Whelan SP. Proc Natl Acad Sci U S A 107 20069-20074 (2010)
  31. The role of the priming loop in influenza A virus RNA synthesis. Te Velthuis AJ, Robb NC, Kapanidis AN, Fodor E. Nat Microbiol 1 16029 (2016)
  32. Structure of the Qbeta replicase, an RNA-dependent RNA polymerase consisting of viral and host proteins. Kidmose RT, Vasiliev NN, Chetverin AB, Andersen GR, Knudsen CR. Proc Natl Acad Sci U S A 107 10884-10889 (2010)
  33. Cryo-EM shows the polymerase structures and a nonspooled genome within a dsRNA virus. Liu H, Cheng L. Science 349 1347-1350 (2015)
  34. Genome-wide identification of interferon-sensitive mutations enables influenza vaccine design. Du Y, Xin L, Shi Y, Zhang TH, Wu NC, Dai L, Gong D, Brar G, Shu S, Luo J, Reiley W, Tseng YW, Bai H, Wu TT, Wang J, Shu Y, Sun R. Science 359 290-296 (2018)
  35. Structural and functional analysis of hepatitis C virus strain JFH1 polymerase. Simister P, Schmitt M, Geitmann M, Wicht O, Danielson UH, Klein R, Bressanelli S, Lohmann V. J Virol 83 11926-11939 (2009)
  36. Location of the dsRNA-dependent polymerase, VP1, in rotavirus particles. Estrozi LF, Settembre EC, Goret G, McClain B, Zhang X, Chen JZ, Grigorieff N, Harrison SC. J Mol Biol 425 124-132 (2013)
  37. Nucleoside and RNA triphosphatase activities of orthoreovirus transcriptase cofactor mu2. Kim J, Parker JS, Murray KE, Nibert ML. J Biol Chem 279 4394-4403 (2004)
  38. Structures of EV71 RNA-dependent RNA polymerase in complex with substrate and analogue provide a drug target against the hand-foot-and-mouth disease pandemic in China. Wu Y, Lou Z, Miao Y, Yu Y, Dong H, Peng W, Bartlam M, Li X, Rao Z. Protein Cell 1 491-500 (2010)
  39. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Shannon A, Fattorini V, Sama B, Selisko B, Feracci M, Falcou C, Gauffre P, El Kazzi P, Delpal A, Decroly E, Alvarez K, Eydoux C, Guillemot JC, Moussa A, Good SS, La Colla P, Lin K, Sommadossi JP, Zhu Y, Yan X, Shi H, Ferron F, Canard B. Nat Commun 13 621 (2022)
  40. Purified recombinant bluetongue virus VP1 exhibits RNA replicase activity. Boyce M, Wehrfritz J, Noad R, Roy P. J Virol 78 3994-4002 (2004)
  41. The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis. Iglesias NG, Filomatori CV, Gamarnik AV. J Virol 85 5745-5756 (2011)
  42. Further insights into the roles of GTP and the C terminus of the hepatitis C virus polymerase in the initiation of RNA synthesis. Harrus D, Ahmed-El-Sayed N, Simister PC, Miller S, Triconnet M, Hagedorn CH, Mahias K, Rey FA, Astier-Gin T, Bressanelli S. J Biol Chem 285 32906-32918 (2010)
  43. Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Zhang X, Tang J, Walker SB, O'Hara D, Nibert ML, Duncan R, Baker TS. Virology 343 25-35 (2005)
  44. Requirements for the formation of membrane pores by the reovirus myristoylated micro1N peptide. Zhang L, Agosto MA, Ivanovic T, King DS, Nibert ML, Harrison SC. J Virol 83 7004-7014 (2009)
  45. Stabilization of poliovirus polymerase by NTP binding and fingers-thumb interactions. Thompson AA, Albertini RA, Peersen OB. J Mol Biol 366 1459-1474 (2007)
  46. Broome virus, a new fusogenic Orthoreovirus species isolated from an Australian fruit bat. Thalmann CM, Cummins DM, Yu M, Lunt R, Pritchard LI, Hansson E, Crameri S, Hyatt A, Wang LF. Virology 402 26-40 (2010)
