1klm Citations

Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor.

Proc Natl Acad Sci U S A 94 3984-9 (1997)
Cited: 109 times
EuropePMC logo PMID: 9108091

Abstract

The viral reverse transcriptase (RT) provides an attractive target in the search for anti-HIV therapies. The nonnucleoside inhibitors (NNIs) are a diverse set of compounds (usually HIV-1 specific) that function by distorting the polymerase active site upon binding in a nearby pocket. Despite being potent and of generally low toxicity, their clinical use has been limited by rapid selection for resistant viral populations. The 2.65-A resolution structure of the complex between HIV-1 RT and the bis(heteroaryl)piperazine (BHAP) NNI, 1-(5-methanesulfonamido-1H-indol-2-yl-carbonyl)-4- [3-(1-methyl-ethylamino) pyridinyl] piperazine (U-90152), reveals the inhibitor conformation and bound water molecules. The bulky U-90152 molecule occupies the same pocket as other NNIs, but the complex is stabilized quite differently, in particular by hydrogen bonding to the main chain of Lys-103 and extensive hydrophobic contacts with Pro-236. These interactions rationalize observed resistance mutations, notably Pro-236-Leu, which occurs characteristically for BHAPs. When bound, part of U-90152 protrudes into the solvent creating a channel between Pro-236 and the polypeptide segments 225-226 and 105-106, giving the first clear evidence of the entry mode for NNIs. The structure allows prediction of binding modes for related inhibitors [(altrylamino)piperidine-BHAPs] and suggests changes to U-90152, such as the addition of a 6 amino group to the pyridine ring, which may make binding more resilient to mutations in the RT. The observation of novel hydrogen bonding to the protein main chain may provide lessons for the improvement of quite different inhibitors.

Reviews - 1klm mentioned but not cited (1)

  1. Molecular Docking Studies of HIV-1 Resistance to Reverse Transcriptase Inhibitors: Mini-Review. Tarasova O, Poroikov V, Veselovsky A. Molecules 23 E1233 (2018)

Articles - 1klm mentioned but not cited (23)

  1. Unique features in the structure of the complex between HIV-1 reverse transcriptase and the bis(heteroaryl)piperazine (BHAP) U-90152 explain resistance mutations for this nonnucleoside inhibitor. Esnouf RM, Ren J, Hopkins AL, Ross CK, Jones EY, Stammers DK, Stuart DI. Proc Natl Acad Sci U S A 94 3984-3989 (1997)
  2. Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase. Singh K, Marchand B, Kirby KA, Michailidis E, Sarafianos SG. Viruses 2 606-638 (2010)
  3. Structure of HIV-1 reverse transcriptase bound to an inhibitor active against mutant reverse transcriptases resistant to other nonnucleoside inhibitors. Pata JD, Stirtan WG, Goldstein SW, Steitz TA. Proc Natl Acad Sci U S A 101 10548-10553 (2004)
  4. The Journey of HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) from Lab to Clinic. Namasivayam V, Vanangamudi M, Kramer VG, Kurup S, Zhan P, Liu X, Kongsted J, Byrareddy SN. J Med Chem 62 4851-4883 (2019)
  5. Steered molecular dynamics simulation on the binding of NNRTI to HIV-1 RT. Shen L, Shen J, Luo X, Cheng F, Xu Y, Chen K, Arnold E, Ding J, Jiang H. Biophys J 84 3547-3563 (2003)
  6. Conformational landscape of the human immunodeficiency virus type 1 reverse transcriptase non-nucleoside inhibitor binding pocket: lessons for inhibitor design from a cluster analysis of many crystal structures. Paris KA, Haq O, Felts AK, Das K, Arnold E, Levy RM. J Med Chem 52 6413-6420 (2009)
