1kj5 Citations

The solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus.

J Biol Chem 277 8279-89 (2002)
Cited: 197 times
EuropePMC logo PMID: 11741980

Abstract

The three human beta-defensins, HBD1--3, are 33--47-residue, cationic antimicrobial proteins expressed by epithelial cells. All three proteins have broad spectrum antimicrobial activity, with HBD3 consistently being the most potent. Additionally, HBD3 has significant bactericidal activity against Gram-positive Staphylococcus aureus at physiological salt concentrations. We have compared the multimeric state of the three beta-defensins using NMR diffusion spectroscopy, dynamic and static light scattering, and analysis of the migration of the three beta-defensins on a native gel. All three techniques are in agreement, suggesting that HBD-3 is a dimer, while HBD-1 and HBD-2 are monomeric. Subsequently, the NMR solution structures of HBD1 and HBD3 were determined using standard homonuclear techniques and compared with the previously determined solution structure of HBD2. Both HBD1 and HBD3 form well defined structures with backbone root mean square deviations of 0.451 and 0.616 A, respectively. The tertiary structures of all three beta-defensins are similar, with a short helical segment preceding a three-stranded antiparallel beta-sheet. The surface charge density of each of the defensins is markedly different, with the surface of HBD3 significantly more basic. Analysis of the NMR data and structures led us to suggest that HBD3 forms a symmetrical dimer through strand beta2 of the beta-sheet. The increased anti-Staphylococcal activity of HBD3 may be explained by the capacity of the protein to form dimers in solution at low concentrations, an amphipathic dimer structure, and the increased positive surface charge compared with HBD1 and HBD2.

Reviews - 1kj5 mentioned but not cited (3)

  1. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Mahlapuu M, Håkansson J, Ringstad L, Björn C. Front Cell Infect Microbiol 6 194 (2016)
  2. Antimicrobial and Antibiofilm Peptides. Di Somma A, Moretta A, Canè C, Cirillo A, Duilio A. Biomolecules 10 E652 (2020)
  3. A Dynamic Overview of Antimicrobial Peptides and Their Complexes. de Paula VS, Valente AP. Molecules 23 (2018)

Articles - 1kj5 mentioned but not cited (6)

  1. Developmentally Regulated Post-translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition. Onikubo T, Nicklay JJ, Xing L, Warren C, Anson B, Wang WL, Burgos ES, Ruff SE, Shabanowitz J, Cheng RH, Hunt DF, Shechter D. Cell Rep 10 1735-1748 (2015)
  2. Initial insights into structure-activity relationships of avian defensins. Derache C, Meudal H, Aucagne V, Mark KJ, Cadène M, Delmas AF, Lalmanach AC, Landon C. J Biol Chem 287 7746-7755 (2012)
  3. Design and activity of a cyclic mini-β-defensin analog: a novel antimicrobial tool. Scudiero O, Nigro E, Cantisani M, Colavita I, Leone M, Mercurio FA, Galdiero M, Pessi A, Daniele A, Salvatore F, Galdiero S. Int J Nanomedicine 10 6523-6539 (2015)
  4. How does averaging affect protein structure comparison on the ensemble level? Zagrovic B, Pande VS. Biophys J 87 2240-2246 (2004)
  5. The pentameric nucleoplasmin fold is present in Drosophila FKBP39 and a large number of chromatin-related proteins. Edlich-Muth C, Artero JB, Callow P, Przewloka MR, Watson AA, Zhang W, Glover DM, Debski J, Dadlez M, Round AR, Forsyth VT, Laue ED. J Mol Biol 427 1949-1963 (2015)
  6. Electrostatic Similarity Analysis of Human β-Defensin Binding in the Melanocortin System. Nix MA, Kaelin CB, Palomino R, Miller JL, Barsh GS, Millhauser GL. Biophys J 109 1946-1958 (2015)


Reviews citing this publication (38)

  1. Antibacterial peptides: basic facts and emerging concepts. Boman HG. J Intern Med 254 197-215 (2003)
  2. The relationship between peptide structure and antibacterial activity. Powers JP, Hancock RE. Peptides 24 1681-1691 (2003)
  3. Primate defensins. Lehrer RI. Nat Rev Microbiol 2 727-738 (2004)
  4. Atopic dermatitis: a disease caused by innate immune defects? De Benedetto A, Agnihothri R, McGirt LY, Bankova LG, Beck LA. J Invest Dermatol 129 14-30 (2009)
  5. Antiviral mechanisms of human defensins. Wilson SS, Wiens ME, Smith JG. J Mol Biol 425 4965-4980 (2013)
  6. Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. Harder J, Schröder JM. J Leukoc Biol 77 476-486 (2005)
  7. Mammalian defensins: structures and mechanism of antibiotic activity. Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. J Leukoc Biol 77 466-475 (2005)
  8. Antibiotic activities of host defense peptides: more to it than lipid bilayer perturbation. Wilmes M, Cammue BP, Sahl HG, Thevissen K. Nat Prod Rep 28 1350-1358 (2011)
  9. Avian defensins. van Dijk A, Veldhuizen EJ, Haagsman HP. Vet Immunol Immunopathol 124 1-18 (2008)
  10. Defensins: natural component of human innate immunity. Jarczak J, Kościuczuk EM, Lisowski P, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E. Hum Immunol 74 1069-1079 (2013)
  11. Plant gamma-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Pelegrini PB, Franco OL. Int J Biochem Cell Biol 37 2239-2253 (2005)
  12. Protective roles of the skin against infection: implication of naturally occurring human antimicrobial agents beta-defensins, cathelicidin LL-37 and lysozyme. Niyonsaba F, Ogawa H. J Dermatol Sci 40 157-168 (2005)