  47. Cryo-EM structure of the respiratory syncytial virus RNA polymerase. Cao D, Gao Y, Roesler C, Rice S, D'Cunha P, Zhuang L, Slack J, Domke M, Antonova A, Romanelli S, Keating S, Forero G, Juneja P, Liang B. Nat Commun 11 368 (2020)
  48. Crystal structure of complete rhinovirus RNA polymerase suggests front loading of protein primer. Appleby TC, Luecke H, Shim JH, Wu JZ, Cheney IW, Zhong W, Vogeley L, Hong Z, Yao N. J Virol 79 277-288 (2005)
  49. Sequence analysis of the genome of piscine orthoreovirus (PRV) associated with heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar). Markussen T, Dahle MK, Tengs T, Løvoll M, Finstad ØW, Wiik-Nielsen CR, Grove S, Lauksund S, Robertsen B, Rimstad E. PLoS One 8 e70075 (2013)
  50. A small-RNA enhancer of viral polymerase activity. Perez JT, Zlatev I, Aggarwal S, Subramanian S, Sachidanandam R, Kim B, Manoharan M, tenOever BR. J Virol 86 13475-13485 (2012)
  51. The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase. Salgado PS, Makeyev EV, Butcher SJ, Bamford DH, Stuart DI, Grimes JM. Structure 12 307-316 (2004)
  52. In situ structures of rotavirus polymerase in action and mechanism of mRNA transcription and release. Ding K, Celma CC, Zhang X, Chang T, Shen W, Atanasov I, Roy P, Zhou ZH. Nat Commun 10 2216 (2019)
  53. Structure of the carboxy-terminal receptor-binding domain of avian reovirus fibre sigmaC. Guardado Calvo P, Fox GC, Hermo Parrado XL, Llamas-Saiz AL, Costas C, Martínez-Costas J, Benavente J, van Raaij MJ. J Mol Biol 354 137-149 (2005)
  54. Evolution of tertiary structure of viral RNA dependent polymerases. Černý J, Černá Bolfíková B, Valdés JJ, Grubhoffer L, Růžek D. PLoS One 9 e96070 (2014)
  55. Rotavirus VP2 core shell regions critical for viral polymerase activation. McDonald SM, Patton JT. J Virol 85 3095-3105 (2011)
  56. Novel Coronavirus Polymerase and Nucleotidyl-Transferase Structures: Potential to Target New Outbreaks. Zhang WF, Stephen P, Thériault JF, Wang R, Lin SX. J Phys Chem Lett 11 4430-4435 (2020)
  57. Distinct conformations of a putative translocation element in poliovirus polymerase. Sholders AJ, Peersen OB. J Mol Biol 426 1407-1419 (2014)
  58. Shared and group-specific features of the rotavirus RNA polymerase reveal potential determinants of gene reassortment restriction. McDonald SM, Aguayo D, Gonzalez-Nilo FD, Patton JT. J Virol 83 6135-6148 (2009)
  59. Structure of a rabies virus polymerase complex from electron cryo-microscopy. Horwitz JA, Jenni S, Harrison SC, Whelan SPJ. Proc Natl Acad Sci U S A 117 2099-2107 (2020)
  60. Cryo-EM structure of a transcribing cypovirus. Yang C, Ji G, Liu H, Zhang K, Liu G, Sun F, Zhu P, Cheng L. Proc Natl Acad Sci U S A 109 6118-6123 (2012)
  61. Structural explanation for the role of Mn2+ in the activity of phi6 RNA-dependent RNA polymerase. Poranen MM, Salgado PS, Koivunen MR, Wright S, Bamford DH, Stuart DI, Grimes JM. Nucleic Acids Res 36 6633-6644 (2008)
  62. Comparisons of the M1 genome segments and encoded mu2 proteins of different reovirus isolates. Yin P, Keirstead ND, Broering TJ, Arnold MM, Parker JS, Nibert ML, Coombs KM. Virol J 1 6 (2004)
  63. Structures of the human eIF4E homologous protein, h4EHP, in its m7GTP-bound and unliganded forms. Rosettani P, Knapp S, Vismara MG, Rusconi L, Cameron AD. J Mol Biol 368 691-705 (2007)