  7. Structure-based evaluation of C5 derivatives in the catechol diether series targeting HIV-1 reverse transcriptase. Frey KM, Gray WT, Spasov KA, Bollini M, Gallardo-Macias R, Jorgensen WL, Anderson KS. Chem Biol Drug Des 83 541-549 (2014)
  8. Letter Discovery of novel inhibitors of HIV-1 reverse transcriptase through virtual screening of experimental and theoretical ensembles. Ivetac A, Swift SE, Boyer PL, Diaz A, Naughton J, Young JA, Hughes SH, McCammon JA. Chem Biol Drug Des 83 521-531 (2014)
  9. Synthesis, biological evaluation and molecular modeling of 2-Hydroxyisoquinoline-1,3-dione analogues as inhibitors of HIV reverse transcriptase associated ribonuclease H and polymerase. Tang J, Vernekar SKV, Chen YL, Miller L, Huber AD, Myshakina N, Sarafianos SG, Parniak MA, Wang Z. Eur J Med Chem 133 85-96 (2017)
  10. Truly Target-Focused Pharmacophore Modeling: A Novel Tool for Mapping Intermolecular Surfaces. Mortier J, Dhakal P, Volkamer A. Molecules 23 E1959 (2018)
  11. Mining protein dynamics from sets of crystal structures using "consensus structures". van Westen GJ, Wegner JK, Bender A, Ijzerman AP, van Vlijmen HW. Protein Sci 19 742-752 (2010)
  12. 2D, 3D-QSAR and docking studies of 1,2,3-thiadiazole thioacetanilides analogues as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Jain SV, Ghate M, Bhadoriya KS, Bari SB, Chaudhari A, Borse JS. Org Med Chem Lett 2 22 (2012)
  13. Crystallographic study of a novel subnanomolar inhibitor provides insight on the binding interactions of alkenyldiarylmethanes with human immunodeficiency virus-1 reverse transcriptase. Cullen MD, Ho WC, Bauman JD, Das K, Arnold E, Hartman TL, Watson KM, Buckheit RW, Pannecouque C, De Clercq E, Cushman M. J Med Chem 52 6467-6473 (2009)
  14. Probing Conformational States of the Finger and Thumb Subdomains of HIV-1 Reverse Transcriptase Using Double Electron-Electron Resonance Electron Paramagnetic Resonance Spectroscopy. Schmidt T, Tian L, Clore GM. Biochemistry 57 489-493 (2018)
  15. The structure of FIV reverse transcriptase and its implications for non-nucleoside inhibitor resistance. Galilee M, Alian A. PLoS Pathog 14 e1006849 (2018)
  16. Automated identification of protein-ligand interaction features using Inductive Logic Programming: a hexose binding case study. A Santos JC, Nassif H, Page D, Muggleton SH, E Sternberg MJ. BMC Bioinformatics 13 162 (2012)
  17. Ligand similarity guided receptor selection enhances docking accuracy and recall for non-nucleoside HIV reverse transcriptase inhibitors. Stanton RA, Nettles JH, Schinazi RF. J Mol Model 21 282 (2015)
  18. Novel 2-chloro-8-arylthiomethyldipyridodiazepinone derivatives with activity against HIV-1 reverse transcriptase. Khunnawutmanotham N, Chimnoi N, Saparpakorn P, Pungpo P, Louisirirotchanakul S, Hannongbua S, Techasakul S. Molecules 12 218-230 (2007)
  19. Targeting HIV-1 Reverse Transcriptase Using a Fragment-Based Approach. Mansouri M, Rumrill S, Dawson S, Johnson A, Pinson JA, Gunzburg MJ, Latham CF, Barlow N, Mbogo GW, Ellenberg P, Headey SJ, Sluis-Cremer N, Tyssen D, Bauman JD, Ruiz FX, Arnold E, Chalmers DK, Tachedjian G. Molecules 28 3103 (2023)
  20. Unexpected similarity between HIV-1 reverse transcriptase and tumor necrosis factor binding sites revealed by computer vision. Eguida M, Rognan D. J Cheminform 13 90 (2021)
  21. An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge. Nassif H, Al-Ali H, Khuri S, Keirouz W, Page D. Inductive Log Program 5989 149-165 (2010)
