1ld4 Citations

Placement of the structural proteins in Sindbis virus.

Abstract

The structure of the lipid-enveloped Sindbis virus has been determined by fitting atomic resolution crystallographic structures of component proteins into an 11-A resolution cryoelectron microscopy map. The virus has T=4 quasisymmetry elements that are accurately maintained between the external glycoproteins, the transmembrane helical region, and the internal nucleocapsid core. The crystal structure of the E1 glycoprotein was fitted into the cryoelectron microscopy density, in part by using the known carbohydrate positions as restraints. A difference map showed that the E2 glycoprotein was shaped similarly to E1, suggesting a possible common evolutionary origin for these two glycoproteins. The structure shows that the E2 glycoprotein would have to move away from the center of the trimeric spike in order to expose enough viral membrane surface to permit fusion with the cellular membrane during the initial stages of host infection. The well-resolved E1-E2 transmembrane regions form alpha-helical coiled coils that were consistent with T=4 symmetry. The known structure of the capsid protein was fitted into the density corresponding to the nucleocapsid, revising the structure published earlier.

Articles - 1ld4 mentioned but not cited (6)

  1. Placement of the structural proteins in Sindbis virus. Zhang W, Mukhopadhyay S, Pletnev SV, Baker TS, Kuhn RJ, Rossmann MG. J. Virol. 76 11645-11658 (2002)
  2. An assembly model of rift valley Fever virus. Rusu M, Bonneau R, Holbrook MR, Watowich SJ, Birmanns S, Wriggers W, Freiberg AN. Front Microbiol 3 254 (2012)
  3. Epitope insertion at the N-terminal molecular switch of the rabbit hemorrhagic disease virus T = 3 capsid protein leads to larger T = 4 capsids. Luque D, González JM, Gómez-Blanco J, Marabini R, Chichón J, Mena I, Angulo I, Carrascosa JL, Verdaguer N, Trus BL, Bárcena J, Castón JR. J. Virol. 86 6470-6480 (2012)
  4. Geometric measures of large biomolecules: surface, volume, and pockets. Mach P, Koehl P. J Comput Chem 32 3023-3038 (2011)
  5. Statistical analysis of sizes and shapes of virus capsids and their resulting elastic properties. Lošdorfer Božič A, Šiber A, Podgornik R. J Biol Phys 39 215-228 (2013)
  6. An alphavirus temperature-sensitive capsid mutant reveals stages of nucleocapsid assembly. Zheng Y, Kielian M. Virology 484 412-420 (2015)


Reviews citing this publication (31)

  1. A structural perspective of the flavivirus life cycle. Mukhopadhyay S, Kuhn RJ, Rossmann MG. Nat. Rev. Microbiol. 3 13-22 (2005)
  2. Virus membrane-fusion proteins: more than one way to make a hairpin. Kielian M, Rey FA. Nat. Rev. Microbiol. 4 67-76 (2006)
  3. Virus factories: associations of cell organelles for viral replication and morphogenesis. Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. Biol. Cell 97 147-172 (2005)
  4. Viral membrane fusion. Harrison SC. Virology 479-480 498-507 (2015)
  5. A structural and functional perspective of alphavirus replication and assembly. Jose J, Snyder JE, Kuhn RJ. Future Microbiol 4 837-856 (2009)
  6. Class II virus membrane fusion proteins. Kielian M. Virology 344 38-47 (2006)
  7. Membrane fusion: a structural perspective on the interplay of lipids and proteins. Tamm LK, Crane J, Kiessling V. Curr. Opin. Struct. Biol. 13 453-466 (2003)
  8. Assembly and architecture of HIV. Ganser-Pornillos BK, Yeager M, Pornillos O. Adv. Exp. Med. Biol. 726 441-465 (2012)
  9. Combining X-ray crystallography and electron microscopy. Rossmann MG, Morais MC, Leiman PG, Zhang W. Structure 13 355-362 (2005)