  64. Automated structural comparisons clarify the phylogeny of the right-hand-shaped polymerases. Mönttinen HA, Ravantti JJ, Stuart DI, Poranen MM. Mol Biol Evol 31 2741-2752 (2014)
  65. Three-dimensional structure of penicillium chrysogenum virus: a double-stranded RNA virus with a genuine T=1 capsid. Castón JR, Ghabrial SA, Jiang D, Rivas G, Alfonso C, Roca R, Luque D, Carrascosa JL. J Mol Biol 331 417-431 (2003)
  66. Crystallographic and biochemical analysis of rotavirus NSP2 with nucleotides reveals a nucleoside diphosphate kinase-like activity. Kumar M, Jayaram H, Vasquez-Del Carpio R, Jiang X, Taraporewala ZF, Jacobson RH, Patton JT, Prasad BV. J Virol 81 12272-12284 (2007)
  67. A base-specific recognition signal in the 5' consensus sequence of rotavirus plus-strand RNAs promotes replication of the double-stranded RNA genome segments. Tortorici MA, Shapiro BA, Patton JT. RNA 12 133-146 (2006)
  68. In situ Structure of Rotavirus VP1 RNA-Dependent RNA Polymerase. Jenni S, Salgado EN, Herrmann T, Li Z, Grant T, Grigorieff N, Trapani S, Estrozi LF, Harrison SC. J Mol Biol 431 3124-3138 (2019)
  69. Initiation of RNA Polymerization and Polymerase Encapsidation by a Small dsRNA Virus. Collier AM, Lyytinen OL, Guo YR, Toh Y, Poranen MM, Tao YJ. PLoS Pathog 12 e1005523 (2016)
  70. African Swine Fever Virus NP868R Capping Enzyme Promotes Reovirus Rescue during Reverse Genetics by Promoting Reovirus Protein Expression, Virion Assembly, and RNA Incorporation into Infectious Virions. Eaton HE, Kobayashi T, Dermody TS, Johnston RN, Jais PH, Shmulevitz M. J Virol 91 e02416-16 (2017)
  71. How does radiation damage in protein crystals depend on X-ray dose? Sliz P, Harrison SC, Rosenbaum G. Structure 11 13-19 (2003)
  72. Noncatalytic ions direct the RNA-dependent RNA polymerase of bacterial double-stranded RNA virus ϕ6 from de novo initiation to elongation. Wright S, Poranen MM, Bamford DH, Stuart DI, Grimes JM. J Virol 86 2837-2849 (2012)
  73. A Mechanism for Priming and Realignment during Influenza A Virus Replication. Oymans J, Te Velthuis AJW. J Virol 92 e01773-17 (2018)
  74. A dual-functional priming-capping loop of rhabdoviral RNA polymerases directs terminal de novo initiation and capping intermediate formation. Ogino M, Gupta N, Green TJ, Ogino T. Nucleic Acids Res 47 299-309 (2019)
  75. Highly similar structural frames link the template tunnel and NTP entry tunnel to the exterior surface in RNA-dependent RNA polymerases. Lang DM, Zemla AT, Zhou CL. Nucleic Acids Res 41 1464-1482 (2013)
  76. The N-terminus of the RNA polymerase from infectious pancreatic necrosis virus is the determinant of genome attachment. Graham SC, Sarin LP, Bahar MW, Myers RA, Stuart DI, Bamford DH, Grimes JM. PLoS Pathog 7 e1002085 (2011)
  77. Structure of severe fever with thrombocytopenia syndrome virus L protein elucidates the mechanisms of viral transcription initiation. Wang P, Liu L, Liu A, Yan L, He Y, Shen S, Hu M, Guo Y, Liu H, Liu C, Lu Y, Wang P, Deng F, Rao Z, Lou Z. Nat Microbiol 5 864-871 (2020)
  78. Conservative transcription in three steps visualized in a double-stranded RNA virus. Cui Y, Zhang Y, Zhou K, Sun J, Zhou ZH. Nat Struct Mol Biol 26 1023-1034 (2019)
  79. Loop model: mechanism to explain partial gene duplications in segmented dsRNA viruses. Matthijnssens J, Rahman M, Van Ranst M. Biochem Biophys Res Commun 340 140-144 (2006)
