1lpb Citations

The 2.46 A resolution structure of the pancreatic lipase-colipase complex inhibited by a C11 alkyl phosphonate.

Biochemistry 34 2751-62 (1995)
Related entries: 1lpa, 1n8s

Cited: 152 times
EuropePMC logo PMID: 7893686

Abstract

Pancreatic lipase belongs to the serine esterase family and can therefore be inhibited by classical serine reagents such as diisopropyl fluoride or E600. In an attempt to further characterize the active site and catalytic mechanism, we synthesized a C11 alkyl phosphonate compound. This compound is an effective inhibitor of pancreatic lipase. The crystal structure of the pancreatic lipase-colipase complex inhibited by this compound was determined at a resolution of 2.46 A and refined to a final R-factor of 18.3%. As was observed in the case of the structure of the ternary pancreatic lipase-colipase-phospholipid complex, the binding of the ligand induces rearrangements of two surface loops in comparison with the closed structure of the enzyme (van Tilbeurgh et al., 1993b). The inhibitor, which could be clearly observed in the active site, was covalently bound to the active site serine Ser152. A racemic mixture of the inhibitor was used in the crystallization, and there exists evidence that both enantiomers are bound at the active site. The C11 alkyl chain of the first enantiomer fits into a hydrophobic groove and is though to thus mimic the interaction between the leaving fatty acid of a triglyceride substrate and the protein. The alkyl chain of the second enantiomer also has an elongated conformation and interacts with hydrophobic patches on the surface of the open amphipathic lid. This may indicate the location of a second alkyl chain of a triglyceride substrate. Some of the detergent molecules, needed for the crystallization, were also observed in the crystal. Some of them were located at the entrance of the active site, bound to the hydrophobic part of the lid. On the basis of this crystallographic study, a hypothesis about the binding mode of real substrates and the organization of the active site is proposed.

Reviews - 1lpb mentioned but not cited (2)

Articles - 1lpb mentioned but not cited (62)

  1. The role of hydrophobic interactions in positioning of peripheral proteins in membranes. Lomize AL, Pogozheva ID, Lomize MA, Mosberg HI. BMC Struct. Biol. 7 44 (2007)
  2. Identification of the active form of endothelial lipase, a homodimer in a head-to-tail conformation. Griffon N, Jin W, Petty TJ, Millar J, Badellino KO, Saven JG, Marchadier DH, Kempner ES, Billheimer J, Glick JM, Rader DJ. J. Biol. Chem. 284 23322-23330 (2009)
  3. Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases. Point V, Malla RK, Diomande S, Martin BP, Delorme V, Carriere F, Canaan S, Rath NP, Spilling CD, Cavalier JF. J. Med. Chem. 55 10204-10219 (2012)
  4. Recognizing protein-protein interfaces with empirical potentials and reduced amino acid alphabets. Launay G, Mendez R, Wodak S, Simonson T. BMC Bioinformatics 8 270 (2007)
  5. In silico identification of potent pancreatic triacylglycerol lipase inhibitors from traditional Chinese medicine. Chen KY, Chang SS, Chen CY. PLoS ONE 7 e43932 (2012)
  6. Cocoa (Theobroma cacao L.) Seed Proteins' Anti-Obesity Potential through Lipase Inhibition Using In Silico, In Vitro and In Vivo Models. Coronado-Cáceres LJ, Rabadán-Chávez G, Mojica L, Hernández-Ledesma B, Quevedo-Corona L, Lugo Cervantes E. Foods 9 E1359 (2020)
  7. BioGPS descriptors for rational engineering of enzyme promiscuity and structure based bioinformatic analysis. Ferrario V, Siragusa L, Ebert C, Baroni M, Foscato M, Cruciani G, Gardossi L. PLoS One 9 e109354 (2014)
  8. Design, synthesis, biological evaluation and molecular modelling studies of indole glyoxylamides as a new class of potential pancreatic lipase inhibitors. Sridhar SNC, Palawat S, Paul AT. Bioorg Chem 85 373-381 (2019)
  9. High-throughput virtual screening with e-pharmacophore and molecular simulations study in the designing of pancreatic lipase inhibitors. Veeramachaneni GK, Raj KK, Chalasani LM, Bondili JS, Talluri VR. Drug Des Devel Ther 9 4397-4412 (2015)
  10. Relating the shape of protein binding sites to binding affinity profiles: is there an association? Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoránszky-Kohalmi G, Rauscher AA, Jelinek B, Hári P, Bitter I, Málnási-Csizmadia A, Czobor P. BMC Struct Biol 10 32 (2010)