  10. Dealing with low pH: entry and exit of alphaviruses and flaviviruses. Sánchez-San Martín C, Liu CY, Kielian M. Trends Microbiol. 17 514-521 (2009)
  11. Virus assembly, allostery and antivirals. Zlotnick A, Mukhopadhyay S. Trends Microbiol. 19 14-23 (2011)
  12. Lipids as modulators of membrane fusion mediated by viral fusion proteins. Teissier E, Pécheur EI. Eur. Biophys. J. 36 887-899 (2007)
  13. Alphavirus RNA synthesis and non-structural protein functions. Rupp JC, Sokoloski KJ, Gebhart NN, Hardy RW. J. Gen. Virol. 96 2483-2500 (2015)
  14. Budding of alphaviruses. Garoff H, Sjöberg M, Cheng RH. Virus Res. 106 103-116 (2004)
  15. Class I and class II viral fusion protein structures reveal similar principles in membrane fusion. Schibli DJ, Weissenhorn W. Mol. Membr. Biol. 21 361-371 (2004)
  16. Identification of structural domains involved in astrovirus capsid biology. Krishna NK. Viral Immunol. 18 17-26 (2005)
  17. Principles of virus structural organization. Prasad BV, Schmid MF. Adv. Exp. Med. Biol. 726 17-47 (2012)
  18. Virus maturation. Veesler D, Johnson JE. Annu Rev Biophys 41 473-496 (2012)
  19. Recovery from viral encephalomyelitis: immune-mediated noncytolytic virus clearance from neurons. Griffin DE. Immunol. Res. 47 123-133 (2010)
  20. Structure of viruses: a short history. Rossmann MG. Q. Rev. Biophys. 46 133-180 (2013)
  21. Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Cifuentes-Muñoz N, Salazar-Quiroz N, Tischler ND. Viruses 6 1801-1822 (2014)
  22. Class II fusion proteins. Modis Y. Adv Exp Med Biol 790 150-166 (2013)
  23. Topology of hepatitis C virus envelope glycoproteins. Op De Beeck A, Dubuisson J. Rev. Med. Virol. 13 233-241 (2003)
  24. An alternative pathway for alphavirus entry. Kononchik JP, Hernandez R, Brown DT. Virol. J. 8 304 (2011)
  25. Glycans of myelin proteins. Sedzik J, Jastrzebski JP, Grandis M. J. Neurosci. Res. 93 1-18 (2015)
  26. Icosahedral virus structures and the protein data bank. Johnson JE, Olson AJ. J Biol Chem 296 100554 (2021)
  27. The Alphavirus Exit Pathway: What We Know and What We Wish We Knew. Brown RS, Wan JJ, Kielian M. Viruses 10 (2018)
  28. Alphavirus Nucleocapsid Packaging and Assembly. Mendes A, Kuhn RJ. Viruses 10 (2018)
  29. Sindbis virus as a model for studies of conformational changes in a metastable virus and the role of conformational changes in in vitro antibody neutralisation. Hernandez R, Paredes A. Rev. Med. Virol. 19 257-272 (2009)
  30. Structures of viral membrane proteins by high-resolution cryoEM. Zhou ZH. Curr Opin Virol 5 111-119 (2014)
  31. The Structural Biology of Eastern Equine Encephalitis Virus, an Emerging Viral Threat. Hasan SS, Dey D, Singh S, Martin M. Pathogens 10 973 (2021)

Articles citing this publication (114)

  1. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. Bressanelli S, Stiasny K, Allison SL, Stura EA, Duquerroy S, Lescar J, Heinz FX, Rey FA. EMBO J. 23 728-738 (2004)
  2. Visualization of membrane protein domains by cryo-electron microscopy of dengue virus. Zhang W, Chipman PR, Corver J, Johnson PR, Zhang Y, Mukhopadhyay S, Baker TS, Strauss JH, Rossmann MG, Kuhn RJ. Nat. Struct. Biol. 10 907-912 (2003)
  3. Structures of immature flavivirus particles. Zhang Y, Corver J, Chipman PR, Zhang W, Pletnev SV, Sedlak D, Baker TS, Strauss JH, Kuhn RJ, Rossmann MG. EMBO J. 22 2604-2613 (2003)
  4. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Gibbons DL, Vaney MC, Roussel A, Vigouroux A, Reilly B, Lepault J, Kielian M, Rey FA. Nature 427 320-325 (2004)