  80. Mycoreovirus genome rearrangements associated with RNA silencing deficiency. Eusebio-Cope A, Suzuki N. Nucleic Acids Res 43 3802-3813 (2015)
  81. In situ structures of RNA-dependent RNA polymerase inside bluetongue virus before and after uncoating. He Y, Shivakoti S, Ding K, Cui Y, Roy P, Zhou ZH. Proc Natl Acad Sci U S A 116 16535-16540 (2019)
  82. Increased ubiquitination and other covariant phenotypes attributed to a strain- and temperature-dependent defect of reovirus core protein mu2. Miller CL, Parker JS, Dinoso JB, Piggott CD, Perron MJ, Nibert ML. J Virol 78 10291-10302 (2004)
  83. Virus-derived platforms for visualizing protein associations inside cells. Miller CL, Arnold MM, Broering TJ, Eichwald C, Kim J, Dinoso JB, Nibert ML. Mol Cell Proteomics 6 1027-1038 (2007)
  84. 4SCOPmap: automated assignment of protein structures to evolutionary superfamilies. Cheek S, Qi Y, Krishna SS, Kinch LN, Grishin NV. BMC Bioinformatics 5 197 (2004)
  85. Structure-function analysis of the nsp14 N7-guanine methyltransferase reveals an essential role in Betacoronavirus replication. Ogando NS, El Kazzi P, Zevenhoven-Dobbe JC, Bontes BW, Decombe A, Posthuma CC, Thiel V, Canard B, Ferron F, Decroly E, Snijder EJ. Proc Natl Acad Sci U S A 118 e2108709118 (2021)
  86. The first two nucleotides of the respiratory syncytial virus antigenome RNA replication product can be selected independently of the promoter terminus. Noton SL, Fearns R. RNA 17 1895-1906 (2011)
  87. Backbone trace of partitivirus capsid protein from electron cryomicroscopy and homology modeling. Tang J, Pan J, Havens WM, Ochoa WF, Guu TS, Ghabrial SA, Nibert ML, Tao YJ, Baker TS. Biophys J 99 685-694 (2010)
  88. Reconstitution of bluetongue virus polymerase activity from isolated domains based on a three-dimensional structural model. Wehrfritz JM, Boyce M, Mirza S, Roy P. Biopolymers 86 83-94 (2007)
  89. Structure of RNA polymerase complex and genome within a dsRNA virus provides insights into the mechanisms of transcription and assembly. Wang X, Zhang F, Su R, Li X, Chen W, Chen Q, Yang T, Wang J, Liu H, Fang Q, Cheng L. Proc Natl Acad Sci U S A 115 7344-7349 (2018)
  90. Reduction of virion-associated σ1 fibers on oncolytic reovirus variants promotes adaptation toward tumorigenic cells. Mohamed A, Teicher C, Haefliger S, Shmulevitz M. J Virol 89 4319-4334 (2015)
  91. Simulation studies of a phenomenological model for elongated virus capsid formation. Chen T, Glotzer SC. Phys Rev E Stat Nonlin Soft Matter Phys 75 051504 (2007)
  92. Two crucial early steps in RNA synthesis by the hepatitis C virus polymerase involve a dual role of residue 405. Scrima N, Caillet-Saguy C, Ventura M, Harrus D, Astier-Gin T, Bressanelli S. J Virol 86 7107-7117 (2012)
  93. Architecture and regulation of negative-strand viral enzymatic machinery. Kranzusch PJ, Whelan SP. RNA Biol 9 941-948 (2012)
  94. Mechanism for de novo initiation at two sites in the respiratory syncytial virus promoter. Cressey TN, Noton SL, Nagendra K, Braun MR, Fearns R. Nucleic Acids Res 46 6785-6796 (2018)
  95. Near-Atomic Resolution Structure Determination of a Cypovirus Capsid and Polymerase Complex Using Cryo-EM at 200kV. Li X, Zhou N, Chen W, Zhu B, Wang X, Xu B, Wang J, Liu H, Cheng L. J Mol Biol 429 79-87 (2017)