  11. Shape based virtual screening and molecular docking towards designing novel pancreatic lipase inhibitors. Veeramachaneni GK, Raj KK, Chalasani LM, Annamraju SK, Js B, Talluri VR. Bioinformation 11 535-542 (2015)
  12. Anti-Obesity Attributes; UHPLC-QTOF-MS/MS-Based Metabolite Profiling and Molecular Docking Insights of Taraxacum officinale. Aabideen ZU, Mumtaz MW, Akhtar MT, Mukhtar H, Raza SA, Touqeer T, Saari N. Molecules 25 E4935 (2020)
  13. Assessment of the Pharmacological Properties and Phytochemical Profile of Bruguiera gymnorhiza (L.) Lam Using in Vitro Studies, in Silico Docking, and Multivariate Analysis. Sadeer NB, Sinan KI, Cziáky Z, Jekő J, Zengin G, Jeewon R, Abdallah HH, Rengasamy KRR, Mahomoodally MF. Biomolecules 10 E731 (2020)
  14. Metabolomic Assay, Computational Screening, and Pharmacological Evaluation of Caulerpa racemosa as an Anti-obesity With Anti-aging by Altering Lipid Profile and Peroxisome Proliferator-Activated Receptor-γ Coactivator 1-α Levels. Permatasari HK, Nurkolis F, Hardinsyah H, Taslim NA, Sabrina N, Ibrahim FM, Visnu J, Kumalawati DA, Febriana SA, Sudargo T, Tanner MJ, Kurniatanty I, Yusuf VM, Rompies R, Bahar MR, Holipah H, Mayulu N. Front Nutr 9 939073 (2022)
  15. Synthesis, evaluation and molecular modelling studies of 2-(carbazol-3-yl)-2-oxoacetamide analogues as a new class of potential pancreatic lipase inhibitors. Sridhar SN, Ginson G, Venkataramana Reddy PO, Tantak MP, Kumar D, Paul AT. Bioorg. Med. Chem. 25 609-620 (2017)
  16. Structure-Based Optimization and Biological Evaluation of Pancreatic Lipase Inhibitors as Novel Potential Antiobesity Agents. Wei K, Wang GQ, Bai X, Niu YF, Chen HP, Wen CN, Li ZH, Dong ZJ, Zuo ZL, Xiong WY, Liu JK. Nat Prod Bioprospect 5 129-157 (2015)
  17. The Arg92Cys colipase polymorphism impairs function and secretion by increasing protein misfolding. Xiao X, Ferguson MR, Magee KE, Hale PD, Wang Y, Lowe ME. J. Lipid Res. 54 514-521 (2013)
  18. Exploring Aurone Derivatives as Potential Human Pancreatic Lipase Inhibitors through Molecular Docking and Molecular Dynamics Simulations. Nguyen PTV, Huynh HA, Truong DV, Tran TD, Vo CT. Molecules 25 E4657 (2020)
  19. Optimization of betaine-sorbitol natural deep eutectic solvent-based ultrasound-assisted extraction and pancreatic lipase inhibitory activity of chlorogenic acid and caffeine content from robusta green coffee beans. Ahmad I, Syakfanaya AM, Azminah A, Saputri FC, Mun'im A. Heliyon 7 e07702 (2021)
  20. Prediction and evaluation of the lipase inhibitory activities of tea polyphenols with 3D-QSAR models. Li YF, Chang YQ, Deng J, Li WX, Jian J, Gao JS, Wan X, Gao H, Kurihara H, Sun PH, He RR. Sci Rep 6 34387 (2016)
  21. Cassia fistula Leaves; UHPLC-QTOF-MS/MS Based Metabolite Profiling and Molecular Docking Insights to Explore Bioactives Role Towards Inhibition of Pancreatic Lipase. Aabideen ZU, Mumtaz MW, Akhtar MT, Raza MA, Mukhtar H, Irfan A, Raza SA, Touqeer T, Nadeem M, Saari N. Plants (Basel) 10 1334 (2021)
  22. Chrysin mitigated obesity by regulating energy intake and expenditure in rats. Pai SA, Martis EA, Munshi RP, Gursahani MS, Mestry SN, Juvekar AR. J Tradit Complement Med 10 577-585 (2020)
  23. Comparative Structural Analysis of Different Mycobacteriophage-Derived Mycolylarabinogalactan Esterases (Lysin B). Korany AH, Abouhmad A, Bakeer W, Essam T, Amin MA, Hatti-Kaul R, Dishisha T. Biomolecules 10 E45 (2019)
  24. Functional Analogy in Human Metabolism: Enzymes with Different Biological Roles or Functional Redundancy? Piergiorge RM, de Miranda AB, Guimarães AC, Catanho M. Genome Biol Evol 9 1624-1636 (2017)
  25. Identification of amino acids in human colipase that mediate adsorption to lipid emulsions and mixed micelles. Ross LE, Xiao X, Lowe ME. Biochim. Biophys. Acta 1831 1052-1059 (2013)
  26. Multitarget Action of Xanthones from Garcinia mangostana against α-Amylase, α-Glucosidase and Pancreatic Lipase. Cardozo-Muñoz J, Cuca-Suárez LE, Prieto-Rodríguez JA, Lopez-Vallejo F, Patiño-Ladino OJ. Molecules 27 3283 (2022)
  27. Structure of lipoprotein lipase in complex with GPIHBP1. Arora R, Nimonkar AV, Baird D, Wang C, Chiu CH, Horton PA, Hanrahan S, Cubbon R, Weldon S, Tschantz WR, Mueller S, Brunner R, Lehr P, Meier P, Ottl J, Voznesensky A, Pandey P, Smith TM, Stojanovic A, Flyer A, Benson TE, Romanowski MJ, Trauger JW. Proc. Natl. Acad. Sci. U.S.A. 116 10360-10365 (2019)