  13. Recent advances in the research and development of human defensins. Chen H, Xu Z, Peng L, Fang X, Yin X, Xu N, Cen P. Peptides 27 931-940 (2006)
  14. The role of antimicrobial peptides at the ocular surface. McDermott AM. Ophthalmic Res 41 60-75 (2009)
  15. Peptides and Peptidomimetics for Antimicrobial Drug Design. Mojsoska B, Jenssen H. Pharmaceuticals (Basel) 8 366-415 (2015)
  16. Human antimicrobial proteins effectors of innate immunity. Harder J, Gläser R, Schröder JM. J Endotoxin Res 13 317-338 (2007)
  17. Structure-activity relationships in beta-defensin peptides. Taylor K, Barran PE, Dorin JR. Biopolymers 90 1-7 (2008)
  18. Synthesis and structure-activity relationship of beta-defensins, multi-functional peptides of the immune system. Klüver E, Adermann K, Schulz A. J Pept Sci 12 243-257 (2006)
  19. The beta-defensin-fold family of polypeptides. Torres AM, Kuchel PW. Toxicon 44 581-588 (2004)
  20. Friends or Foes? Host defense (antimicrobial) peptides and proteins in human skin diseases. Niyonsaba F, Kiatsurayanon C, Chieosilapatham P, Ogawa H. Exp Dermatol 26 989-998 (2017)
  21. Candida Infections and Therapeutic Strategies: Mechanisms of Action for Traditional and Alternative Agents. de Oliveira Santos GC, Vasconcelos CC, Lopes AJO, de Sousa Cartágenes MDS, Filho AKDB, do Nascimento FRF, Ramos RM, Pires ERRB, de Andrade MS, Rocha FMG, de Andrade Monteiro C. Front Microbiol 9 1351 (2018)
  22. An evolutionary history of defensins: a role for copy number variation in maximizing host innate and adaptive immune responses. Machado LR, Ottolini B. Front Immunol 6 115 (2015)
  23. Defensins: antimicrobial peptides for therapeutic development. Verma C, Seebah S, Low SM, Zhou L, Liu SP, Li J, Beuerman RW. Biotechnol J 2 1353-1359 (2007)
  24. Targeting a cell wall biosynthesis hot spot. Müller A, Klöckner A, Schneider T. Nat Prod Rep 34 909-932 (2017)
  25. Innate defences against methicillin-resistant Staphylococcus aureus (MRSA) infection. Komatsuzawa H, Ouhara K, Yamada S, Fujiwara T, Sayama K, Hashimoto K, Sugai M. J Pathol 208 249-260 (2006)
  26. The chemistry and biology of theta defensins. Conibear AC, Craik DJ. Angew Chem Int Ed Engl 53 10612-10623 (2014)
  27. Genomics-based approaches to gene discovery in innate immunity. Scheetz T, Bartlett JA, Walters JD, Schutte BC, Casavant TL, McCray PB. Immunol Rev 190 137-145 (2002)
  28. Expression systems of human β-defensins: vectors, purification and biological activities. Corrales-Garcia LL, Possani LD, Corzo G. Amino Acids 40 5-13 (2011)
  29. Does allergy impair innate immunity? Leads and lessons from atopic dermatitis. Mrabet-Dahbi S, Maurer M. Allergy 65 1351-1356 (2010)
  30. Human Antimicrobial Peptides in Bodily Fluids: Current Knowledge and Therapeutic Perspectives in the Postantibiotic Era. Bastos P, Trindade F, da Costa J, Ferreira R, Vitorino R. Med Res Rev 38 101-146 (2018)
  31. Human Beta Defensins and Cancer: Contradictions and Common Ground. Ghosh SK, McCormick TS, Weinberg A. Front Oncol 9 341 (2019)
  32. Role of vitamin D in the pathogenesis and treatment of atopic dermatitis. Borzutzky A, Camargo CA. Expert Rev Clin Immunol 9 751-760 (2013)
  33. Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. Shagaghi N, Palombo EA, Clayton AHA, Bhave M. World J Microbiol Biotechnol 34 62 (2018)
  34. The Dichotomous Responses Driven by β-Defensins. Shelley JR, Davidson DJ, Dorin JR. Front Immunol 11 1176 (2020)
  35. Redox Active Antimicrobial Peptides in Controlling Growth of Microorganisms at Body Barriers. Brzoza P, Godlewska U, Borek A, Morytko A, Zegar A, Kwiecinska P, Zabel BA, Osyczka A, Kwitniewski M, Cichy J. Antioxidants (Basel) 10 (2021)
  36. An Update on the Therapeutic Potential of Antimicrobial Peptides against Acinetobacter baumannii Infections. Rangel K, Lechuga GC, Provance DW, Morel CM, De Simone SG. Pharmaceuticals (Basel) 16 1281 (2023)
  37. Resistance is futile: targeting multidrug-resistant bacteria with de novo Cys-rich cyclic polypeptides. Mourenza A, Ganesan R, Camarero JA. RSC Chem Biol 4 722-735 (2023)
  38. Roles of Antimicrobial Peptides in Gynecological Cancers. Zhao C, Yan S, Song Y, Xia X. Int J Mol Sci 23 10104 (2022)

Articles citing this publication (150)

  1. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Annu Rev Immunol 22 181-215 (2004)
  2. Engineering disulfide bridges to dissect antimicrobial and chemotactic activities of human beta-defensin 3. Wu Z, Hoover DM, Yang D, Boulègue C, Santamaria F, Oppenheim JJ, Lubkowski J, Lu W. Proc Natl Acad Sci U S A 100 8880-8885 (2003)
  3. Human -defensin-3 activates professional antigen-presenting cells via Toll-like receptors 1 and 2. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF. Proc Natl Acad Sci U S A 104 18631-18635 (2007)
  4. The solution structure of human hepcidin, a peptide hormone with antimicrobial activity that is involved in iron uptake and hereditary hemochromatosis. Hunter HN, Fulton DB, Ganz T, Vogel HJ. J Biol Chem 277 37597-37603 (2002)
  5. Human antimicrobial peptides and proteins. Wang G. Pharmaceuticals (Basel) 7 545-594 (2014)
  6. Human beta-defensins 2 and 3 demonstrate strain-selective activity against oral microorganisms. Joly S, Maze C, McCray PB, Guthmiller JM. J Clin Microbiol 42 1024-1029 (2004)