  22. Application of Molecular Docking for the Development of Improved HIV-1 Reverse Transcriptase Inhibitors. Soltani A, Hashemy SI, Avval FZ, Rafatpanah H, Rezaee SA, Griffith R, Mashkani B. Curr Comput Aided Drug Des 17 538-549 (2021)
  23. Dipyridodiazepinone derivatives; synthesis and anti HIV-1 activity. Khunnawutmanotham N, Chimnoi N, Thitithanyanont A, Saparpakorn P, Choowongkomon K, Pungpo P, Hannongbua S, Techasakul S. Beilstein J Org Chem 5 36 (2009)


Reviews citing this publication (19)

  1. Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: a review of the last 20 years (1989-2009). de Béthune MP. Antiviral Res 85 75-90 (2010)
  2. The role of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. De Clercq E. Antiviral Res 38 153-179 (1998)
  3. Crystallography and the design of anti-AIDS drugs: conformational flexibility and positional adaptability are important in the design of non-nucleoside HIV-1 reverse transcriptase inhibitors. Das K, Lewi PJ, Hughes SH, Arnold E. Prog Biophys Mol Biol 88 209-231 (2005)
  4. Indoles as therapeutics of interest in medicinal chemistry: Bird's eye view. Chadha N, Silakari O. Eur J Med Chem 134 159-184 (2017)
  5. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Ren J, Stammers DK. Virus Res 134 157-170 (2008)
  6. Pharmaceutical and medicinal significance of sulfur (SVI)-Containing motifs for drug discovery: A critical review. Zhao C, Rakesh KP, Ravidar L, Fang WY, Qin HL. Eur J Med Chem 162 679-734 (2019)
  7. Conformational changes in HIV-1 reverse transcriptase induced by nonnucleoside reverse transcriptase inhibitor binding. Sluis-Cremer N, Temiz NA, Bahar I. Curr HIV Res 2 323-332 (2004)
  8. HIV-1 NNRTIs: structural diversity, pharmacophore similarity, and implications for drug design. Zhan P, Chen X, Li D, Fang Z, De Clercq E, Liu X. Med Res Rev 33 Suppl 1 E1-72 (2013)
  9. Perspectives of non-nucleoside reverse transcriptase inhibitors (NNRTIs) in the therapy of HIV-1 infection. De Clercq E. Farmaco 54 26-45 (1999)
  10. Delavirdine: a review of its use in HIV infection. Scott LJ, Perry CM. Drugs 60 1411-1444 (2000)
  11. New developments in natural products-based anti-AIDS research. Yu D, Morris-Natschke SL, Lee KH. Med Res Rev 27 108-132 (2007)
  12. Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules. Sluis-Cremer N, Tachedjian G. Eur J Biochem 269 5103-5111 (2002)
  13. Structure-based drug design of non-nucleoside inhibitors for wild-type and drug-resistant HIV reverse transcriptase. Mao C, Sudbeck EA, Venkatachalam TK, Uckun FM. Biochem Pharmacol 60 1251-1265 (2000)
  14. Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent review (2005 - 2010). Zhan P, Liu X. Expert Opin Ther Pat 21 717-796 (2011)
  15. Reverse Transcription of Retroviruses and LTR Retrotransposons. Hughes SH. Microbiol Spectr 3 MDNA3-0027-2014 (2015)
  16. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Angew Chem Int Ed Engl 58 3300-3345 (2019)
  17. Efavirenz for HIV-1 infection in adults: an overview. Fortin C, Joly V. Expert Rev Anti Infect Ther 2 671-684 (2004)
  18. Clinical significance of HIV reverse-transcriptase inhibitor-resistance mutations. Ibe S, Sugiura W. Future Microbiol 6 295-315 (2011)
  19. Computational drug design strategies applied to the modelling of human immunodeficiency virus-1 reverse transcriptase inhibitors. Santos LH, Ferreira RS, Caffarena ER. Mem Inst Oswaldo Cruz 110 847-864 (2015)

Articles citing this publication (66)

  1. HIV drug resistance. Clavel F, Hance AJ. N Engl J Med 350 1023-1035 (2004)