  28. We FRET so You Don't Have To: New Models of the Lipoprotein Lipase Dimer. Hayne CK, Yumerefendi H, Cao L, Gauer JW, Lafferty MJ, Kuhlman B, Erie DA, Neher SB. Biochemistry 57 241-254 (2018)
  29. A GU-Net-Based Architecture Predicting Ligand-Protein-Binding Atoms. Nazem F, Ghasemi F, Fassihi A, Rasti R, Dehnavi AM. J Med Signals Sens 13 1-10 (2023)
  30. Anti-diabetic activities of phenolic compounds of Alternaria sp., an endophyte isolated from the leaves of desert plants growing in Egypt. Elbermawi A, Ali AR, Amen Y, Ashour A, Ahmad KF, Mansour ES, Halim AF. RSC Adv 12 24935-24945 (2022)
  31. Antiobesity potential of major metabolites from Clitoria ternatea kombucha: Untargeted metabolomic profiling and molecular docking simulations. Hardinsyah H, Gunawan WB, Nurkolis F, Alisaputra D, Kurniawan R, Mayulu N, Taslim NA, Tallei TE. Curr Res Food Sci 6 100464 (2023)
  32. Antioxidant and antidiabetic activity and phytoconstituents of lichen extracts with temperate and polar distribution. Torres-Benítez A, Ortega-Valencia JE, Jara-Pinuer N, Sanchez M, Vargas-Arana G, Gómez-Serranillos MP, Simirgiotis MJ. Front Pharmacol 14 1251856 (2023)
  33. Appraisal of Pancreatic Lipase Inhibitory Potential of Ziziphus oenoplia (L.)Mill. Leaves by In Vitro and In Silico Approaches. Vulichi SR, Runthala A, Rachamreddy SK, Yaramanedi RSP, Sahoo PS, Burra PVLS, Kaur N, Akkiraju S, Kanala SR, Chippada AR, Murthy SDS. ACS Omega 8 16630-16646 (2023)
  34. Bioassay-guided isolation and in silico study of antihyperlipidemic compounds from Onosma hispidum Wall. Saleem B, Islam M, Ahmed A, Saeed H, Imtiaz F, Muzaffar S. J Biomol Struct Dyn 1-15 (2023)
  35. Computational data of phytoconstituents from Hibiscus rosa-sinensis on various anti-obesity targets. Gandhi SP, Lokhande KB, Swamy VK, Nanda RK, Chitlange SS. Data Brief 24 103994 (2019)
  36. Construction of a QSAR Model Based on Flavonoids and Screening of Natural Pancreatic Lipase Inhibitors. Yuan Y, Pan F, Zhu Z, Yang Z, Wang O, Li Q, Zhao L, Zhao L. Nutrients 15 3489 (2023)
  37. Design, synthesis, molecular modelling and in vitro evaluation of indolyl ketohydrazide-hydrazone analogues as potential pancreatic lipase inhibitors. Jagetiya S, Auti PS, Paul A. Chem Biodivers e202301154 (2023)
  38. Discovery of Novel Epoxyketone Peptides as Lipase Inhibitors. Almaliti J, Alzweiri M, Alhindy M, Al-Helo T, Daoud I, Deknash R, Naman CB, Abu-Irmaileh B, Bustanji Y, Hamad I. Molecules 27 2261 (2022)
  39. Dissecting the Interaction Deficiency of a Cartilaginous Fish Digestive Lipase with Pancreatic Colipase: Biochemical and Structural Insights. Achouri N, Tomàs-Gamisans M, Triki S, Valero F, Miled N, Fendri A, Smichi N. Biomed Res Int 2020 3064290 (2020)
  40. Dual Glycation-Inflammation Modulation, DPP-IV and Pancraetic Lipase Inhibitory Potentials and Antiproliferative Activity of Novel Fluoroquinolones. Arabiyat S, Kasabri V, Al-Hiari Y, Al-Masri I, Alalawi S, Bustanji Y. Asian Pac. J. Cancer Prev. 20 2503-2514 (2019)
  41. Efficient screening of pancreatic lipase inhibitors from cod meat hydrolysate through ligand fishing strategy. Tian Y, Liu C, Wang S, Du M, Zhu B. Front Nutr 9 969558 (2022)
  42. Evaluation for substitution of stem bark with small branches of Cassia fistula Linn for traditional medicinal uses: A comparative chemical profiling studies by HPLC, LC-MS, GC-MS. Meena AK, Ilavarasan R, Perumal A, Singh R, Ojha V, Srikanth N, Dhiman KS. Heliyon 8 e10251 (2022)
  43. In Vitro Antidiabetic, Anti-Obesity and Antioxidant Analysis of Ocimum basilicum Aerial Biomass and in Silico Molecular Docking Simulations with Alpha-Amylase and Lipase Enzymes. Noor ZI, Ahmed D, Rehman HM, Qamar MT, Froeyen M, Ahmad S, Mirza MU. Biology (Basel) 8 (2019)
  44. In Vitro and In Silico Study of the α-Glucosidase and Lipase Inhibitory Activities of Chemical Constituents from Piper cumanense (Piperaceae) and Synthetic Analogs. Prieto-Rodríguez JA, Lévuok-Mena KP, Cardozo-Muñoz JC, Parra-Amin JE, Lopez-Vallejo F, Cuca-Suárez LE, Patiño-Ladino OJ. Plants (Basel) 11 2188 (2022)
  45. In silico and in vitro Study of the Inhibitory Effect of Antiinflammatory Drug Betamethasone on Two Lipases. Samira N, Khedidja B, Zahra AF, Elyakine CKN, Mohamed Y. Antiinflamm Antiallergy Agents Med Chem 19 387-392 (2020)
  46. Kojic acid repurposing as a pancreatic lipase inhibitor and the optimization of its production from a local Aspergillus oryzae soil isolate. El-Korany SM, Helmy OM, El-Halawany AM, Ragab YE, Zedan HH. BMC Biotechnol 20 52 (2020)