  5. A virus-like particle vaccine for epidemic Chikungunya virus protects nonhuman primates against infection. Akahata W, Yang ZY, Andersen H, Sun S, Holdaway HA, Kong WP, Lewis MG, Higgs S, Rossmann MG, Rao S, Nabel GJ. Nat. Med. 16 334-338 (2010)
  6. Envelope protein glycosylation status influences mouse neuroinvasion phenotype of genetic lineage 1 West Nile virus strains. Beasley DW, Whiteman MC, Zhang S, Huang CY, Schneider BS, Smith DR, Gromowski GD, Higgs S, Kinney RM, Barrett AD. J. Virol. 79 8339-8347 (2005)
  7. Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Förster F, Medalia O, Zauberman N, Baumeister W, Fass D. Proc. Natl. Acad. Sci. U.S.A. 102 4729-4734 (2005)
  8. Structural changes of envelope proteins during alphavirus fusion. Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG. Nature 468 705-708 (2010)
  9. Mechanism of membrane fusion by viral envelope proteins. Harrison SC. Adv Virus Res 64 231-261 (2005)
  10. Mapping the structure and function of the E1 and E2 glycoproteins in alphaviruses. Mukhopadhyay S, Zhang W, Gabler S, Chipman PR, Strauss EG, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG. Structure 14 63-73 (2006)
  11. Structure of immature West Nile virus. Zhang Y, Kaufmann B, Chipman PR, Kuhn RJ, Rossmann MG. J. Virol. 81 6141-6145 (2007)
  12. Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. Liao M, Kielian M. J. Cell Biol. 171 111-120 (2005)
  13. Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between corona- and arteriviridae. Yu IM, Oldham ML, Zhang J, Chen J. J Biol Chem 281 17134-17139 (2006)
  14. Structure and interactions at the viral surface of the envelope protein E1 of Semliki Forest virus. Roussel A, Lescar J, Vaney MC, Wengler G, Wengler G, Rey FA. Structure 14 75-86 (2006)
  15. Hepatitis C virus envelope glycoprotein E2 glycans modulate entry, CD81 binding, and neutralization. Falkowska E, Kajumo F, Garcia E, Reinus J, Dragic T. J. Virol. 81 8072-8079 (2007)
  16. Ab initio random model method facilitates 3D reconstruction of icosahedral particles. Yan X, Dryden KA, Tang J, Baker TS. J. Struct. Biol. 157 211-225 (2007)
  17. Native hepatitis B virions and capsids visualized by electron cryomicroscopy. Dryden KA, Wieland SF, Whitten-Bauer C, Gerin JL, Chisari FV, Yeager M. Mol. Cell 22 843-850 (2006)
  18. Visualization of the target-membrane-inserted fusion protein of Semliki Forest virus by combined electron microscopy and crystallography. Gibbons DL, Erk I, Reilly B, Navaza J, Kielian M, Rey FA, Lepault J. Cell 114 573-583 (2003)
  19. Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes). Garry CE, Garry RF. Theor Biol Med Model 1 10 (2004)
  20. Eilat virus, a unique alphavirus with host range restricted to insects by RNA replication. Nasar F, Palacios G, Gorchakov RV, Guzman H, Da Rosa AP, Savji N, Popov VL, Sherman MB, Lipkin WI, Tesh RB, Weaver SC. Proc. Natl. Acad. Sci. U.S.A. 109 14622-14627 (2012)
  21. Alphavirus Entry and Membrane Fusion. Kielian M, Chanel-Vos C, Liao M. Viruses 2 796-825 (2010)
  22. Involvement of lipids in different steps of the flavivirus fusion mechanism. Stiasny K, Koessl C, Heinz FX. J. Virol. 77 7856-7862 (2003)
  23. Furin processing and proteolytic activation of Semliki Forest virus. Zhang X, Fugère M, Day R, Kielian M. J. Virol. 77 2981-2989 (2003)
  24. Natural resistance-associated macrophage protein is a cellular receptor for sindbis virus in both insect and mammalian hosts. Rose PP, Hanna SL, Spiridigliozzi A, Wannissorn N, Beiting DP, Ross SR, Hardy RW, Bambina SA, Heise MT, Cherry S. Cell Host Microbe 10 97-104 (2011)
  25. A conserved histidine in the ij loop of the Semliki Forest virus E1 protein plays an important role in membrane fusion. Chanel-Vos C, Kielian M. J. Virol. 78 13543-13552 (2004)