  7. Mastitis increases mammary mRNA abundance of beta-defensin 5, toll-like-receptor 2 (TLR2), and TLR4 but not TLR9 in cattle. Goldammer T, Zerbe H, Molenaar A, Schuberth HJ, Brunner RM, Kata SR, Seyfert HM. Clin Diagn Lab Immunol 11 174-185 (2004)
  8. Antimicrobial characterization of human beta-defensin 3 derivatives. Hoover DM, Wu Z, Tucker K, Lu W, Lubkowski J. Antimicrob Agents Chemother 47 2804-2809 (2003)
  9. Human beta-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Sass V, Schneider T, Wilmes M, Körner C, Tossi A, Novikova N, Shamova O, Sahl HG. Infect Immun 78 2793-2800 (2010)
  10. Cross-species analysis of the mammalian beta-defensin gene family: presence of syntenic gene clusters and preferential expression in the male reproductive tract. Patil AA, Cai Y, Sang Y, Blecha F, Zhang G. Physiol Genomics 23 5-17 (2005)
  11. Susceptibilities of periodontopathogenic and cariogenic bacteria to antibacterial peptides, {beta}-defensins and LL37, produced by human epithelial cells. Ouhara K, Komatsuzawa H, Yamada S, Shiba H, Fujiwara T, Ohara M, Sayama K, Hashimoto K, Kurihara H, Sugai M. J Antimicrob Chemother 55 888-896 (2005)
  12. Expression of LL-37 by human gastric epithelial cells as a potential host defense mechanism against Helicobacter pylori. Hase K, Murakami M, Iimura M, Cole SP, Horibe Y, Ohtake T, Obonyo M, Gallo RL, Eckmann L, Kagnoff MF. Gastroenterology 125 1613-1625 (2003)
  13. Hepcidin inhibits apical iron uptake in intestinal cells. Mena NP, Esparza A, Tapia V, Valdés P, Núñez MT. Am J Physiol Gastrointest Liver Physiol 294 G192-8 (2008)
  14. Duplication and selection in the evolution of primate beta-defensin genes. Semple CA, Rolfe M, Dorin JR. Genome Biol 4 R31 (2003)
  15. Toll-like receptor 2-mediated expression of beta-defensin-2 in human corneal epithelial cells. Kumar A, Zhang J, Yu FS. Microbes Infect 8 380-389 (2006)
  16. Human beta-defensins: differential activity against candidal species and regulation by Candida albicans. Feng Z, Jiang B, Chandra J, Ghannoum M, Nelson S, Weinberg A. J Dent Res 84 445-450 (2005)
  17. Rapid evolution and diversification of mammalian alpha-defensins as revealed by comparative analysis of rodent and primate genes. Patil A, Hughes AL, Zhang G. Physiol Genomics 20 1-11 (2004)
  18. beta-Defensin-3 and -4 in intestinal epithelial cells display increased mRNA expression in ulcerative colitis. Fahlgren A, Hammarstrom S, Danielsson A, Hammarstrom ML. Clin Exp Immunol 137 379-385 (2004)
  19. Human beta-defensins and toll-like receptors in the upper airway. Claeys S, de Belder T, Holtappels G, Gevaert P, Verhasselt B, van Cauwenberge P, Bachert C. Allergy 58 748-753 (2003)
  20. Human β-defensin 3 affects the activity of pro-inflammatory pathways associated with MyD88 and TRIF. Semple F, MacPherson H, Webb S, Cox SL, Mallin LJ, Tyrrell C, Grimes GR, Semple CA, Nix MA, Millhauser GL, Dorin JR. Eur J Immunol 41 3291-3300 (2011)
  21. Human beta-defensins kill Candida albicans in an energy-dependent and salt-sensitive manner without causing membrane disruption. Vylkova S, Nayyar N, Li W, Edgerton M. Antimicrob Agents Chemother 51 154-161 (2007)
  22. Novel synthetic, salt-resistant analogs of human beta-defensins 1 and 3 endowed with enhanced antimicrobial activity. Scudiero O, Galdiero S, Cantisani M, Di Noto R, Vitiello M, Galdiero M, Naclerio G, Cassiman JJ, Pedone C, Castaldo G, Salvatore F. Antimicrob Agents Chemother 54 2312-2322 (2010)
  23. Increased diversity of intestinal antimicrobial peptides by covalent dimer formation. Hornef MW, Pütsep K, Karlsson J, Refai E, Andersson M. Nat Immunol 5 836-843 (2004)
  24. The novel antimicrobial peptide beta3-defensin is produced by the amnion: a possible role of the fetal membranes in innate immunity of the amniotic cavity. Buhimschi IA, Jabr M, Buhimschi CS, Petkova AP, Weiner CP, Saed GM. Am J Obstet Gynecol 191 1678-1687 (2004)
  25. Ocular surface expression and in vitro activity of antimicrobial peptides. Huang LC, Jean D, Proske RJ, Reins RY, McDermott AM. Curr Eye Res 32 595-609 (2007)
  26. The non-typeable Haemophilus influenzae Sap transporter provides a mechanism of antimicrobial peptide resistance and SapD-dependent potassium acquisition. Mason KM, Bruggeman ME, Munson RS, Bakaletz LO. Mol Microbiol 62 1357-1372 (2006)
  27. Antibacterial properties of the sperm-binding proteins and peptides of human epididymis 2 (HE2) family; salt sensitivity, structural dependence and their interaction with outer and cytoplasmic membranes of Escherichia coli. Yenugu S, Hamil KG, Birse CE, Ruben SM, French FS, Hall SH. Biochem J 372 473-483 (2003)
  28. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur. Baroni A, Orlando M, Donnarumma G, Farro P, Iovene MR, Tufano MA, Buommino E. Arch Dermatol Res 297 280-288 (2006)
  29. Dysregulation of toll-like receptor-2 (TLR-2)-induced effects in monocytes from patients with atopic dermatitis: impact of the TLR-2 R753Q polymorphism. Niebuhr M, Langnickel J, Draing C, Renz H, Kapp A, Werfel T. Allergy 63 728-734 (2008)
  30. A worldwide analysis of beta-defensin copy number variation suggests recent selection of a high-expressing DEFB103 gene copy in East Asia. Hardwick RJ, Machado LR, Zuccherato LW, Antolinos S, Xue Y, Shawa N, Gilman RH, Cabrera L, Berg DE, Tyler-Smith C, Kelly P, Tarazona-Santos E, Hollox EJ. Hum Mutat 32 743-750 (2011)