  96. Reovirus replication protein μ2 influences cell tropism by promoting particle assembly within viral inclusions. Ooms LS, Jerome WG, Dermody TS, Chappell JD. J Virol 86 10979-10987 (2012)
  97. Structure Unveils Relationships between RNA Virus Polymerases. Mönttinen HAM, Ravantti JJ, Poranen MM. Viruses 13 313 (2021)
  98. Amino acids 78 and 79 of Mammalian Orthoreovirus protein µNS are necessary for stress granule localization, core protein λ2 interaction, and de novo virus replication. Carroll K, Hastings C, Miller CL. Virology 448 133-145 (2014)
  99. Factors affecting de novo RNA synthesis and back-priming by the respiratory syncytial virus polymerase. Noton SL, Aljabr W, Hiscox JA, Matthews DA, Fearns R. Virology 462-463 318-327 (2014)
  100. Insights into the pre-initiation events of bacteriophage phi 6 RNA-dependent RNA polymerase: towards the assembly of a productive binary complex. Sarin LP, Poranen MM, Lehti NM, Ravantti JJ, Koivunen MR, Aalto AP, van Dijk AA, Stuart DI, Grimes JM, Bamford DH. Nucleic Acids Res 37 1182-1192 (2009)
  101. Residues Arg283, Arg285, and Ile287 in the nucleotide binding pocket of bovine viral diarrhea virus NS5B RNA polymerase affect catalysis and fidelity. Curti E, Jaeger J. J Virol 87 199-207 (2013)
  102. Sequences of avian reovirus M1, M2 and M3 genes and predicted structure/function of the encoded mu proteins. Noad L, Shou J, Coombs KM, Duncan R. Virus Res 116 45-57 (2006)
  103. Guanidine hydrochloride inhibits mammalian orthoreovirus growth by reversibly blocking the synthesis of double-stranded RNA. Murray KE, Nibert ML. J Virol 81 4572-4584 (2007)
  104. Polymorphisms in the Most Oncolytic Reovirus Strain Confer Enhanced Cell Attachment, Transcription, and Single-Step Replication Kinetics. Mohamed A, Smiley JR, Shmulevitz M. J Virol 94 e01937-19 (2020)
  105. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein. Xu W, Coombs KM. Virol J 5 153 (2008)
  106. Conformational changes accompany activation of reovirus RNA-dependent RNA transcription. Mendez II, Weiner SG, She YM, Yeager M, Coombs KM. J Struct Biol 162 277-289 (2008)
  107. Sequence analysis of 12 genome segments of mud crab reovirus (MCRV). Deng XX, Lü L, Ou YJ, Su HJ, Li G, Guo ZX, Zhang R, Zheng PR, Chen YG, He JG, Weng SP. Virology 422 185-194 (2012)
  108. Components of the Reovirus Capsid Differentially Contribute to Stability. Snyder AJ, Wang JC, Danthi P. J Virol 93 e01894-18 (2019)
  109. Nonstructural protein NS80 is crucial in recruiting viral components to form aquareoviral factories. Ke F, He LB, Zhang QY. PLoS One 8 e63737 (2013)
  110. Reovirus Nonstructural Protein σNS Acts as an RNA Stability Factor Promoting Viral Genome Replication. Zamora PF, Hu L, Knowlton JJ, Lahr RM, Moreno RA, Berman AJ, Prasad BVV, Dermody TS. J Virol 92 e00563-18 (2018)
  111. Sensitivity of the polymerase of vesicular stomatitis virus to 2' substitutions in the template and nucleotide triphosphate during initiation and elongation. Morin B, Whelan SP. J Biol Chem 289 9961-9969 (2014)
  112. 2.7 Å cryo-EM structure of rotavirus core protein VP3, a unique capping machine with a helicase activity. Kumar D, Yu X, Crawford SE, Moreno R, Jakana J, Sankaran B, Anish R, Kaundal S, Hu L, Estes MK, Wang Z, Prasad BVV. Sci Adv 6 eaay6410 (2020)