  26. A recombinant measles vaccine expressing chikungunya virus-like particles is strongly immunogenic and protects mice from lethal challenge with chikungunya virus. Brandler S, Ruffié C, Combredet C, Brault JB, Najburg V, Prevost MC, Habel A, Tauber E, Desprès P, Tangy F. Vaccine 31 3718-3725 (2013)
  27. Conformational changes in Sindbis virions resulting from exposure to low pH and interactions with cells suggest that cell penetration may occur at the cell surface in the absence of membrane fusion. Paredes AM, Ferreira D, Horton M, Saad A, Tsuruta H, Johnston R, Klimstra W, Ryman K, Hernandez R, Chiu W, Brown DT. Virology 324 373-386 (2004)
  28. Role of conserved histidine residues in the low-pH dependence of the Semliki Forest virus fusion protein. Qin ZL, Zheng Y, Kielian M. J. Virol. 83 4670-4677 (2009)
  29. Structural analyses at pseudo atomic resolution of Chikungunya virus and antibodies show mechanisms of neutralization. Sun S, Xiang Y, Akahata W, Holdaway H, Pal P, Zhang X, Diamond MS, Nabel GJ, Rossmann MG. Elife 2 e00435 (2013)
  30. Heparin binding sites on Ross River virus revealed by electron cryo-microscopy. Zhang W, Heil M, Kuhn RJ, Baker TS. Virology 332 511-518 (2005)
  31. Mutagenesis of the La Crosse Virus glycoprotein supports a role for Gc (1066-1087) as the fusion peptide. Plassmeyer ML, Soldan SS, Stachelek KM, Roth SM, Martín-García J, González-Scarano F. Virology 358 273-282 (2007)
  32. In vitro-assembled alphavirus core-like particles maintain a structure similar to that of nucleocapsid cores in mature virus. Mukhopadhyay S, Chipman PR, Hong EM, Kuhn RJ, Rossmann MG. J. Virol. 76 11128-11132 (2002)
  33. Multistep regulation of membrane insertion of the fusion peptide of Semliki Forest virus. Gibbons DL, Ahn A, Liao M, Hammar L, Cheng RH, Kielian M. J. Virol. 78 3312-3318 (2004)
  34. Alphavirus capsid protein helix I controls a checkpoint in nucleocapsid core assembly. Hong EM, Perera R, Kuhn RJ. J. Virol. 80 8848-8855 (2006)
  35. Nonspecific interactions in spontaneous assembly of empty versus functional single-stranded RNA viruses. Siber A, Podgornik R. Phys Rev E Stat Nonlin Soft Matter Phys 78 051915 (2008)
  36. Redirecting lentiviral vectors pseudotyped with Sindbis virus-derived envelope proteins to DC-SIGN by modification of N-linked glycans of envelope proteins. Morizono K, Ku A, Xie Y, Harui A, Kung SK, Roth MD, Lee B, Chen IS. J. Virol. 84 6923-6934 (2010)
  37. Molecular links between the E2 envelope glycoprotein and nucleocapsid core in Sindbis virus. Tang J, Jose J, Chipman P, Zhang W, Kuhn RJ, Baker TS. J. Mol. Biol. 414 442-459 (2011)
  38. Nano-optofluidic detection of single viruses and nanoparticles. Mitra A, Deutsch B, Ignatovich F, Dykes C, Novotny L. ACS Nano 4 1305-1312 (2010)
  39. California serogroup Gc (G1) glycoprotein is the principal determinant of pH-dependent cell fusion and entry. Plassmeyer ML, Soldan SS, Stachelek KM, Martín-García J, González-Scarano F. Virology 338 121-132 (2005)
  40. Genetic characterization of 2006-2008 isolates of Chikungunya virus from Kerala, South India, by whole genome sequence analysis. Sreekumar E, Issac A, Nair S, Hariharan R, Janki MB, Arathy DS, Regu R, Mathew T, Anoop M, Niyas KP, Pillai MR. Virus Genes 40 14-27 (2010)
  41. Interactions between the transmembrane segments of the alphavirus E1 and E2 proteins play a role in virus budding and fusion. Sjöberg M, Garoff H. J. Virol. 77 3441-3450 (2003)
  42. Structure of the recombinant alphavirus Western equine encephalitis virus revealed by cryoelectron microscopy. Sherman MB, Weaver SC. J. Virol. 84 9775-9782 (2010)