  31. Human beta-defensin 3 binds to hemagglutinin B (rHagB), a non-fimbrial adhesin from Porphyromonas gingivalis, and attenuates a pro-inflammatory cytokine response. Pingel LC, Kohlgraf KG, Hansen CJ, Eastman CG, Dietrich DE, Burnell KK, Srikantha RN, Xiao X, Bélanger M, Progulske-Fox A, Cavanaugh JE, Guthmiller JM, Johnson GK, Joly S, Kurago ZB, Dawson DV, Brogden KA. Immunol Cell Biol 86 643-649 (2008)
  32. Susceptibility of nontypeable Haemophilus influenzae to human beta-defensins is influenced by lipooligosaccharide acylation. Starner TD, Swords WE, Apicella MA, McCray PB. Infect Immun 70 5287-5289 (2002)
  33. Identification of a novel class of nicotinic receptor antagonists: dimeric conotoxins VxXIIA, VxXIIB, and VxXIIC from Conus vexillum. Loughnan M, Nicke A, Jones A, Schroeder CI, Nevin ST, Adams DJ, Alewood PF, Lewis RJ. J Biol Chem 281 24745-24755 (2006)
  34. Defensins and other antimicrobial peptides at the ocular surface. McDermott AM. Ocul Surf 2 229-247 (2004)
  35. Structural origin of endotoxin neutralization and antimicrobial activity of a lactoferrin-based peptide. Japelj B, Pristovsek P, Majerle A, Jerala R. J Biol Chem 280 16955-16961 (2005)
  36. Solution structure of crotamine, a Na+ channel affecting toxin from Crotalus durissus terrificus venom. Nicastro G, Franzoni L, de Chiara C, Mancin AC, Giglio JR, Spisni A. Eur J Biochem 270 1969-1979 (2003)
  37. Wall teichoic acid deficiency in Staphylococcus aureus confers selective resistance to mammalian group IIA phospholipase A(2) and human beta-defensin 3. Koprivnjak T, Weidenmaier C, Peschel A, Weiss JP. Infect Immun 76 2169-2176 (2008)
  38. Antimicrobial actions of the human epididymis 2 (HE2) protein isoforms, HE2alpha, HE2beta1 and HE2beta2. Yenugu S, Hamil KG, French FS, Hall SH. Reprod Biol Endocrinol 2 61 (2004)
  39. Dimerization of plant defensin NaD1 enhances its antifungal activity. Lay FT, Mills GD, Poon IK, Cowieson NP, Kirby N, Baxter AA, van der Weerden NL, Dogovski C, Perugini MA, Anderson MA, Kvansakul M, Hulett MD. J Biol Chem 287 19961-19972 (2012)
  40. Identification of a cowpea gamma-thionin with bactericidal activity. Franco OL, Murad AM, Leite JR, Mendes PA, Prates MV, Bloch C. FEBS J 273 3489-3497 (2006)
  41. The Tomato Defensin TPP3 Binds Phosphatidylinositol (4,5)-Bisphosphate via a Conserved Dimeric Cationic Grip Conformation To Mediate Cell Lysis. Baxter AA, Richter V, Lay FT, Poon IK, Adda CG, Veneer PK, Phan TK, Bleackley MR, Anderson MA, Kvansakul M, Hulett MD. Mol Cell Biol 35 1964-1978 (2015)
  42. A study of host defence peptide beta-defensin 3 in primates. Boniotto M, Antcheva N, Zelezetsky I, Tossi A, Palumbo V, Verga Falzacappa MV, Sgubin S, Braida L, Amoroso A, Crovella S. Biochem J 374 707-714 (2003)
  43. Linear analogues of human beta-defensin 3: concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. Liu S, Zhou L, Li J, Suresh A, Verma C, Foo YH, Yap EP, Tan DT, Beuerman RW. Chembiochem 9 964-973 (2008)
  44. Trp-26 imparts functional versatility to human alpha-defensin HNP1. Wei G, Pazgier M, de Leeuw E, Rajabi M, Li J, Zou G, Jung G, Yuan W, Lu WY, Lehrer RI, Lu W. J Biol Chem 285 16275-16285 (2010)
  45. Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Pelegrini PB, Murad AM, Silva LP, Dos Santos RC, Costa FT, Tagliari PD, Bloch C, Noronha EF, Miller RN, Franco OL. Peptides 29 1271-1279 (2008)
  46. Antibacterial activities of synthetic peptides corresponding to the carboxy-terminal region of human beta-defensins 1-3. Krishnakumari V, Singh S, Nagaraj R. Peptides 27 2607-2613 (2006)
  47. The interaction of streptococcal inhibitor of complement (SIC) and its proteolytic fragments with the human beta defensins. Fernie-King BA, Seilly DJ, Lachmann PJ. Immunology 111 444-452 (2004)
  48. Molecular cloning and characterization of three beta-defensins from canine testes. Sang Y, Ortega MT, Blecha F, Prakash O, Melgarejo T. Infect Immun 73 2611-2620 (2005)
  49. A folding-dependent mechanism of antimicrobial peptide resistance to degradation unveiled by solution structure of distinctin. Raimondo D, Andreotti G, Saint N, Amodeo P, Renzone G, Sanseverino M, Zocchi I, Molle G, Motta A, Scaloni A. Proc Natl Acad Sci U S A 102 6309-6314 (2005)
  50. The antimicrobial activity of CCL28 is dependent on C-terminal positively-charged amino acids. Liu B, Wilson E. Eur J Immunol 40 186-196 (2010)
  51. Protein conformational changes studied by diffusion NMR spectroscopy: application to helix-loop-helix calcium binding proteins. Weljie AM, Yamniuk AP, Yoshino H, Izumi Y, Vogel HJ. Protein Sci 12 228-236 (2003)
  52. The complexity of selection at the major primate beta-defensin locus. Semple CA, Maxwell A, Gautier P, Kilanowski FM, Eastwood H, Barran PE, Dorin JR. BMC Evol Biol 5 32 (2005)
  53. A molecular dynamics study of human defensins HBD-1 and HNP-3 in water. Sharadadevi A, Nagaraj R. J Biomol Struct Dyn 27 541-550 (2010)
  54. Activity of antimicrobial peptides in the presence of polysaccharides produced by pulmonary pathogens. Benincasa M, Mattiuzzo M, Herasimenka Y, Cescutti P, Rizzo R, Gennaro R. J Pept Sci 15 595-600 (2009)
  55. Host anti-microbial response to Helicobacter pylori infection. George JT, Boughan PK, Karageorgiou H, Bajaj-Elliott M. Mol Immunol 40 451-456 (2003)