  47. Metabolic profiling, antioxidant, and enzyme inhibition potential of Iris pseudacorus L. from Egypt and Japan: A comparative study. Yehia SM, Ayoub IM, Watanabe M, Devkota HP, Singab ANB. Sci Rep 13 5233 (2023)
  48. Molecular structures, chemical descriptors, and pancreatic lipase (1LPB) inhibition by natural products: a DFT investigation and molecular docking prediction. Allal H, Nemdili H, Zerizer MA, Zouchoune B. Struct Chem 1-17 (2023)
  49. Editorial Novel Aspects in Inhibiting Pancreatic Lipase with Potential New Compound from Nutmeg in Connection with Obesity - In Vitro, In Silico, In Vivo and Ex Vivo Studies. Yakaiah V, Dakshinamoorthi A, Sudha Ty S. Maedica (Bucur) 16 445-452 (2021)
  50. Novel Plant-Protein (Quinoa) Derived Bioactive Peptides with Potential Anti-Hypercholesterolemic Activities: Identification, Characterization and Molecular Docking of Bioactive Peptides. Ajayi FF, Mudgil P, Jobe A, Antony P, Vijayan R, Gan CY, Maqsood S. Foods 12 1327 (2023)
  51. Palm-based cellulose nanofiber isolated from mechano-chemical processing as sustainable rheological modifier in reduced fat mayonnaise. Lee ZJ, Tong SC, Tang TK, Lee YY. J Food Sci 87 3542-3561 (2022)
  52. Papaverinol-N-Oxide: A Microbial Biotransformation Product of Papaverine with Potential Antidiabetic and Antiobesity Activity Unveiled with In Silico Screening. Eliwa D, Kabbash A, El-Aasr M, Tawfik HO, Batiha GE, Mahmoud MH, De Waard M, Eldehna WM, Ibrahim AS. Molecules 28 1583 (2023)
  53. Potential Effect of Baobab's Polyphenols as Antihyperlipidemic Agents: In Silico Study. Alameen AA, Alothman MR, Al Wahibi MS, Abdullah EM, Ali R, Abdalla M, Fattiny SZA, Elsayim R. Molecules 28 6112 (2023)
  54. Protease-Sensitive Pancreatic Lipase Variants Are Associated With Early Onset Chronic Pancreatitis. Lasher D, Szabó A, Masamune A, Chen JM, Xiao X, Whitcomb DC, Barmada MM, Ewers M, Ruffert C, Paliwal S, Issarapu P, Bhaskar S, Mani KR, Chandak GR, Laumen H, Masson E, Kume K, Hamada S, Nakano E, Seltsam K, Bugert P, Müller T, Groneberg DA, Shimosegawa T, Rosendahl J, Férec C, Lowe ME, Witt H, Sahin-Tóth M. Am. J. Gastroenterol. 114 974-983 (2019)
  55. Rapid Mining of Novel α-Glucosidase and Lipase Inhibitors from Streptomyces sp. HO1518 Using UPLC-QTOF-MS/MS. Xu J, Liu Z, Feng Z, Ren Y, Liu H, Wang Y. Mar Drugs 20 189 (2022)
  56. Rapid Screening of Lipase Inhibitors from Ophiopogonis Radix Using High-Performance Thin Layer Chromatography by Two Step Gradient Elution Combined with Bioautographic Method. Hua X, Hong HJ, Zhang DY, Liu Q, Leong F, Yang Q, Hu YJ, Chen XJ. Molecules 27 1155 (2022)
  57. Rapid Screening of Lipase Inhibitors in Scutellaria baicalensis by Using Porcine Pancreatic Lipase Immobilized on Magnetic Core-Shell Metal-Organic Frameworks. Xu J, Cao P, Fan Z, Luo X, Yang G, Qu T, Gao J. Molecules 27 3475 (2022)
  58. Revealing Edible Bird Nest as Novel Functional Foods in Combating Metabolic Syndrome: Comprehensive In Silico, In Vitro, and In Vivo Studies. Permatasari HK, Permatasari QI, Taslim NA, Subali D, Kurniawan R, Surya R, Qhabibi FR, Tanner MJ, Batubara SC, Mayulu N, Gunawan WB, Syauki AY, Salindeho N, Park MN, Lele JAJMN, Tjandrawinata RR, Kim B, Nurkolis F. Nutrients 15 3886 (2023)
  59. Secondary Metabolites from the Coral-Derived Fungus Aspergillus austwickii SCSIO41227 with Pancreatic Lipase and Neuraminidase Inhibitory Activities. Chen Y, He Y, Pang X, Zhou X, Liu Y, Yang B. Mar Drugs 21 567 (2023)
  60. Synthesis, molecular modelling and pharmacological evaluation of novel indole-thiazolidinedione based hybrid analogues as potential pancreatic lipase inhibitors. George G, Auti PS, Sengupta P, Yadav N, Paul AT. J Biomol Struct Dyn 1-20 (2023)
  61. The acid-base-nucleophile catalytic triad in ABH-fold enzymes is coordinated by a set of structural elements. Denesyuk A, Dimitriou PS, Johnson MS, Nakayama T, Denessiouk K. PLoS One 15 e0229376 (2020)
  62. West Mexico Berries Modulate α-Amylase, α-Glucosidase and Pancreatic Lipase Using In Vitro and In Silico Approaches. Virgen-Carrillo CA, Valdés Miramontes EH, Fonseca Hernández D, Luna-Vital DA, Mojica L. Pharmaceuticals (Basel) 15 1081 (2022)


Reviews citing this publication (13)

  1. Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Jaeger KE, Dijkstra BW, Reetz MT. Annu. Rev. Microbiol. 53 315-351 (1999)
  2. Of barn owls and bankers: a lush variety of alpha/beta hydrolases. Heikinheimo P, Goldman A, Jeffries C, Ollis DL. Structure 7 R141-6 (1999)