  43. The first human epitope map of the alphaviral E1 and E2 proteins reveals a new E2 epitope with significant virus neutralizing activity. Hunt AR, Frederickson S, Maruyama T, Roehrig JT, Blair CD. PLoS Negl Trop Dis 4 e739 (2010)
  44. The structure of barmah forest virus as revealed by cryo-electron microscopy at a 6-angstrom resolution has detailed transmembrane protein architecture and interactions. Kostyuchenko VA, Jakana J, Liu X, Haddow AD, Aung M, Weaver SC, Chiu W, Lok SM. J. Virol. 85 9327-9333 (2011)
  45. Administration of E2 and NS1 siRNAs inhibit chikungunya virus replication in vitro and protects mice infected with the virus. Parashar D, Paingankar MS, Kumar S, Gokhale MD, Sudeep AB, Shinde SB, Arankalle VA. PLoS Negl Trop Dis 7 e2405 (2013)
  46. Directed molecular evolution improves the immunogenicity and protective efficacy of a Venezuelan equine encephalitis virus DNA vaccine. Dupuy LC, Locher CP, Paidhungat M, Richards MJ, Lind CM, Bakken R, Parker MD, Whalen RG, Schmaljohn CS. Vaccine 27 4152-4160 (2009)
  47. Sindbis virus nucleocapsid assembly: RNA folding promotes capsid protein dimerization. Linger BR, Kunovska L, Kuhn RJ, Golden BL. RNA 10 128-138 (2004)
  48. Structure determination of clathrin coats to subnanometer resolution by single particle cryo-electron microscopy. Fotin A, Kirchhausen T, Grigorieff N, Harrison SC, Walz T, Cheng Y. J. Struct. Biol. 156 453-460 (2006)
  49. Structure of the acidianus filamentous virus 3 and comparative genomics of related archaeal lipothrixviruses. Vestergaard G, Aramayo R, Basta T, Häring M, Peng X, Brügger K, Chen L, Rachel R, Boisset N, Garrett RA, Prangishvili D. J. Virol. 82 371-381 (2008)
  50. Second-site revertants of a Semliki Forest virus fusion-block mutation reveal the dynamics of a class II membrane fusion protein. Chanel-Vos C, Kielian M. J. Virol. 80 6115-6122 (2006)
  51. Differential protein partitioning within the herpesvirus tegument and envelope underlies a complex and variable virion architecture. Bohannon KP, Jun Y, Gross SP, Smith GA. Proc. Natl. Acad. Sci. U.S.A. 110 E1613-20 (2013)
  52. Interactions of the cytoplasmic domain of Sindbis virus E2 with nucleocapsid cores promote alphavirus budding. Jose J, Przybyla L, Edwards TJ, Perera R, Burgner JW, Kuhn RJ. J. Virol. 86 2585-2599 (2012)
  53. Mutation of the dengue virus type 2 envelope protein heparan sulfate binding sites or the domain III lateral ridge blocks replication in Vero cells prior to membrane fusion. Roehrig JT, Butrapet S, Liss NM, Bennett SL, Luy BE, Childers T, Boroughs KL, Stovall JL, Calvert AE, Blair CD, Huang CY. Virology 441 114-125 (2013)
  54. Rapid adaptation of a recombinant vesicular stomatitis virus to a targeted cell line. Gao Y, Whitaker-Dowling P, Watkins SC, Griffin JA, Bergman I. J. Virol. 80 8603-8612 (2006)
  55. Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells. Bergman I, Whitaker-Dowling P, Gao Y, Griffin JA, Watkins SC. Virology 316 337-347 (2003)
  56. Functions of the stem region of the Semliki Forest virus fusion protein during virus fusion and assembly. Liao M, Kielian M. J. Virol. 80 11362-11369 (2006)
  57. Requirement of the vesicular system for membrane permeabilization by Sindbis virus. Madan V, Sanz MA, Carrasco L. Virology 332 307-315 (2005)
  58. Role of N-linked glycosylation for sindbis virus infection and replication in vertebrate and invertebrate systems. Knight RL, Schultz KL, Kent RJ, Venkatesan M, Griffin DE. J. Virol. 83 5640-5647 (2009)
  59. Adaptive changes in alphavirus mRNA translation allowed colonization of vertebrate hosts. Ventoso I. J. Virol. 86 9484-9494 (2012)