  56. Innate immunity in human bone. Warnke PH, Springer IN, Russo PA, Wiltfang J, Essig H, Kosmahl M, Sherry E, Acil Y. Bone 38 400-408 (2006)
  57. cDNA cloning, functional expression and antifungal activities of a dimeric plant defensin SPE10 from Pachyrrhizus erosus seeds. Song X, Wang J, Wu F, Li X, Teng M, Gong W. Plant Mol Biol 57 13-20 (2005)
  58. Decreased susceptibility of Staphylococcus aureus small-colony variants toward human antimicrobial peptides. Gläser R, Becker K, von Eiff C, Meyer-Hoffert U, Harder J. J Invest Dermatol 134 2347-2350 (2014)
  59. Human β-defensin 3 contains an oncolytic motif that binds PI(4,5)P2 to mediate tumour cell permeabilisation. Phan TK, Lay FT, Poon IK, Hinds MG, Kvansakul M, Hulett MD. Oncotarget 7 2054-2069 (2016)
  60. Midkine and pleiotrophin have bactericidal properties: preserved antibacterial activity in a family of heparin-binding growth factors during evolution. Svensson SL, Pasupuleti M, Walse B, Malmsten M, Mörgelin M, Sjögren C, Olin AI, Collin M, Schmidtchen A, Palmer R, Egesten A. J Biol Chem 285 16105-16115 (2010)
  61. NMR solution structure and condition-dependent oligomerization of the antimicrobial peptide human defensin 5. Wommack AJ, Robson SA, Wanniarachchi YA, Wan A, Turner CJ, Wagner G, Nolan EM. Biochemistry 51 9624-9637 (2012)
  62. Inhibitory effect of the human liver-derived antimicrobial peptide hepcidin 20 on biofilms of polysaccharide intercellular adhesin (PIA)-positive and PIA-negative strains of Staphylococcus epidermidis. Brancatisano FL, Maisetta G, Di Luca M, Esin S, Bottai D, Bizzarri R, Campa M, Batoni G. Biofouling 30 435-446 (2014)
  63. LL37 and hBD-3 elevate the β-1,3-exoglucanase activity of Candida albicans Xog1p, resulting in reduced fungal adhesion to plastic. Chang HT, Tsai PW, Huang HH, Liu YS, Chien TS, Lan CY. Biochem J 441 963-970 (2012)
  64. Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways. Ghosh D, Ding L, Sivaprasad U, Geh E, Biagini Myers J, Bernstein JA, Khurana Hershey GK, Mersha TB. PLoS One 10 e0144316 (2015)
  65. Tissue expression and developmental regulation of chicken cathelicidin antimicrobial peptides. Achanta M, Sunkara LT, Dai G, Bommineni YR, Jiang W, Zhang G. J Anim Sci Biotechnol 3 15 (2012)
  66. Skin peptides: biological activity and therapeutic opportunities. Namjoshi S, Caccetta R, Benson HA. J Pharm Sci 97 2524-2542 (2008)
  67. Solution structure of spheniscin, a beta-defensin from the penguin stomach. Landon C, Thouzeau C, Labbé H, Bulet P, Vovelle F. J Biol Chem 279 30433-30439 (2004)
  68. pH-dependent disruption of Escherichia coli ATCC 25922 and model membranes by the human antimicrobial peptides hepcidin 20 and 25. Maisetta G, Vitali A, Scorciapino MA, Rinaldi AC, Petruzzelli R, Brancatisano FL, Esin S, Stringaro A, Colone M, Luzi C, Bozzi A, Campa M, Batoni G. FEBS J 280 2842-2854 (2013)
  69. An ancestral host defence peptide within human β-defensin 3 recapitulates the antibacterial and antiviral activity of the full-length molecule. Nigro E, Colavita I, Sarnataro D, Scudiero O, Zambrano G, Granata V, Daniele A, Carotenuto A, Galdiero S, Folliero V, Galdiero M, Urbanowicz RA, Ball JK, Salvatore F, Pessi A. Sci Rep 5 18450 (2015)
  70. Structural and functional characterization of hBD-1(Ser35), a peptide deduced from a DEFB1 polymorphism. Circo R, Skerlavaj B, Gennaro R, Amoroso A, Zanetti M. Biochem Biophys Res Commun 293 586-592 (2002)
  71. In vitro bactericidal activity of recombinant human beta-defensin-3 against pathogenic bacterial strains in human tooth root canal. Song W, Shi Y, Xiao M, Lu H, Qu T, Li P, Wu G, Tian Y. Int J Antimicrob Agents 33 237-243 (2009)
  72. Occurrence and characterization of peptaibols from Trichoderma citrinoviride, an endophytic fungus of cork oak, using electrospray ionization quadrupole time-of-flight mass spectrometry. Maddau L, Cabras A, Franceschini A, Linaldeddu BT, Crobu S, Roggio T, Pagnozzi D. Microbiology (Reading) 155 3371-3381 (2009)
  73. Human β-defensin-3 promotes intestinal epithelial cell migration and reduces the development of necrotizing enterocolitis in a neonatal rat model. Sheng Q, Lv Z, Cai W, Song H, Qian L, Mu H, Shi J, Wang X. Pediatr Res 76 269-279 (2014)
  74. Single, double and quadruple alanine substitutions at oligomeric interfaces identify hydrophobicity as the key determinant of human neutrophil alpha defensin HNP1 function. Zhao L, Tolbert WD, Ericksen B, Zhan C, Wu X, Yuan W, Li X, Pazgier M, Lu W. PLoS One 8 e78937 (2013)
  75. Structural perspectives on antimicrobial chemokines. Nguyen LT, Vogel HJ. Front Immunol 3 384 (2012)
  76. Structuring and interactions of human beta-defensins 2 and 3 with model membranes. Morgera F, Antcheva N, Pacor S, Quaroni L, Berti F, Vaccari L, Tossi A. J Pept Sci 14 518-523 (2008)
  77. Artificial beta-defensin based on a minimal defensin template. Antcheva N, Morgera F, Creatti L, Vaccari L, Pag U, Pacor S, Shai Y, Sahl HG, Tossi A. Biochem J 421 435-447 (2009)
  78. Human macrophage inflammatory protein 3alpha: protein and peptide nuclear magnetic resonance solution structures, dimerization, dynamics, and anti-infective properties. Chan DI, Hunter HN, Tack BF, Vogel HJ. Antimicrob Agents Chemother 52 883-894 (2008)