  3. Lipase protein engineering. Svendsen A. Biochim. Biophys. Acta 1543 223-238 (2000)
  4. Exploring the specific features of interfacial enzymology based on lipase studies. Aloulou A, Rodriguez JA, Fernandez S, van Oosterhout D, Puccinelli D, Carrière F. Biochim. Biophys. Acta 1761 995-1013 (2006)
  5. Colipase: structure and interaction with pancreatic lipase. van Tilbeurgh H, Bezzine S, Cambillau C, Verger R, Carrière F. Biochim. Biophys. Acta 1441 173-184 (1999)
  6. Effects of surfactants on lipase structure, activity, and inhibition. Delorme V, Dhouib R, Canaan S, Fotiadu F, Carrière F, Cavalier JF. Pharm. Res. 28 1831-1842 (2011)
  7. Structure-activity of cutinase, a small lipolytic enzyme. Longhi S, Cambillau C. Biochim. Biophys. Acta 1441 185-196 (1999)
  8. Probing structural transitions in both structured and disordered proteins using site-directed spin-labeling EPR spectroscopy. Longhi S, Belle V, Fournel A, Guigliarelli B, Carrière F. J. Pept. Sci. 17 315-328 (2011)
  9. Gastric lipase: crystal structure and activity. Canaan S, Roussel A, Verger R, Cambillau C. Biochim. Biophys. Acta 1441 197-204 (1999)
  10. The role of seaweed bioactives in the control of digestion: implications for obesity treatments. Chater PI, Wilcox MD, Houghton D, Pearson JP. Food Funct 6 3420-3427 (2015)
  11. Relationships of human α/β hydrolase fold proteins and other organophosphate-interacting proteins. Lenfant N, Bourne Y, Marchot P, Chatonnet A. Chem. Biol. Interact. 259 343-351 (2016)
  12. Regulation of lumen fat digestion: enzymic aspects. Verger R, Aoubalå M, Carrière F, Ransac S, Dupuis L, De Caro J, Ferrato F, Douchet I, Laugier R, De Caro A. Proc Nutr Soc 55 5-18 (1996)
  13. Structure and Function of Pancreatic Lipase-Related Protein 2 and Its Relationship With Pathological States. Zhu G, Fang Q, Zhu F, Huang D, Yang C. Front Genet 12 693538 (2021)

Articles citing this publication (75)

  1. Anatomy of lipase binding sites: the scissile fatty acid binding site. Pleiss J, Fischer M, Schmid RD. Chem. Phys. Lipids 93 67-80 (1998)
  2. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor. Kim KK, Song HK, Shin DH, Hwang KY, Suh SW. Structure 5 173-185 (1997)
  3. Lipase activation by nonionic detergents. The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. Hermoso J, Pignol D, Kerfelec B, Crenon I, Chapus C, Fontecilla-Camps JC. J. Biol. Chem. 271 18007-18016 (1996)
  4. Three-dimensional structure analysis of PROSITE patterns. Kasuya A, Thornton JM. J. Mol. Biol. 286 1673-1691 (1999)
  5. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. Labar G, Bauvois C, Borel F, Ferrer JL, Wouters J, Lambert DM. Chembiochem 11 218-227 (2010)
  6. A proposed architecture for lecithin cholesterol acyl transferase (LCAT): identification of the catalytic triad and molecular modeling. Peelman F, Vinaimont N, Verhee A, Vanloo B, Verschelde JL, Labeur C, Seguret-Mace S, Duverger N, Hutchinson G, Vandekerckhove J, Tavernier J, Rosseneu M. Protein Sci. 7 587-599 (1998)
  7. A pancreatic lipase with a phospholipase A1 activity: crystal structure of a chimeric pancreatic lipase-related protein 2 from guinea pig. Withers-Martinez C, Carrière F, Verger R, Bourgeois D, Cambillau C. Structure 4 1363-1374 (1996)
  8. A structural homologue of colipase in black mamba venom revealed by NMR floating disulphide bridge analysis. Boisbouvier J, Albrand JP, Blackledge M, Jaquinod M, Schweitz H, Lazdunski M, Marion D. J. Mol. Biol. 283 205-219 (1998)
  9. Structure and activity of rat pancreatic lipase-related protein 2. Roussel A, Yang Y, Ferrato F, Verger R, Cambillau C, Lowe M. J. Biol. Chem. 273 32121-32128 (1998)
  10. Crystal structure of cutinase covalently inhibited by a triglyceride analogue. Longhi S, Mannesse M, Verheij HM, De Haas GH, Egmond M, Knoops-Mouthuy E, Cambillau C. Protein Sci. 6 275-286 (1997)
  11. Structural definition and substrate specificity of the S28 protease family: the crystal structure of human prolylcarboxypeptidase. Soisson SM, Patel SB, Abeywickrema PD, Byrne NJ, Diehl RE, Hall DL, Ford RE, Reid JC, Rickert KW, Shipman JM, Sharma S, Lumb KJ. BMC Struct. Biol. 10 16 (2010)
  12. Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants. Longhi S, Nicolas A, Creveld L, Egmond M, Verrips CT, de Vlieg J, Martinez C, Cambillau C. Proteins 26 442-458 (1996)