  60. Bovine viral diarrhea virus core is an intrinsically disordered protein that binds RNA. Murray CL, Marcotrigiano J, Rice CM. J. Virol. 82 1294-1304 (2008)
  61. Role of sindbis virus capsid protein region II in nucleocapsid core assembly and encapsidation of genomic RNA. Warrier R, Linger BR, Golden BL, Kuhn RJ. J. Virol. 82 4461-4470 (2008)
  62. A heterologous coiled coil can substitute for helix I of the Sindbis virus capsid protein. Perera R, Navaratnarajah C, Kuhn RJ. J. Virol. 77 8345-8353 (2003)
  63. Sindbis virus conformational changes induced by a neutralizing anti-E1 monoclonal antibody. Hernandez R, Paredes A, Brown DT. J. Virol. 82 5750-5760 (2008)
  64. Genetic determinants of Sindbis virus mosquito infection are associated with a highly conserved alphavirus and flavivirus envelope sequence. Pierro DJ, Powers EL, Olson KE. J. Virol. 82 2966-2974 (2008)
  65. Preferential targeting of vesicular stomatitis virus to breast cancer cells. Bergman I, Whitaker-Dowling P, Gao Y, Griffin JA. Virology 330 24-33 (2004)
  66. Helices alpha2 and alpha3 of West Nile virus capsid protein are dispensable for assembly of infectious virions. Schlick P, Taucher C, Schittl B, Tran JL, Kofler RM, Schueler W, von Gabain A, Meinke A, Mandl CW. J. Virol. 83 5581-5591 (2009)
  67. Molecular genetic evidence that the hydrophobic anchors of glycoproteins E2 and E1 interact during assembly of alphaviruses. Strauss EG, Lenches EM, Strauss JH. J. Virol. 76 10188-10194 (2002)
  68. Activation of the alphavirus spike protein is suppressed by bound E3. Sjöberg M, Lindqvist B, Garoff H. J. Virol. 85 5644-5650 (2011)
  69. Determining functionally important amino acid residues of the E1 protein of Venezuelan equine encephalitis virus. Negi SS, Kolokoltsov AA, Schein CH, Davey RA, Braun W. J Mol Model 12 921-929 (2006)
  70. Purification and crystallization reveal two types of interactions of the fusion protein homotrimer of Semliki Forest virus. Gibbons DL, Reilly B, Ahn A, Vaney MC, Vigouroux A, Rey FA, Kielian M. J. Virol. 78 3514-3523 (2004)
  71. Role of conserved cysteines in the alphavirus E3 protein. Parrott MM, Sitarski SA, Arnold RJ, Picton LK, Hill RB, Mukhopadhyay S. J. Virol. 83 2584-2591 (2009)
  72. Single amino acid insertions at the junction of the sindbis virus E2 transmembrane domain and endodomain disrupt virus envelopment and alter infectivity. Hernandez R, Ferreira D, Sinodis C, Litton K, Brown DT. J. Virol. 79 7682-7697 (2005)
  73. The structure of Sindbis virus produced from vertebrate and invertebrate hosts as determined by small-angle neutron scattering. He L, Piper A, Meilleur F, Myles DA, Hernandez R, Brown DT, Heller WT. J. Virol. 84 5270-5276 (2010)
  74. A key interaction between the alphavirus envelope proteins responsible for initial dimer dissociation during fusion. Fields W, Kielian M. J. Virol. 87 3774-3781 (2013)
  75. BST2/tetherin inhibition of alphavirus exit. Ooi YS, Dubé M, Kielian M. Viruses 7 2147-2167 (2015)
  76. Functional characterization of the Sindbis virus E2 glycoprotein by transposon linker-insertion mutagenesis. Navaratnarajah CK, Kuhn RJ. Virology 363 134-147 (2007)
  77. Lentiviruses with trastuzumab bound to their envelopes can target and kill prostate cancer cells. Zhang KX, Moussavi M, Kim C, Chow E, Chen IS, Fazli L, Jia W, Rennie PS. Cancer Gene Ther. 16 820-831 (2009)
  78. Self-Assembly of an Alphavirus Core-like Particle Is Distinguished by Strong Intersubunit Association Energy and Structural Defects. Wang JC, Chen C, Rayaprolu V, Mukhopadhyay S, Zlotnick A. ACS Nano 9 8898-8906 (2015)