  79. Molecular and functional analysis of human β-defensin 3 action at melanocortin receptors. Nix MA, Kaelin CB, Ta T, Weis A, Morton GJ, Barsh GS, Millhauser GL. Chem Biol 20 784-795 (2013)
  80. Letter Staphylococcus aureus subverts cutaneous defense by D-alanylation of teichoic acids. Simanski M, Gläser R, Köten B, Meyer-Hoffert U, Wanner S, Weidenmaier C, Peschel A, Harder J. Exp Dermatol 22 294-296 (2013)
  81. Mechanisms of decreased susceptibility to beta-defensins by Treponema denticola. Brissette CA, Lukehart SA. Infect Immun 75 2307-2315 (2007)
  82. Research Support, Non-U.S. Gov't The intramolecular disulfide-stapled structure of laterosporulin, a class IId bacteriocin, conceals a human defensin-like structural module. Singh PK, Solanki V, Sharma S, Thakur KG, Krishnan B, Korpole S. FEBS J 282 203-214 (2015)
  83. Engineering disulfide bonds of the novel human beta-defensins hBD-27 and hBD-28: differences in disulfide formation and biological activity among human beta-defensins. Schulz A, Klüver E, Schulz-Maronde S, Adermann K. Biopolymers 80 34-49 (2005)
  84. NMR structure of temporin-1 ta in lipopolysaccharide micelles: mechanistic insight into inactivation by outer membrane. Saravanan R, Joshi M, Mohanram H, Bhunia A, Mangoni ML, Bhattacharjya S. PLoS One 8 e72718 (2013)
  85. Progressive structuring of a branched antimicrobial peptide on the path to the inner membrane target. Bai Y, Liu S, Li J, Lakshminarayanan R, Sarawathi P, Tang C, Ho D, Verma C, Beuerman RW, Pervushin K. J Biol Chem 287 26606-26617 (2012)
  86. Structural basis for the interaction of human β-defensin 6 and its putative chemokine receptor CCR2 and breast cancer microvesicles. De Paula VS, Gomes NS, Lima LG, Miyamoto CA, Monteiro RQ, Almeida FC, Valente AP. J Mol Biol 425 4479-4495 (2013)
  87. The human male reproductive tract antimicrobial peptides of the HE2 family exhibit potent synergy with standard antibiotics. Yenugu S, Narmadha G. J Pept Sci 16 337-341 (2010)
  88. Human β-defensin 4 with non-native disulfide bridges exhibit antimicrobial activity. Sharma H, Nagaraj R. PLoS One 10 e0119525 (2015)
  89. Expression and new exon mutations of the human Beta defensins and their association on colon cancer development. Semlali A, Al Amri A, Azzi A, Al Shahrani O, Arafah M, Kohailan M, Aljebreen AM, Alharbi O, Almadi MA, Azzam NA, Parine NR, Rouabhia M, Alanazi MS. PLoS One 10 e0126868 (2015)
  90. Variations in the interaction of human defensins with Escherichia coli: Possible implications in bacterial killing. Mathew B, Nagaraj R. PLoS One 12 e0175858 (2017)
  91. Antifungal effects of synthetic human β-defensin 3-C15 peptide. Lim SM, Ahn KB, Kim C, Kum JW, Perinpanayagam H, Gu Y, Yoo YJ, Chang SW, Han SH, Shon WJ, Lee W, Baek SH, Zhu Q, Kum KY. Restor Dent Endod 41 91-97 (2016)
  92. Comment Immunology: Peptide gets in shape for self-defence. Lehrer RI. Nature 469 309-310 (2011)
  93. Modelling study of dimerization in mammalian defensins. Suresh A, Verma C. BMC Bioinformatics 7 Suppl 5 S17 (2006)
  94. Streptococcal DRS (distantly related to SIC) and SIC inhibit antimicrobial peptides, components of mucosal innate immunity: a comparison of their activities. Fernie-King BA, Seilly DJ, Binks MJ, Sriprakash KS, Lachmann PJ. Microbes Infect 9 300-307 (2007)
  95. Effect of selectively introducing arginine and D-amino acids on the antimicrobial activity and salt sensitivity in analogs of human beta-defensins. Olli S, Rangaraj N, Nagaraj R. PLoS One 8 e77031 (2013)
  96. Interaction of antibacterial peptides spanning the carboxy-terminal region of human beta-defensins 1-3 with phospholipids at the air-water interface and inner membrane of E. coli. Krishnakumari V, Nagaraj R. Peptides 29 7-14 (2008)
  97. Membrane damage and repair in primary monocytes exposed to human β-defensin-3. Lioi AB, Rodriguez AL, Funderburg NT, Feng Z, Weinberg A, Sieg SF. J Leukoc Biol 92 1083-1091 (2012)
  98. Antimicrobial Peptide Resistance Mechanism Contributes to Staphylococcus aureus Infection. Cheung GYC, Fisher EL, McCausland JW, Choi J, Collins JWM, Dickey SW, Otto M. J Infect Dis 217 1153-1159 (2018)
  99. Different dynamics and pathway of disulfide bonds reduction of two human defensins, a molecular dynamics simulation study. Zhang L. Proteins 85 665-681 (2017)
  100. Effect of structural parameters of peptides on dimer formation and highly oxidized side products in the oxidation of thiols of linear analogues of human beta-defensin 3 by DMSO. Liu S, Zhou L, Chen L, Dastidar SG, Verma C, Li J, Tan D, Beuerman R. J Pept Sci 15 95-106 (2009)
  101. Increased human defensine levels hint at an inflammatory etiology of bisphosphonate-associated osteonecrosis of the jaw: an immunohistological study. Stockmann P, Wehrhan F, Schwarz-Furlan S, Stelzle F, Trabert S, Neukam FW, Nkenke E. J Transl Med 9 135 (2011)
  102. Isoleucine/leucine2 is essential for chemoattractant activity of beta-defensin Defb14 through chemokine receptor 6. Tyrrell C, De Cecco M, Reynolds NL, Kilanowski F, Campopiano D, Barran P, Macmillan D, Dorin JR. Mol Immunol 47 1378-1382 (2010)
  103. Molecular dynamics simulations of a new branched antimicrobial peptide: a comparison of force fields. Li J, Lakshminarayanan R, Bai Y, Liu S, Zhou L, Pervushin K, Verma C, Beuerman RW. J Chem Phys 137 215101 (2012)