  13. Structural and functional properties of an unusual internal fusion peptide in a nonenveloped virus membrane fusion protein. Shmulevitz M, Epand RF, Epand RM, Duncan R. J. Virol. 78 2808-2818 (2004)
  14. Crystal structure of agkistrodotoxin, a phospholipase A2-type presynaptic neurotoxin from agkistrodon halys pallas. Tang L, Zhou YC, Lin ZJ. J. Mol. Biol. 282 1-11 (1998)
  15. N-terminal peptide of Rhizopus oryzae lipase is important for its catalytic properties. Sayari A, Frikha F, Miled N, Mtibaa H, Ben Ali Y, Verger R, Gargouri Y. FEBS Lett. 579 976-982 (2005)
  16. Biochemical and molecular characterization of Staphylococcus simulans lipase. Sayari A, Agrebi N, Jaoua S, Gargouri Y. Biochimie 83 863-871 (2001)
  17. Insights into lid movements of Burkholderia cepacia lipase inferred from molecular dynamics simulations. Barbe S, Lafaquière V, Guieysse D, Monsan P, Remaud-Siméon M, André I. Proteins 77 509-523 (2009)
  18. Reactivation of the totally inactive pancreatic lipase RP1 by structure-predicted point mutations. Roussel A, de Caro J, Bezzine S, Gastinel L, de Caro A, Carrière F, Leydier S, Verger R, Cambillau C. Proteins 32 523-531 (1998)
  19. Characterization of functional residues in the interfacial recognition domain of lecithin cholesterol acyltransferase (LCAT). Peelman F, Vanloo B, Perez-Mendez O, Decout A, Verschelde JL, Labeur C, Vinaimont N, Verhee A, Duverger N, Brasseur R, Vandekerckhove J, Tavernier J, Rosseneu M. Protein Eng. 12 71-78 (1999)
  20. A novel biotinylated suicide inhibitor for directed molecular evolution of lipolytic enzymes. Deussen HJ, Danielsen S, Breinholt J, Borchert TV. Bioorg. Med. Chem. 8 507-513 (2000)
  21. Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation. Stauch B, Fisher SJ, Cianci M. J. Lipid Res. 56 2348-2358 (2015)
  22. Euphorbia denticulata Lam.: A promising source of phyto-pharmaceuticals for the development of novel functional formulations. Zengin G, Uysal A, Aktumsek A, Mocan A, Mollica A, Locatelli M, Custodio L, Neng NR, Nogueira JMF, Aumeeruddy-Elalfi Z, Mahomoodally MF. Biomed. Pharmacother. 87 27-36 (2017)
  23. Fluorescent inhibitors for the qualitative and quantitative analysis of lipolytic enzymes. Scholze H, Stütz H, Paltauf F, Hermetter A. Anal. Biochem. 276 72-80 (1999)
  24. Identification of various lipolytic enzymes in crude porcine pancreatic lipase preparations using covalent fluorescent inhibitors. Birner-Grünberger R, Scholze H, Faber K, Hermetter A. Biotechnol. Bioeng. 85 147-154 (2004)
  25. Influence of a lipid interface on protein dynamics in a fungal lipase. Peters GH, Bywater RP. Biophys. J. 81 3052-3065 (2001)
  26. The structure of truncated recombinant human bile salt-stimulated lipase reveals bile salt-independent conformational flexibility at the active-site loop and provides insights into heparin binding. Moore SA, Kingston RL, Loomes KM, Hernell O, Bläckberg L, Baker HM, Baker EN. J. Mol. Biol. 312 511-523 (2001)
  27. Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba. Bustanji Y, Al-Masri IM, Mohammad M, Hudaib M, Tawaha K, Tarazi H, Alkhatib HS. J Enzyme Inhib Med Chem 26 453-459 (2011)
  28. A novel fluorogenic substrate for the measurement of endothelial lipase activity. Darrow AL, Olson MW, Xin H, Burke SL, Smith C, Schalk-Hihi C, Williams R, Bayoumy SS, Deckman IC, Todd MJ, Damiano BP, Connelly MA. J. Lipid Res. 52 374-382 (2011)
  29. Inhibition of human gastric and pancreatic lipases by chiral alkylphosphonates. A kinetic study with 1,2-didecanoyl-sn-glycerol monolayer. Cavalier JF, Ransac S, Verger R, Buono G. Chem. Phys. Lipids 100 3-31 (1999)
  30. Effect of nonionic surfactants on Rhizopus homothallicus lipase activity: a comparative kinetic study. Diaz JC, Cordova J, Baratti J, Carriere F, Abousalham A. Mol. Biotechnol. 35 205-214 (2007)
  31. The molecular mechanism of human hormone-sensitive lipase inhibition by substituted 3-phenyl-5-alkoxy-1,3,4-oxadiazol-2-ones. Ali YB, Verger R, Carrière F, Petry S, Muller G, Abousalham A. Biochimie 94 137-145 (2012)
  32. Conformational plasticity and ligand binding of bacterial monoacylglycerol lipase. Rengachari S, Aschauer P, Schittmayer M, Mayer N, Gruber K, Breinbauer R, Birner-Gruenberger R, Dreveny I, Oberer M. J. Biol. Chem. 288 31093-31104 (2013)
  33. Lipid lateral organization in fluid interfaces controls the rate of colipase association. Sugar IP, Mizuno NK, Momsen MM, Brockman HL. Biophys. J. 81 3387-3397 (2001)