  79. Structural characterization of the E2 glycoprotein from Sindbis by lysine biotinylation and LC-MS/MS. Sharp JS, Nelson S, Brown D, Tomer KB. Virology 348 216-223 (2006)
  80. Mutations that promote furin-independent growth of Semliki Forest virus affect p62-E1 interactions and membrane fusion. Zhang X, Kielian M. Virology 327 287-296 (2004)
  81. article-commentary Structural biology: An alphavirus puzzle solved. Kielian M. Nature 468 645-646 (2010)
  82. Concentration of Sindbis virus with optimized gradient insulator-based dielectrophoresis. Ding J, Lawrence RM, Jones PV, Hogue BG, Hayes MA. Analyst 141 1997-2008 (2016)
  83. Conformational changes in Sindbis virus induced by decreased pH are revealed by small-angle neutron scattering. He L, Piper A, Meilleur F, Hernandez R, Heller WT, Brown DT. J. Virol. 86 1982-1987 (2012)
  84. Factors affecting recombinant Western equine encephalitis virus glycoprotein production in the baculovirus system. Toth AM, Geisler C, Aumiller JJ, Jarvis DL. Protein Expr. Purif. 80 274-282 (2011)
  85. Site-directed antibodies against the stem region reveal low pH-induced conformational changes of the Semliki Forest virus fusion protein. Liao M, Kielian M. J. Virol. 80 9599-9607 (2006)
  86. Cryo-EM Structure of Chikungunya Virus in Complex with the Mxra8 Receptor. Basore K, Kim AS, Nelson CA, Zhang R, Smith BK, Uranga C, Vang L, Cheng M, Gross ML, Smith J, Diamond MS, Fremont DH. Cell 177 1725-1737.e16 (2019)
  87. Pseudorevertants of a Semliki forest virus fusion-blocking mutation reveal a critical interchain interaction in the core trimer. Liu CY, Besanceney C, Song Y, Kielian M. J. Virol. 84 11624-11633 (2010)
  88. Residue-level resolution of alphavirus envelope protein interactions in pH-dependent fusion. Zeng X, Mukhopadhyay S, Brooks CL. Proc. Natl. Acad. Sci. U.S.A. 112 2034-2039 (2015)
  89. Single and multiple deletions in the transmembrane domain of the Sindbis virus E2 glycoprotein identify a region critical for normal virus growth. Whitehurst CB, Willis JH, Sinodis CN, Hernandez R, Brown DT. Virology 347 199-207 (2006)
  90. Viral RNAs are unusually compact. Gopal A, Egecioglu DE, Yoffe AM, Ben-Shaul A, Rao AL, Knobler CM, Gelbart WM. PLoS ONE 9 e105875 (2014)
  91. Cryo-EM structure of the mature and infective Mayaro virus at 4.4 Å resolution reveals features of arthritogenic alphaviruses. Ribeiro-Filho HV, Coimbra LD, Cassago A, Rocha RPF, Guerra JVDS, de Felicio R, Carnieli CM, Leme L, Padilha AC, Paes Leme AF, Trivella DBB, Portugal RV, Lopes-de-Oliveira PS, Marques RE. Nat Commun 12 3038 (2021)
  92. Peptides as models for the structure and function of viral capsid proteins: Insights on dengue virus capsid. Freire JM, Veiga AS, de la Torre BG, Santos NC, Andreu D, Da Poian AT, Castanho MA. Biopolymers 100 325-336 (2013)
  93. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion. Liao M, Kielian M. Virology 332 430-437 (2005)
  94. An interaction site of the envelope proteins of Semliki Forest virus that is preserved after proteolytic activation. Zhang X, Kielian M. Virology 337 344-352 (2005)
  95. Fusion of mApple and Venus fluorescent proteins to the Sindbis virus E2 protein leads to different cell-binding properties. Tsvetkova IB, Cheng F, Ma X, Moore AW, Howard B, Mukhopadhyay S, Dragnea B. Virus Res. 177 138-146 (2013)
  96. Identification of amino acids of Sindbis virus E2 protein involved in targeting tumor metastases in vivo. Hurtado A, Tseng JC, Boivin C, Levin B, Yee H, Pampeno C, Meruelo D. Mol. Ther. 12 813-823 (2005)