  113. Bluetongue virus VP1 polymerase activity in vitro: template dependency, dinucleotide priming and cap dependency. Matsuo E, Roy P. PLoS One 6 e27702 (2011)
  114. Residues of the rotavirus RNA-dependent RNA polymerase template entry tunnel that mediate RNA recognition and genome replication. Ogden KM, Ramanathan HN, Patton JT. J Virol 85 1958-1969 (2011)
  115. Space constrained homology modelling: the paradigm of the RNA-dependent RNA polymerase of dengue (type II) virus. Vlachakis D, Kontopoulos DG, Kossida S. Comput Math Methods Med 2013 108910 (2013)
  116. The hepatitis C virus RNA-dependent RNA polymerase directs incoming nucleotides to its active site through magnesium-dependent dynamics within its F motif. Ben Ouirane K, Boulard Y, Bressanelli S. J Biol Chem 294 7573-7587 (2019)
  117. Dissection of mammalian orthoreovirus µ2 reveals a self-associative domain required for binding to microtubules but not to factory matrix protein µNS. Eichwald C, Kim J, Nibert ML. PLoS One 12 e0184356 (2017)
  118. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis. Du Y, Wu NC, Jiang L, Zhang T, Gong D, Shu S, Wu TT, Sun R. mBio 7 e01801-16 (2016)
  119. Identification and functional characterization of the nascent RNA contacting residues of the hepatitis C virus RNA-dependent RNA polymerase. Vaughan R, Fan B, You JS, Kao CC. RNA 18 1541-1552 (2012)
  120. Significance of the C-terminal amino acid residue in mengovirus RNA-dependent RNA polymerase. Dmitrieva TM, Alexeevski AV, Shatskaya GS, Tolskaya EA, Gmyl AP, Khitrina EV, Agol VI. Virology 365 79-91 (2007)
  121. Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase. Qiu S, Ogino M, Luo M, Ogino T, Green TJ. J Virol 90 715-724 (2016)
  122. Evidence for a non-catalytic ion-binding site in multiple RNA-dependent RNA polymerases. Mönttinen HA, Ravantti JJ, Poranen MM. PLoS One 7 e40581 (2012)
  123. Predictive and comparative analysis of Ebolavirus proteins. Cong Q, Pei J, Grishin NV. Cell Cycle 14 2785-2797 (2015)
  124. The VP2 protein of grass carp reovirus (GCRV) expressed in a baculovirus exhibits RNA polymerase activity. Yan L, Liu H, Li X, Fang Q. Virol Sin 29 86-93 (2014)
  125. A N7-guanine RNA cap methyltransferase signature-sequence as a genetic marker of large genome, non-mammalian Tobaniviridae. Ferron F, Debat HJ, Shannon A, Decroly E, Canard B. NAR Genom Bioinform 2 lqz022 (2020)
  126. De novo RNA synthesis and homology modeling of the classical swine fever virus RNA polymerase. Zhang P, Xie J, Yi G, Zhang C, Zhou R. Virus Res 112 9-23 (2005)
  127. Functional characterization of fingers subdomain-specific monoclonal antibodies inhibiting the hepatitis C virus RNA-dependent RNA polymerase. Nikonov A, Juronen E, Ustav M. J Biol Chem 283 24089-24102 (2008)
  128. Molecular characterization of the largest and smallest genome segments, S1 and S12, of Rice gall dwarf virus. Zhang HM, Yang J, Xin X, Chen JP, Adams MJ. Virus Genes 35 815-823 (2007)
  129. Reovirus RNA recombination is sequence directed and generates internally deleted defective genome segments during passage. Smith SC, Gribble J, Diller JR, Wiebe MA, Thoner TW, Denison MR, Ogden KM. J Virol 95 JVI.02181-20 (2021)
  130. Stacking efficiency and flexibility analysis of aromatic amino acids in cap-binding proteins. Worch R, Stolarski R. Proteins 71 2026-2037 (2008)