  104. Peptide fragments of a beta-defensin derivative with potent bactericidal activity. Reynolds NL, De Cecco M, Taylor K, Stanton C, Kilanowski F, Kalapothakis J, Seo E, Uhrin D, Campopiano D, Govan J, Macmillan D, Barran P, Dorin JR. Antimicrob Agents Chemother 54 1922-1929 (2010)
  105. The solution structure of horseshoe crab antimicrobial peptide tachystatin B with an inhibitory cystine-knot motif. Fujitani N, Kouno T, Nakahara T, Takaya K, Osaki T, Kawabata S, Mizuguchi M, Aizawa T, Demura M, Nishimura S, Kawano K. J Pept Sci 13 269-279 (2007)
  106. Activation of Molecular Signatures for Antimicrobial and Innate Defense Responses in Skin with Transglutaminase 1 Deficiency. Haneda T, Imai Y, Uchiyama R, Jitsukawa O, Yamanishi K. PLoS One 11 e0159673 (2016)
  107. Antibacterial activity of linear peptides spanning the carboxy-terminal beta-sheet domain of arthropod defensins. Varkey J, Singh S, Nagaraj R. Peptides 27 2614-2623 (2006)
  108. Novel aspects of the sperm-associated antigen 11 (SPAG11) gene organization and expression in cattle (Bos taurus). Avellar MC, Avellar MC, Honda L, Hamil KG, Radhakrishnan Y, Yenugu S, Grossman G, Petrusz P, French FS, Hall SH. Biol Reprod 76 1103-1116 (2007)
  109. Prediction of the impact of coding missense and nonsense single nucleotide polymorphisms on HD5 and HBD1 antibacterial activity against Escherichia coli. Porto WF, Nolasco DO, Pires ÁS, Pereira RW, Franco OL, Alencar SA. Biopolymers 106 633-644 (2016)
  110. The Role of Human Beta-Defensin-2 in Pseudomonas aeruginosa Pulmonary Infection in Cystic Fibrosis Patients. Dalcin D, Ulanova M. Infect Dis Ther 2 159-166 (2013)
  111. Characteristics of novel insect defensin-based membrane-disrupting trypanocidal peptides. Yamage M, Yoshiyama M, Grab DJ, Kubo M, Iwasaki T, Kitani H, Ishibashi J, Yamakawa M. Biosci Biotechnol Biochem 73 1520-1526 (2009)
  112. Pulmonary surfactant protein A protects lung epithelium from cytotoxicity of human β-defensin 3. Saito A, Ariki S, Sohma H, Nishitani C, Inoue K, Ebata N, Takahashi M, Hasegawa Y, Kuronuma K, Takahashi H, Kuroki Y. J Biol Chem 287 15034-15043 (2012)
  113. Rattusin structure reveals a novel defensin scaffold formed by intermolecular disulfide exchanges. Min HJ, Yun H, Ji S, Rajasekaran G, Kim JI, Kim JS, Shin SY, Lee CW. Sci Rep 7 45282 (2017)
  114. Rubber elasticity for incomplete polymer networks. Nishi K, Chijiishi M, Katsumoto Y, Nakao T, Fujii K, Chung UI, Noguchi H, Sakai T, Shibayama M. J Chem Phys 137 224903 (2012)
  115. Antimicrobial Peptide immunity protects human nasal and auricular cartilage against infection. Warnke PH, Russo PA, Hopfenziz M, Kurz B, Becker ST, Sherry E, Springer I, Sivananthan S. J Craniofac Surg 21 198-201 (2010)
  116. Involvement of β-defensin 130 (DEFB130) in the macrophage microbicidal mechanisms for killing Plasmodium falciparum. Terkawi MA, Takano R, Furukawa A, Murakoshi F, Kato K. Sci Rep 7 41772 (2017)
  117. Simulating the antimicrobial mechanism of human β-defensin-3 with coarse-grained molecular dynamics. Zhao X, Yu H, Yang L, Li Q, Huang X. J Biomol Struct Dyn 33 2522-2529 (2015)
  118. The Antimicrobial Peptide Human Beta-Defensin 2 Inhibits Biofilm Production of Pseudomonas aeruginosa Without Compromising Metabolic Activity. Parducho KR, Beadell B, Ybarra TK, Bush M, Escalera E, Trejos AT, Chieng A, Mendez M, Anderson C, Park H, Wang Y, Lu W, Porter E. Front Immunol 11 805 (2020)
  119. A 15-amino acid C-terminal peptide of beta-defensin-3 inhibits bone resorption by inhibiting the osteoclast differentiation and disrupting podosome belt formation. Park OJ, Kim J, Ahn KB, Lee JY, Park YJ, Kum KY, Yun CH, Han SH. J Mol Med (Berl) 95 1315-1325 (2017)
  120. Antibacterial properties of human beta defensin-3 derivative: CHRG01. Arora A, Majhi S, Mishra A. J Biosci 43 707-715 (2018)
  121. Characterization of the antimicrobial peptide family defensins in the Tasmanian devil (Sarcophilus harrisii), koala (Phascolarctos cinereus), and tammar wallaby (Macropus eugenii). Jones EA, Cheng Y, O'Meally D, Belov K. Immunogenetics 69 133-143 (2017)
  122. Integrated solid-state NMR and molecular dynamics modeling determines membrane insertion of human β-defensin analog. Kang X, Elson C, Penfield J, Kirui A, Chen A, Zhang L, Wang T. Commun Biol 2 402 (2019)
  123. KR-12-a5 is a non-cytotoxic agent with potent antimicrobial effects against oral pathogens. Caiaffa KS, Massunari L, Danelon M, Abuna GF, Bedran TBL, Santos-Filho NA, Spolidorio DMP, Vizoto NL, Cilli EM, Duque C. Biofouling 33 807-818 (2017)
  124. Production and purification of recombinant human hepcidin-25 with authentic N and C-termini. Janakiraman VN, Cabanne C, Dieryck W, Hocquellet A, Joucla G, Le Senechal C, Chaignepain S, Costaglioli P, Santarelli X, Garbay B, Noubhani A. J Biotechnol 195 89-92 (2015)
  125. Structure of human MIP-3alpha chemokine. Malik ZA, Tack BF. Acta Crystallogr Sect F Struct Biol Cryst Commun 62 631-634 (2006)
  126. Binding a heparin derived disaccharide to defensin inspired peptides: insights to antimicrobial inhibition from gas-phase measurements. McCullough BJ, Kalapothakis JM, Chin W, Taylor K, Clarke DJ, Eastwood H, Campopiano D, MacMillan D, Dorin J, Barran PE. Phys Chem Chem Phys 12 3589-3596 (2010)
  127. Characterization of the β-defensin genes in giant panda. Zhang ZY, Zhang HM, Li DS, Xiong TY, Fang SG. Sci Rep 8 12308 (2018)