  2. Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. Ding J, Das K, Hsiou Y, Sarafianos SG, Clark AD, Jacobo-Molina A, Tantillo C, Hughes SH, Arnold E. J Mol Biol 284 1095-1111 (1998)
  3. Structural basis for the resilience of efavirenz (DMP-266) to drug resistance mutations in HIV-1 reverse transcriptase. Ren J, Milton J, Weaver KL, Short SA, Stuart DI, Stammers DK. Structure 8 1089-1094 (2000)
  4. Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the mechanism of resistance to non-nucleoside inhibitors. Ren J, Bird LE, Chamberlain PP, Stewart-Jones GB, Stuart DI, Stammers DK. Proc Natl Acad Sci U S A 99 14410-14415 (2002)
  5. The Lys103Asn mutation of HIV-1 RT: a novel mechanism of drug resistance. Hsiou Y, Ding J, Das K, Clark AD, Boyer PL, Lewi P, Janssen PA, Kleim JP, Rösner M, Hughes SH, Arnold E. J Mol Biol 309 437-445 (2001)
  6. Nonnucleoside reverse transcriptase inhibitors are chemical enhancers of dimerization of the HIV type 1 reverse transcriptase. Tachedjian G, Orlova M, Sarafianos SG, Arnold E, Goff SP. Proc Natl Acad Sci U S A 98 7188-7193 (2001)
  7. Mutants of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase resistant to nonnucleoside reverse transcriptase inhibitors demonstrate altered rates of RNase H cleavage that correlate with HIV-1 replication fitness in cell culture. Archer RH, Dykes C, Gerondelis P, Lloyd A, Fay P, Reichman RC, Bambara RA, Demeter LM. J Virol 74 8390-8401 (2000)
  8. Structures of Tyr188Leu mutant and wild-type HIV-1 reverse transcriptase complexed with the non-nucleoside inhibitor HBY 097: inhibitor flexibility is a useful design feature for reducing drug resistance. Hsiou Y, Das K, Ding J, Clark AD, Kleim JP, Rösner M, Winkler I, Riess G, Hughes SH, Arnold E. J Mol Biol 284 313-323 (1998)
  9. S-1153 inhibits replication of known drug-resistant strains of human immunodeficiency virus type 1. Fujiwara T, Sato A, el-Farrash M, Miki S, Abe K, Isaka Y, Kodama M, Wu Y, Chen LB, Harada H, Sugimoto H, Hatanaka M, Hinuma Y. Antimicrob Agents Chemother 42 1340-1345 (1998)
  10. The P236L delavirdine-resistant human immunodeficiency virus type 1 mutant is replication defective and demonstrates alterations in both RNA 5'-end- and DNA 3'-end-directed RNase H activities. Gerondelis P, Archer RH, Palaniappan C, Reichman RC, Fay PJ, Bambara RA, Demeter LM. J Virol 73 5803-5813 (1999)
  11. HIV-1 Reverse Transcriptase Still Remains a New Drug Target: Structure, Function, Classical Inhibitors, and New Inhibitors with Innovative Mechanisms of Actions. Esposito F, Corona A, Tramontano E. Mol Biol Int 2012 586401 (2012)
  12. Delavirdine susceptibilities and associated reverse transcriptase mutations in human immunodeficiency virus type 1 isolates from patients in a phase I/II trial of delavirdine monotherapy (ACTG 260). Demeter LM, Shafer RW, Meehan PM, Holden-Wiltse J, Fischl MA, Freimuth WW, Para MF, Reichman RC. Antimicrob Agents Chemother 44 794-797 (2000)
  13. Small-molecule and mutational analysis of allosteric Eg5 inhibition by monastrol. Maliga Z, Mitchison TJ. BMC Chem Biol 6 2 (2006)
  14. A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP. Patel Y, Gillet VJ, Bravi G, Leach AR. J Comput Aided Mol Des 16 653-681 (2002)
  15. Effect of mutations at position E138 in HIV-1 reverse transcriptase and their interactions with the M184I mutation on defining patterns of resistance to nonnucleoside reverse transcriptase inhibitors rilpivirine and etravirine. Xu HT, Colby-Germinario SP, Asahchop EL, Oliveira M, McCallum M, Schader SM, Han Y, Quan Y, Sarafianos SG, Wainberg MA. Antimicrob Agents Chemother 57 3100-3109 (2013)