  34. Biochemical characterization, cloning, and molecular modelling of chicken pancreatic lipase. Fendri A, Frikha F, Mosbah H, Miled N, Zouari N, Bacha AB, Sayari A, Mejdoub H, Gargouri Y. Arch. Biochem. Biophys. 451 149-159 (2006)
  35. Lipase-enhanced activity in flavour ester reactions by trapping enzyme conformers in the presence of interfaces Gonzalez-Navarro H, Braco L. Biotechnol. Bioeng. 59 122-127 (1998)
  36. Packing forces in nine crystal forms of cutinase. Jelsch C, Longhi S, Cambillau C. Proteins 31 320-333 (1998)
  37. Synthetic routes and lipase-inhibiting activity of long-chain alpha-keto amides. Chiou A, Verger R, Kokotos G. Lipids 36 535-542 (2001)
  38. A versatile library of activity-based probes for fluorescence detection and/or affinity isolation of lipolytic enzymes. Susani-Etzerodt H, Schmidinger H, Riesenhuber G, Birner-Gruenberger R, Hermetter A. Chem. Phys. Lipids 144 60-68 (2006)
  39. An inactive pancreatic lipase-related protein is activated into a triglyceride-lipase by mutagenesis based on the 3-D structure. Bezzine S, Roussel A, de Caro J, Gastinel L, de Caro A, Carrière F, Leydier S, Verger R, Cambillau C. Chem. Phys. Lipids 93 103-114 (1998)
  40. Crystal structure of yeast YHR049W/FSH1, a member of the serine hydrolase family. Quevillon-Cheruel S, Leulliot N, Graille M, Hervouet N, Coste F, Bénédetti H, Zelwer C, Janin J, Van Tilbeurgh H. Protein Sci. 14 1350-1356 (2005)
  41. Synthesis of 2-Oxo amide triacylglycerol analogues and study of their inhibition effect on pancreatic and gastric lipases. Kokotos G, Verger R, Chiou A. Chemistry 6 4211-4217 (2000)
  42. Cloning and molecular modelling of turkey pancreatic lipase: structural explanation of the increased interaction power with lipidic interface. Fendri A, Frikha F, Miled N, Gargouri Y. Biochimie 88 1401-1407 (2006)
  43. Design and synthesis of triglyceride analogue biotinylated suicide inhibitors for directed molecular evolution of lipolytic enzymes. Deussen HJ, Danielsen S, Breinholt J, Borchert TV. Bioorg. Med. Chem. Lett. 10 2027-2031 (2000)
  44. Discrimination between closed and open forms of lipases using electrophoretic techniques. Miled N, Riviere M, Cavalier JF, Buono G, Berti L, Verger R. Anal. Biochem. 338 171-178 (2005)
  45. A mixed molecular modeling-robotics approach to investigate lipase large molecular motions. Barbe S, Cortés J, Siméon T, Monsan P, Remaud-Siméon M, André I. Proteins 79 2517-2529 (2011)
  46. Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters. Romdhane IB, Frikha F, Maalej-Achouri I, Gargouri A, Belghith H. Gene 494 112-118 (2012)
  47. Computational study of colipase interaction with lipid droplets and bile salt micelles. Kerfelec B, Allouche M, Colin D, Van Eyck MH, Brasseur R, Thomas A. Proteins 73 828-838 (2008)
  48. Exploring the active site cavity of human pancreatic lipase. Colin DY, Deprez-Beauclair P, Allouche M, Brasseur R, Kerfelec B. Biochem. Biophys. Res. Commun. 370 394-398 (2008)
  49. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Zandonella G, Stadler P, Haalck L, Spener F, Paltauf F, Hermetter A. Eur. J. Biochem. 262 63-69 (1999)
  50. Kinetic and structural characterization of triacylglycerol lipases possessing phospholipase A1 activity. Aloulou A, Frikha F, Noiriel A, Bou Ali M, Abousalham A. Biochim. Biophys. Acta 1841 581-587 (2014)
  51. Novel trifluoromethyl ketones as potent gastric lipase inhibitors. Kokotos G, Kotsovolou S, Verger R. Chembiochem 4 90-95 (2003)
  52. Partial deletion of beta9 loop in pancreatic lipase-related protein 2 reduces enzyme activity with a larger effect on long acyl chain substrates. Dridi K, Amara S, Bezzine S, Rodriguez JA, Carrière F, Gaussier H. Biochim. Biophys. Acta 1831 1293-1301 (2013)
  53. Modification of pancreatic lipase properties by directed molecular evolution. Colin DY, Deprez-Beauclair P, Silva N, Infantes L, Kerfelec B. Protein Eng Des Sel 23 365-373 (2010)
  54. Monte Carlo method based QSAR modelling of natural lipase inhibitors using hybrid optimal descriptors. Kumar A, Chauhan S. SAR QSAR Environ Res 28 179-197 (2017)
  55. Selection of orlistat as a potential inhibitor for lipase from Candida species. Khedidja B, Abderrahman L. Bioinformation 7 125-129 (2011)
  56. The adsorption-desorption behaviour and structure function relationships of bile salts. Parker R, Rigby NM, Ridout MJ, Gunning AP, Wilde PJ. Soft Matter 10 6457-6466 (2014)