  131. The C-terminal priming domain is strongly associated with the main body of bacteriophage ϕ6 RNA-dependent RNA polymerase. Sarin LP, Wright S, Chen Q, Degerth LH, Stuart DI, Grimes JM, Bamford DH, Poranen MM. Virology 432 184-193 (2012)
  132. π-π Interactions in structural stability: role in RNA binding proteins. Sivasakthi V, Anbarasu A, Ramaiah S. Cell Biochem Biophys 67 853-863 (2013)
  133. AlphaFold2 and CryoEM: Revisiting CryoEM modeling in near-atomic resolution density maps. Hryc CF, Baker ML. iScience 25 104496 (2022)
  134. Comment CPV, a stable and symmetrical machine for mRNA synthesis. Nibert ML, Baker TS. Structure 11 605-607 (2003)
  135. Crystal Structure and Thermostability Characterization of Enterovirus D68 3Dpol. Wang C, Wang C, Li Q, Wang Z, Xie W. J Virol 91 e00876-17 (2017)
  136. Mycoreovirus genome alterations: similarities to and differences from rearrangements reported for other reoviruses. Tanaka T, Eusebio-Cope A, Sun L, Suzuki N. Front Microbiol 3 186 (2012)
  137. Selection and Characterization of a Reovirus Mutant with Increased Thermostability. Snyder AJ, Danthi P. J Virol 93 e00247-19 (2019)
  138. AZT acts as an anti-influenza nucleotide triphosphate targeting the catalytic site of A/PR/8/34/H1N1 RNA dependent RNA polymerase. Pagadala NS. J Comput Aided Mol Des 33 387-404 (2019)
  139. Arrangement of the Polymerase Complexes inside a Nine-Segmented dsRNA Virus. Kaelber JT, Jiang W, Weaver SC, Auguste AJ, Chiu W. Structure 28 604-612.e3 (2020)
  140. Comparison of RNA synthesis initiation properties of non-segmented negative strand RNA virus polymerases. Shareef AM, Ludeke B, Jordan P, Deval J, Fearns R. PLoS Pathog 17 e1010151 (2021)
  141. Comment Complete three-dimensional structures of picornaviral RNA-dependent RNA polymerases. Crowder S, Kirkegaard K. Structure 12 1336-1339 (2004)
  142. Hydrophobic and charged residues in the C-terminal arm of hepatitis C virus RNA-dependent RNA polymerase regulate initiation and elongation. Cherry AL, Dennis CA, Baron A, Eisele LE, Thommes PA, Jaeger J. J Virol 89 2052-2063 (2015)
  143. Probing the transcription mechanisms of reovirus cores with molecules that alter RNA duplex stability. Demidenko AA, Nibert ML. J Virol 83 5659-5670 (2009)
  144. The role of the priming loop in Influenza A virus RNA synthesis. Te Velthuis AJ, Robb NC, Kapanidis AN, Fodor E. Nat Microbiol 1 16029 (2016)
  145. A deep phylogeny of viral and cellular right-hand polymerases. Černý J, Černá Bolfíková B, de A Zanotto PM, Grubhoffer L, Růžek D. Infect Genet Evol 36 275-286 (2015)
  146. Diphosphates at the 5' end of the positive strand of yeast L-A double-stranded RNA virus as a molecular self-identity tag. Fujimura T, Esteban R. Mol Microbiol 102 71-80 (2016)
  147. Discovery of antagonist peptides against bacterial helicase-primase interaction in B. stearothermophilus by reverse yeast three-hybrid. Gardiner L, Coyle BJ, Chan WC, Soultanas P. Chem Biol 12 595-604 (2005)
  148. Distinctive features of the respiratory syncytial virus priming loop compared to other non-segmented negative strand RNA viruses. Cressey TN, Shareef AM, Kleiner VA, Noton SL, Byrne PO, McLellan JS, Mühlberger E, Fearns R. PLoS Pathog 18 e1010451 (2022)