  16. Probing nonnucleoside inhibitor-induced active-site distortion in HIV-1 reverse transcriptase by transient kinetic analyses. Xia Q, Radzio J, Anderson KS, Sluis-Cremer N. Protein Sci 16 1728-1737 (2007)
  17. Search for non-nucleoside inhibitors of HIV-1 reverse transcriptase using chemical similarity, molecular docking, and MM-GB/SA scoring. Barreiro G, Guimarães CR, Tubert-Brohman I, Lyons TM, Tirado-Rives J, Jorgensen WL. J Chem Inf Model 47 2416-2428 (2007)
  18. 3'-Azido-3'-deoxythymidine drug resistance mutations in HIV-1 reverse transcriptase can induce long range conformational changes. Ren J, Esnouf RM, Hopkins AL, Jones EY, Kirby I, Keeling J, Ross CK, Larder BA, Stuart DI, Stammers DK. Proc Natl Acad Sci U S A 95 9518-9523 (1998)
  19. The processivity of DNA synthesis exhibited by drug-resistant variants of human immunodeficiency virus type-1 reverse transcriptase. Avidan O, Hizi A. Nucleic Acids Res 26 1713-1717 (1998)
  20. A novel molecular mechanism of dual resistance to nucleoside and nonnucleoside reverse transcriptase inhibitors. Nikolenko GN, Delviks-Frankenberry KA, Pathak VK. J Virol 84 5238-5249 (2010)
  21. N-3 Hydroxylation of Pyrimidine-2,4-diones Yields Dual Inhibitors of HIV Reverse Transcriptase and Integrase. Tang J, Maddali K, Dreis CD, Sham YY, Vince R, Pommier Y, Wang Z. ACS Med Chem Lett 2 63-67 (2011)
  22. Regiospecific synthesis and anti-human immunodeficiency virus activity of novel 5-substituted N-alkylcarbamoyl and N,N-dialkylcarbamoyl 1,2,3-triazole-TSAO analogues. Velázquez S, Alvarez R, Pérez C, Gago F, De Clercq E, Balzarini J, Camarasa MJ. Antivir Chem Chemother 9 481-489 (1998)
  23. A mutation in the 3' region of the human immunodeficiency virus type 1 reverse transcriptase (Y318F) associated with nonnucleoside reverse transcriptase inhibitor resistance. Harrigan PR, Salim M, Stammers DK, Wynhoven B, Brumme ZL, McKenna P, Larder B, Kemp SD. J Virol 76 6836-6840 (2002)
  24. Mechanism of action and resistant profile of anti-HIV-1 coumarin derivatives. Huang L, Yuan X, Yu D, Lee KH, Chen CH. Virology 332 623-628 (2005)
  25. A novel mutation (F227L) arises in the reverse transcriptase of human immunodeficiency virus type 1 on dose-escalating treatment of HIV type 1-infected cell cultures with the nonnucleoside reverse transcriptase inhibitor thiocarboxanilide UC-781. Balzarini J, Pelemans H, Esnouf R, De Clercq E. AIDS Res Hum Retroviruses 14 255-260 (1998)
  26. Resistance to non-nucleoside inhibitors of HIV-1 reverse transcriptase. Bacheler LT. Drug Resist Updat 2 56-67 (1999)
  27. Crystal structure of Venezuelan hemorrhagic fever virus fusion glycoprotein reveals a class 1 postfusion architecture with extensive glycosylation. Parsy ML, Harlos K, Huiskonen JT, Bowden TA. J Virol 87 13070-13075 (2013)
  28. Nonnucleoside inhibitor binding affects the interactions of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase with DNA. Peletskaya EN, Kogon AA, Tuske S, Arnold E, Hughes SH. J Virol 78 3387-3397 (2004)
  29. 1,1,3-Trioxo-2H,4H-thieno[3,4-e][1,2,4]thiadiazine (TTD) derivatives: a new class of nonnucleoside human immunodeficiency virus type 1 (HIV-1) reverse transcriptase inhibitors with anti-HIV-1 activity. Witvrouw M, Arranz ME, Pannecouque C, Declercq R, Jonckheere H, Schmit JC, Vandamme AM, Diaz JA, Ingate ST, Desmyter J, Esnouf R, Van Meervelt L, Vega S, Balzarini J, De Clercq E. Antimicrob Agents Chemother 42 618-623 (1998)