  97. Serial femtosecond X-ray diffraction of enveloped virus microcrystals. Lawrence RM, Conrad CE, Zatsepin NA, Grant TD, Liu H, James D, Nelson G, Subramanian G, Aquila A, Hunter MS, Liang M, Boutet S, Coe J, Spence JC, Weierstall U, Liu W, Fromme P, Cherezov V, Hogue BG. Struct Dyn 2 041720 (2015)
  98. Why Enveloped Viruses Need Cores-The Contribution of a Nucleocapsid Core to Viral Budding. Lázaro GR, Mukhopadhyay S, Hagan MF. Biophys. J. 114 619-630 (2018)
  99. Photoinactivation of sindbis virus infectivity without inhibition of membrane fusion. Thongthai W, Weninger K. Photochem. Photobiol. 85 801-806 (2009)
  100. RNA Base Pairing Determines the Conformations of RNA Inside Spherical Viruses. Erdemci-Tandogan G, Orland H, Zandi R. Phys. Rev. Lett. 119 188102 (2017)
  101. Dissecting the Components of Sindbis Virus from Arthropod and Vertebrate Hosts: Implications for Infectivity Differences. Dunbar CA, Rayaprolu V, Wang JC, Brown CJ, Leishman E, Jones-Burrage S, Trinidad JC, Bradshaw HB, Clemmer DE, Mukhopadhyay S, Jarrold MF. ACS Infect Dis 5 892-902 (2019)
  102. Cryo-EM structure of eastern equine encephalitis virus in complex with heparan sulfate analogues. Chen CL, Hasan SS, Klose T, Sun Y, Buda G, Sun C, Klimstra WB, Rossmann MG. Proc Natl Acad Sci U S A 117 8890-8899 (2020)
  103. Crystallography, evolution, and the structure of viruses. Rossmann MG. J. Biol. Chem. 287 9552-9559 (2012)
  104. Construction and organization of a BSL-3 cryo-electron microscopy laboratory at UTMB. Sherman MB, Trujillo J, Leahy I, Razmus D, Dehate R, Lorcheim P, Czarneski MA, Zimmerman D, Newton JT, Haddow AD, Weaver SC. J. Struct. Biol. 181 223-233 (2013)
  105. FEMME database: topologic and geometric information of macromolecules. Jiménez-Lozano N, Chagoyen M, Cuenca-Alba J, Carazo JM. J. Struct. Biol. 144 104-113 (2003)
  106. Sample preparation induced artifacts in cryo-electron tomographs. Plevka P, Battisti AJ, Winkler DC, Tars K, Holdaway HA, Bator CM, Rossmann MG. Microsc. Microanal. 18 1043-1048 (2012)
  107. Capsid-E2 Interactions Rescue Core Assembly in Viruses That Cannot Form Cytoplasmic Nucleocapsid Cores. Button JM, Mukhopadhyay S. J Virol 95 e0106221 (2021)
  108. Cryo-EM Structures of Eastern Equine Encephalitis Virus Reveal Mechanisms of Virus Disassembly and Antibody Neutralization. Hasan SS, Sun C, Kim AS, Watanabe Y, Chen CL, Klose T, Buda G, Crispin M, Diamond MS, Klimstra WB, Rossmann MG. Cell Rep 25 3136-3147.e5 (2018)
  109. Cryo-EM structures of alphavirus conformational intermediates in low pH-triggered prefusion states. Chen CL, Klose T, Sun C, Kim AS, Buda G, Rossmann MG, Diamond MS, Klimstra WB, Kuhn RJ. Proc Natl Acad Sci U S A 119 e2114119119 (2022)
  110. Evaluation of the Antiviral Potential of Halogenated Dihydrorugosaflavonoids and Molecular Modeling with nsP3 Protein of Chikungunya Virus (CHIKV). Puranik NV, Rani R, Singh VA, Tomar S, Puntambekar HM, Srivastava P. ACS Omega 4 20335-20345 (2019)
  111. Gaussian curvature and the budding kinetics of enveloped viruses. Dharmavaram S, She SB, Lázaro G, Hagan MF, Bruinsma R. PLoS Comput. Biol. 15 e1006602 (2019)
  112. Grass carp reovirus VP56 and VP35 induce formation of viral inclusion bodies for replication. Zhang C, Wu H, Feng H, Zhang YA, Tu J. iScience 27 108684 (2024)
  113. Minimal Design Principles for Icosahedral Virus Capsids. Martín-Bravo M, Llorente JMG, Hernández-Rojas J, Wales DJ. ACS Nano 15 14873-14884 (2021)
  114. Structural constraints link differences in neutralization potency of human anti-Eastern equine encephalitis virus monoclonal antibodies. Williamson LE, Bandyopadhyay A, Bailey K, Sirohi D, Klose T, Julander JG, Kuhn RJ, Crowe JE. Proc Natl Acad Sci U S A 120 e2213690120 (2023)