  128. HD5 and HBD1 variants' solvation potential energy correlates with their antibacterial activity against Escherichia coli. Porto WF, Nolasco DO, Pires ÁS, Fernandes GR, Franco OL, Alencar SA. Biopolymers 106 43-50 (2016)
  129. In-silico homology modeling of three isoforms of insect defensins from the dengue vector mosquito, Aedes aegypti (Linn., 1762). Dhananjeyan KJ, Sivaperumal R, Paramasivan R, Thenmozhi V, Tyagi BK. J Mol Model 15 507-514 (2009)
  130. N-terminus three residues deletion mutant of human beta-defensin 3 with remarkably enhanced salt-resistance. Li T, Guo F, Wang Q, Fang H, Li Z, Wang D, Wang H. PLoS One 10 e0117913 (2015)
  131. Preparation of isotopically labelled recombinant beta-defensin for NMR studies. Seo ES, Vargues T, Clarke DJ, Uhrín D, Campopiano DJ. Protein Expr Purif 65 179-184 (2009)
  132. The synthetic human beta-defensin-3 C15 peptide exhibits antimicrobial activity against Streptococcus mutans, both alone and in combination with dental disinfectants. Ahn KB, Kim AR, Kum KY, Yun CH, Han SH. J Microbiol 55 830-836 (2017)
  133. Two arginine residues in the COOH-terminal of human β-defensin-3 constitute an essential motif for antimicrobial activity and IL-6 production. Sakagami-Yasui Y, Shirafuji Y, Yamasaki O, Morizane S, Hamada T, Umemura H, Iwatsuki K. Exp Dermatol 26 1026-1032 (2017)
  134. Comparative simulation studies of native and single-site mutant human beta-defensin-1 peptides. Toubar RA, Zhmurov A, Barsegov V, Marx KA. J Biomol Struct Dyn 31 174-194 (2013)
  135. Insight into the impact of environments on structure of chimera C3 of human β-defensins 2 and 3 from molecular dynamics simulations. Li Q, Yu H, Zhao X, Huang X. J Biomol Struct Dyn 33 1989-2002 (2015)
  136. Molecular Characterization and In Silico Analysis of Defensin From Tor putitora (Hamilton). Chaturvedi P, Dhanik M, Pande A. Probiotics Antimicrob Proteins 7 207-215 (2015)
  137. Structure and antimicrobial activity of platypus 'intermediate' defensin-like peptide. Torres AM, Bansal P, Koh JM, Pagès G, Wu MJ, Kuchel PW. FEBS Lett 588 1821-1826 (2014)
  138. A Synthetic Cell-Penetrating Heparin-Binding Peptide Derived from BMP4 with Anti-Inflammatory and Chondrogenic Functions for the Treatment of Arthritis. Choi DH, Lee D, Jo BS, Park KS, Lee KE, Choi JK, Park YJ, Lee JY, Park YS. Int J Mol Sci 21 (2020)
  139. Immunohistological expression of human ß-defensin-1 and human ß-defensin-2 in exacerbation of acute and secondary chronic osteomyelitis of the mandible. Beck-Broichsitter BE, Dau H, Moest T, Jochens A, Stockmann P, Wiltfang J, Becker ST. J Oral Pathol Med 44 88-93 (2015)
  140. Molecular Dynamics Simulations of Human Beta-Defensin Type 3 Crossing Different Lipid Bilayers. Yeasmin R, Brewer A, Fine LR, Zhang L. ACS Omega 6 13926-13939 (2021)
  141. Proteomic Adaptation of Streptococcus pneumoniae to the Antimicrobial Peptide Human Beta Defensin 3 (hBD3) in Comparison to Other Cell Surface Stresses. Mücke PA, Ostrzinski A, Hammerschmidt S, Maaß S, Becher D. Microorganisms 8 E1697 (2020)
  142. The Unusual Resistance of Avian Defensin AvBD7 to Proteolytic Enzymes Preserves Its Antibacterial Activity. Bailleul G, Kravtzoff A, Joulin-Giet A, Lecaille F, Labas V, Meudal H, Loth K, Teixeira-Gomes AP, Gilbert FB, Coquet L, Jouenne T, Brömme D, Schouler C, Landon C, Lalmanach G, Lalmanach AC. PLoS One 11 e0161573 (2016)
  143. A Chimeric Cationic Peptide Composed of Human β-Defensin 3 and Human β-Defensin 4 Exhibits Improved Antibacterial Activity and Salt Resistance. Yu W, Ning N, Xue Y, Huang Y, Guo F, Li T, Yang B, Luo D, Sun Y, Li Z, Wang J, He Z, Cheng S, Zhang X, Wang H. Front Microbiol 12 663151 (2021)
  144. A mechanistic evaluation of human beta defensin 2 mediated protection of human skin barrier in vitro. Shelley JR, McHugh BJ, Wills J, Dorin JR, Weller R, Clarke DJ, Davidson DJ. Sci Rep 13 2271 (2023)
  145. Antimicrobial Peptides Epinecidin-1 and Beta-Defesin-3 Are Effective against a Broad Spectrum of Antibiotic-Resistant Bacterial Isolates and Increase Survival Rate in Experimental Sepsis. Bolatchiev A. Antibiotics (Basel) 11 (2022)
  146. Human β-Defensin 1 and β-Defensin 3 (Mouse Ortholog mBD14) Function as Full Endogenous Agonists at Select Melanocortin Receptors. Ericson MD, Singh A, Tala SR, Haslach EM, Dirain MLS, Schaub JW, Flores V, Eick N, Lensing CJ, Freeman KT, Smeester BA, Adank DN, Wilber SL, Speth R, Haskell-Luevano C. J Med Chem 61 3738-3744 (2018)
  147. Improving Fmoc Solid Phase Synthesis of Human Beta Defensin 3. Walewska A, Kosikowska-Adamus P, Tomczykowska M, Jaroszewski B, Prahl A, Bulaj G. Int J Mol Sci 23 12562 (2022)
  148. Molecular Identification and Antibacterial Activity Analysis of Blue Fox (Vulpes lagopus) β-Defensins 108 and 122. Li LL, Liu TL, Wu P, Du NY, Tian LH, Hou ZJ. Animals (Basel) 11 (2021)
  149. Mouse α-Defensins: Structural and Functional Analysis of the 17 Cryptdin Isoforms Identified from a Single Jejunal Crypt. Wang Q, Yang Y, Luo G, Zhou Y, Tolbert WD, Pazgier M, Liao C, Lu W. Infect Immun 91 e0036122 (2023)
  150. The capsule of Bacillus anthracis protects it from the bactericidal activity of human defensins and other cationic antimicrobial peptides. O'Brien DK, Ribot WJ, Chabot DJ, Scorpio A, Tobery SA, Jelacic TM, Wu Z, Friedlander AM. PLoS Pathog 18 e1010851 (2022)