  30. A comparison of the ability of rilpivirine (TMC278) and selected analogues to inhibit clinically relevant HIV-1 reverse transcriptase mutants. Johnson BC, Pauly GT, Rai G, Patel D, Bauman JD, Baker HL, Das K, Schneider JP, Maloney DJ, Arnold E, Thomas CJ, Hughes SH. Retrovirology 9 99 (2012)
  31. Design, synthesis, and biological evaluation of 1-[(2-benzyloxyl/alkoxyl)methyl]-5-halo-6-aryluracils as potent HIV-1 non-nucleoside reverse transcriptase inhibitors with an improved drug resistance profile. Wang X, Zhang J, Huang Y, Wang R, Zhang L, Qiao K, Li L, Liu C, Ouyang Y, Xu W, Zhang Z, Zhang L, Shao Y, Jiang S, Ma L, Liu J. J Med Chem 55 2242-2250 (2012)
  32. Structure-based design of novel dihydroalkoxybenzyloxopyrimidine derivatives as potent nonnucleoside inhibitors of the human immunodeficiency virus reverse transcriptase. Sudbeck EA, Mao C, Vig R, Venkatachalam TK, Tuel-Ahlgren L, Uckun FM. Antimicrob Agents Chemother 42 3225-3233 (1998)
  33. Susceptibility of feline immunodeficiency virus/human immunodeficiency virus type 1 reverse transcriptase chimeras to non-nucleoside RT inhibitors. Auwerx J, Esnouf R, De Clercq E, Balzarini J. Mol Pharmacol 65 244-251 (2004)
  34. Quantitative structure-activity relationship analysis of pyridinone HIV-1 reverse transcriptase inhibitors using the k nearest neighbor method and QSAR-based database mining. Medina-Franco JL, Golbraikh A, Oloff S, Castillo R, Tropsha A. J Comput Aided Mol Des 19 229-242 (2005)
  35. Structure-based design of non-nucleoside reverse transcriptase inhibitors of drug-resistant human immunodeficiency virus. Mao C, Sudbeck EA, Venkatachalam TK, Uckun FM. Antivir Chem Chemother 10 233-240 (1999)
  36. Development of computational and graphical tools for analysis of movement and flexibility in large molecules. Keller PA, Leach SP, Luu TT, Titmuss SJ, Griffith R. J Mol Graph Model 18 235-41, 299 (2000)
  37. Molecular mechanism of antagonism between the Y181C and E138K mutations in HIV-1 reverse transcriptase. Xu HT, Oliveira M, Asahchop EL, McCallum M, Quashie PK, Han Y, Quan Y, Wainberg MA. J Virol 86 12983-12990 (2012)
  38. Novel Cyclopropyl-Indole Derivatives as HIV Non-Nucleoside Reverse Transcriptase Inhibitors. Hassam M, Basson AE, Liotta DC, Morris L, van Otterlo WA, Pelly SC. ACS Med Chem Lett 3 470-475 (2012)
  39. Anti-HIV activity of aromatic and heterocyclic thiazolyl thiourea compounds. Venkatachalam TK, Sudbeck EA, Mao C, Uckun FM. Bioorg Med Chem Lett 11 523-528 (2001)
  40. Biochemical mechanisms involved in overcoming HIV resistance to nucleoside inhibitors of reverse transcriptase. Götte M, Wainberg MA. Drug Resist Updat 3 30-38 (2000)
  41. Characteristics of the Pro225His mutation in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase that appears under selective pressure of dose-escalating quinoxaline treatment of HIV-1. Pelemans H, Esnouf R, Dunkler A, Parniak MA, Vandamme AM, Karlsson A, De Clercq E, Kleim JP, Balzarini J. J Virol 71 8195-8203 (1997)
  42. Scalable Synthesis of Piperazines Enabled by Visible-Light Irradiation and Aluminum Organometallics. Suárez-Pantiga S, Colas K, Johansson MJ, Mendoza A. Angew Chem Int Ed Engl 54 14094-14098 (2015)
  43. Subunit-selective mutational analysis and tissue culture evaluations of the interactions of the E138K and M184I mutations in HIV-1 reverse transcriptase. Xu HT, Oliveira M, Quashie PK, McCallum M, Han Y, Quan Y, Brenner BG, Wainberg MA. J Virol 86 8422-8431 (2012)