  57. Vertebrate hepatic lipase genes and proteins: a review supported by bioinformatic studies. Holmes RS, Vandeberg JL, Cox LA. Open Access Bioinformatics 2011 85-95 (2011)
  58. An analytical method for determining relative specificities for sequential reactions catalyzed by the same enzyme: application to the hydrolysis of triacylglycerols by lipases. Mitchell DA, Rodriguez JA, Carrière F, Baratti J, Krieger N. J. Biotechnol. 133 343-350 (2008)
  59. S28 peptidases: lessons from a seemingly 'dysfunctional' family of two. Kozarich JW. BMC Biol. 8 87 (2010)
  60. The β5-Loop and Lid Domain Contribute to the Substrate Specificity of Pancreatic Lipase-related Protein 2 (PNLIPRP2). Xiao X, Lowe ME. J. Biol. Chem. 290 28847-28856 (2015)
  61. Use of Simplified Molecular Input Line Entry System and molecular graph based descriptors in prediction and design of pancreatic lipase inhibitors. Kumar A, Chauhan S. Future Med Chem 10 1603-1622 (2018)
  62. Discovery of arginine-containing tripeptides as a new class of pancreatic lipase inhibitors. Stefanucci A, Luisi G, Zengin G, Macedonio G, Dimmito MP, Novellino E, Mollica A. Future Med Chem 11 5-19 (2019)
  63. Lavandula angustifolia mill. (Lamiaceae) ethanol extract and its main constituents as promising agents for the treatment of metabolic disorders: chemical profile, in vitro biological studies, and molecular docking. Tundis R, Grande F, Occhiuzzi MA, Sicari V, Loizzo MR, Cappello AR. J Enzyme Inhib Med Chem 38 2269481 (2023)
  64. Adipose saturation reduces lipotoxic systemic inflammation and explains the obesity paradox. Khatua B, El-Kurdi B, Patel K, Rood C, Noel P, Crowell M, Yaron JR, Kostenko S, Guerra A, Faigel DO, Lowe M, Singh VP. Sci Adv 7 (2021)
  65. Antilipase and antiproliferative activities of novel fluoroquinolones and triazolofluoroquinolones. Arabiyat S, Kasabri V, Al-Hiari Y, Bustanji YK, Albashiti R, Almasri IM, Sabbah DA. Chem Biol Drug Des 90 1282-1294 (2017)
  66. Bioactivities of Achillea phrygia and Bupleurum croceum based on the composition of phenolic compounds: In vitro and in silico approaches. Zengin G, Bulut G, Mollica A, Haznedaroglu MZ, Dogan A, Aktumsek A. Food Chem. Toxicol. 107 597-608 (2017)
  67. Biochemical characterization, cloning and molecular modeling of a digestive lipase from red seabream (Pagrus major): Structural explanation of the interaction deficiency with colipase and lipidic interface. Smichi N, Fendri A, Triki S, Arondel V, Rebai A, Gargouri Y, Miled N. Eng Life Sci 17 664-677 (2017)
  68. Biological effects and chemical characterization of Iris schachtii Markgr. extracts: A new source of bioactive constituents. Mocan A, Zengin G, Mollica A, Uysal A, Gunes E, Crişan G, Aktumsek A. Food Chem. Toxicol. 112 448-457 (2018)
  69. Control of the gastrointestinal digestion of solid lipid nanoparticles using PEGylated emulsifiers. Ban C, Jo M, Lim S, Choi YJ. Food Chem 239 442-452 (2018)
  70. Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations. Ben Bacha A, Al-Assaf A, Moubayed NMS, Abid I. Saudi J Biol Sci 25 409-417 (2018)
  71. Evaluation of selected commercial pharmacotherapeutic drugs as potential pancreatic lipase inhibitors and antiproliferative compounds. Mamdooh N, Kasabri V, Al-Hiari Y, Almasri I, Al-Alawi S, Bustanji Y. Drug Dev Res 80 310-324 (2019)
  72. Identification of 1H-indene-(1,3,5,6)-tetrol derivatives as potent pancreatic lipase inhibitors using molecular docking and molecular dynamics approach. Kalathiya U, Padariya M, Baginski M. Biotechnol. Appl. Biochem. 63 765-778 (2016)
  73. Identification of promising multi-targeting inhibitors of obesity from Vernonia amygdalina through computational analysis. Ogunyemi OM, Gyebi GA, Ibrahim IM, Esan AM, Olaiya CO, Soliman MM, Batiha GE. Mol Divers (2022)
  74. Plumbagin exerts antiobesity effects through inhibition of pancreatic lipase and adipocyte differentiation. Pai SA, Martis EAF, Joshi SG, Munshi RP, Juvekar AR. Phytother Res 32 1631-1635 (2018)
  75. The Unexplored Importance of Fleeting Chiral Intermediates in Enzyme-Catalyzed Reactions. Reetz MT, Garcia-Borràs M. J Am Chem Soc 143 14939-14950 (2021)


Related citations provided by authors (2)

  1. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography.. van Tilbeurgh H, Egloff MP, Martinez C, Rugani N, Verger R, Cambillau C Nature 362 814-20 (1993)
  2. Structure of the pancreatic lipase-procolipase complex.. van Tilbeurgh H, Sarda L, Verger R, Cambillau C Nature 359 159-62 (1992)