  149. Dynamical insight into Caenorhabditis elegans eIF4E recognition specificity for mono-and trimethylated structures of mRNA 5' cap. Ruszczyńska-Bartnik K, Maciejczyk M, Stolarski R. J Mol Model 17 727-737 (2011)
  150. Effects of viscogens on RNA transcription inside reovirus particles. Demidenko AA, Lee J, Powers TR, Nibert ML. J Biol Chem 286 29521-29530 (2011)
  151. Generation of Genetically RGD σ1-Modified Oncolytic Reovirus That Enhances JAM-A-Independent Infection of Tumor Cells. Kawagishi T, Kanai Y, Nouda R, Fukui I, Nurdin JA, Matsuura Y, Kobayashi T. J Virol 94 e01703-20 (2020)
  152. Molecular characterization of a novel cryptic virus infecting pigeonpea plants. Kumar S, Subbarao BL, Kumari R, Hallan V. PLoS One 12 e0181829 (2017)
  153. Comment An atomic model of a plant reovirus: rice dwarf virus. Johnson JE. Structure 11 1193-1194 (2003)
  154. Variations outside the conserved motifs of PB1 catalytic active site may affect replication efficiency of the RNP complex of influenza A virus. Waters K, Wan HJ, Han L, Xue J, Ykema M, Tao YJ, Wan XF. Virology 559 145-155 (2021)
  155. A Reverse genetics system for dsRNA viruses. Baric RS, Sims AC. Cell Host Microbe 1 90-91 (2007)
  156. RdRp or RT, That is the Question. Peyambari M, Guan S, Roossinck MJ. Mol Biol Evol 38 5082-5091 (2021)
  157. Reovirus Low-Density Particles Package Cellular RNA. Thoner TW, Ye X, Karijolich J, Ogden KM. Viruses 13 1096 (2021)
  158. The structure of a 12-segmented dsRNA reovirus: New insights into capsid stabilization and organization. Zhang Q, Gao Y, Baker ML, Liu S, Jia X, Xu H, He J, Kaelber JT, Weng S, Jiang W. PLoS Pathog 19 e1011341 (2023)
  159. Discovery of a Novel Species of Trichomonasvirus in the Human Parasite Trichomonas vaginalis Using Transcriptome Mining. Manny AR, Hetzel CA, Mizani A, Nibert ML. Viruses 14 548 (2022)
  160. Discovery of anti-influenza nucleoside triphosphates targeting the catalytic site of A/PR/8/34/H1N1 polymerase. Pagadala NS, Bhat R, Kumar D J, Landi A. Med Chem Res 29 1463-1477 (2020)
  161. Mammalian orthoreoviruses exhibit rare genotype variability in genome constellations. Diller JR, Thoner TW, Ogden KM. Infect Genet Evol 110 105421 (2023)
  162. Structural biology. Kickstarting a viral RNA polymerase. Bressanelli S. Science 347 715-716 (2015)
  163. Comment 3D jigsaw puzzle in rotavirus assembly. Shatkin A, Das K, Arnold E. Structure 16 1601-1602 (2008)
  164. Biochemistry. RT slides home... Sarafianos SG, Arnold E. Science 322 1059-1060 (2008)
  165. Coding-Gene Coevolution Analysis of Rotavirus Proteins: A Bioinformatics and Statistical Approach. Abid N, Chillemi G, Salemi M. Genes (Basel) 11 E28 (2019)
  166. Favipiravir Analogues as Inhibitors of SARS-CoV-2 RNA-Dependent RNA Polymerase, Combined Quantum Chemical Modeling, Quantitative Structure-Property Relationship, and Molecular Docking Study. Latosińska M, Latosińska JN. Molecules 29 441 (2024)
  167. Recapitulating Trafficking of Nucleosides Into the Active Site of Polymerases of RNA Viruses: The Challenge and the Prize. Boulard Y, Bressanelli S. Front Med Technol 3 705875 (2021)
  168. Reconstitution of the RNA-dependent RNA polymerase activity of Antheraea mylitta cypovirus in vitro using separately expressed different functional domains of the enzyme. Kundu A, Roychowdhury A, Bose M, Das AK, Ghosh AK. J Gen Virol 97 1709-1719 (2016)