  44. Diphenyl ether non-nucleoside reverse transcriptase inhibitors with excellent potency against resistant mutant viruses and promising pharmacokinetic properties. Sweeney ZK, Kennedy-Smith JJ, Wu J, Arora N, Billedeau JR, Davidson JP, Fretland J, Hang JQ, Heilek GM, Harris SF, Hirschfeld D, Inbar P, Javanbakht H, Jernelius JA, Jin Q, Li Y, Liang W, Roetz R, Sarma K, Smith M, Stefanidis D, Su G, Suh JM, Villaseñor AG, Welch M, Zhang FJ, Klumpp K. ChemMedChem 4 88-99 (2009)
  45. Cross-linking of the fingers subdomain of human immunodeficiency virus type 1 reverse transcriptase to template-primer. Peletskaya EN, Boyer PL, Kogon AA, Clark P, Kroth H, Sayer JM, Jerina DM, Hughes SH. J Virol 75 9435-9445 (2001)
  46. The role of Thr139 in the human immunodeficiency virus type 1 reverse transcriptase sensitivity to (+)-calanolide A. Auwerx J, Rodríguez-Barrios F, Ceccherini-Silberstein F, San-Félix A, Velázquez S, De Clercq E, Camarasa MJ, Perno CF, Gago F, Balzarini J. Mol Pharmacol 68 652-659 (2005)
  47. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Sancineto L, Iraci N, Barreca ML, Massari S, Manfroni G, Corazza G, Cecchetti V, Marcello A, Daelemans D, Pannecouque C, Tabarrini O. Bioorg Med Chem 22 4658-4666 (2014)
  48. Role of the K101E substitution in HIV-1 reverse transcriptase in resistance to rilpivirine and other nonnucleoside reverse transcriptase inhibitors. Xu HT, Colby-Germinario SP, Huang W, Oliveira M, Han Y, Quan Y, Petropoulos CJ, Wainberg MA. Antimicrob Agents Chemother 57 5649-5657 (2013)
  49. Discovery of novel diarylpyrimidines as potent HIV-1 NNRTIs by investigating the chemical space of a less explored "hydrophobic channel". Zhou Z, Liu T, Kang D, Huo Z, Wu G, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Org Biomol Chem 16 1014-1028 (2018)
  50. Effects of the G190A substitution of HIV reverse transcriptase on phenotypic susceptibility of patient isolates to delavirdine. Uhlmann EJ, Tebas P, Storch GA, Powderly WG, Lie YS, Whitcomb JM, Hellmann NS, Arens MQ. J Clin Virol 31 198-203 (2004)
  51. Synthesis and HIV-1 RT inhibitory action of novel (4/6-substituted benzo[d]thiazol -2-yl)thiazolidin-4-ones. Divergence from the non-competitive inhibition mechanism. Pitta E, Geronikaki A, Surmava S, Eleftheriou P, Mehta VP, Van der Eycken EV. J Enzyme Inhib Med Chem 28 113-122 (2013)
  52. Positional adaptability in the design of mutation-resistant nonnucleoside HIV-1 reverse transcriptase inhibitors: a supramolecular perspective. Bruccoleri A. AIDS Res Hum Retroviruses 29 4-12 (2013)
  53. Synthesis and antiviral activity of C-5 substituted analogues of d4T bearing methylamino- or methyldiamino-linker arms. Gavriliu D, Fossey C, Fontaine G, Benzaria S, Ciurea A, Delbederi Z, Lelong B, Ladurée D, Aubertin AM, Kirn A. Nucleosides Nucleotides Nucleic Acids 19 1017-1031 (2000)
  54. 3D-QSAR models on clinically relevant K103N mutant HIV-1 reverse transcriptase obtained from two strategic considerations. San Juan AA. Bioorg Med Chem Lett 18 1181-1194 (2008)
  55. Additional level of information about complex interaction between non-nucleoside inhibitor and HIV-1 reverse transcriptase using biosensor-based thermodynamic analysis. Geitmann M, Danielson UH. Bioorg Med Chem 15 7344-7354 (2007)
  56. Flexible docking of pyridinone derivatives into the non-nucleoside inhibitor binding site of HIV-1 reverse transcriptase. Medina-Franco JL, Rodríguez-Morales S, Juárez-Gordiano C, Hernández-Campos A, Jiménez-Barbero J, Castillo R. Bioorg Med Chem 12 6085-6095 (2004)
  57. Piperidinylethyl, phenoxyethyl and fluoroethyl bromopyridyl thiourea compounds with potent anti-HIV activity. Venkatachalam TK, Sudbec EA, Mao C, Uckun FM. Antivir Chem Chemother 11 329-336 (2000)
  58. Protein-mediated antagonism between HIV reverse transcriptase ligands nevirapine and MgATP. Zheng X, Mueller GA, DeRose EF, London RE. Biophys J 104 2695-2705 (2013)
  59. The design and synthesis of 9-phenylcyclohepta[d]pyrimidine-2,4-dione derivatives as potent non-nucleoside inhibitors of HIV reverse transcriptase. Wang X, Lou Q, Guo Y, Xu Y, Zhang Z, Liu J. Org Biomol Chem 4 3252-3258 (2006)
  60. Discovery of TSAO derivatives with an unusual HIV-1 activity/resistance profile. de Castro S, García-Aparicio C, Van Laethem K, Gago F, Lobatón E, De Clercq E, Balzarini J, Camarasa MJ, Velázquez S. Antiviral Res 71 15-23 (2006)
  61. In silico structure-based design of a potent, mutation resilient, small peptide inhibitor of HIV-1 reverse transcriptase. Rao GS, Bhatnagar S. J Biomol Struct Dyn 21 171-178 (2003)
  62. N-Alkyl/aryl-4-(3-substituted-3-phenylpropyl)piperazine-1-carbothioamide as dual-action vaginal microbicides with reverse transcriptase inhibition. Bala V, Mandalapu D, Gupta S, Jangir S, Kushwaha B, Chhonker YS, Chandasana H, Krishna S, Rawat K, Krishna A, Singh M, Sankhwar SN, Shukla PK, Maikhuri JP, Bhatta RS, Siddiqi MI, Tripathi R, Gupta G, Sharma VL. Eur J Med Chem 101 640-650 (2015)
  63. "Mixed inhibitors" of HIV-reverse transcriptase: synthesis and antiviral activity. Pontikis R, Note R, Dechaux E, Guillaumel J, Aubertin AM, Grierson DS, Monneret C. Nucleosides Nucleotides 18 707-708 (1999)
  64. Data mining using template-based molecular docking on tetrahydroimidazo-[4,5,1-jk][1,4]-benzodiazepinone (TIBO) derivatives as HIV-1RT inhibitors. Sapre NS, Gupta S, Pancholi N, Sapre N. J Mol Model 14 1009-1021 (2008)
  65. Synthesis and anti-HIV-1 activity of 1-substiuted 6-(3-cyanobenzoyl) and [(3-cyanophenyl)fluoromethyl]-5-ethyl-uracils. Loksha YM, Pedersen EB, Loddo R, La Colla P. Arch Pharm (Weinheim) 342 501-506 (2009)
  66. Studies on the inhibition of Moloney murine leukemia virus reverse transcriptase by N-tritylamino acids and N-tritylamino acid-nucleotide compounds. Hawtrey A, Pieterse A, van Zyl J, Van der Bijl P, Van der Merwe M, Nel W, Ariatti M. Nucleosides Nucleotides Nucleic Acids 27 1011-1023 (2008)


Related citations provided by authors (5)

  1. Complexes of HIV-1 Reverse Transcriptase with Inhibitors of the HEPT Series Reveal Conformational Changes Relevant to the Design of Potent Non-Nucleoside Inhibitors. Hopkins AL, Ren J, Esnouf RM, Willcox BE, Jones EY, Ross C, Miyasaka T, Walker RT, Tanaka H, Stammers DK, Stuart DI J. Med. Chem. 39 1589- (1996)
  2. Mechanism of Inhibition of HIV-1 Reverse Transcriptase by Non-Nucleoside Inhibitors. Esnouf R, Ren J, Ross C, Jones Y, Stammers D, Stuart D Nat. Struct. Biol. 2 303- (1995)
  3. High Resolution Structures of HIV-1 RT from Four RT-Inhibitor Complexes. Ren J, Esnouf R, Garman E, Somers D, Ross C, Kirby I, Keeling J, Darby G, Jones Y, Stuart D, Stammers D Nat. Struct. Biol. 2 293- (1995)
  4. The Structure of HIV-1 Reverse Transcriptase Complexed with 9-Chloro-TIBO: Lessons for Inhibitor Design. Ren J, Esnouf R, Hopkins A, Ross C, Jones Y, Stammers D, Stuart D Structure 3 915- (1995)
  5. Crystals of HIV-1 Reverse Transcriptase Diffracting to 2.2 A Resolution. Stammers DK, Somers DO, Ross CK, Kirby I, Ray PH, Wilson JE, Norman M, Ren JS, Esnouf RM, Garman EF, Jones EY, Stuart DI J. Mol. Biol. 242 586- (1994)