1jt0 Citations

Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR.

EMBO J 21 1210-8 (2002)
Cited: 175 times
EuropePMC logo PMID: 11867549

Abstract

The Staphylococcus aureus multidrug-binding protein QacR represses transcription of the qacA multidrug transporter gene and is induced by multiple structurally dissimilar drugs. QacR is a member of the TetR/CamR family of transcriptional regulators, which share highly homologous N-terminal DNA-binding domains connected to seemingly non-homologous ligand-binding domains. Unlike other TetR members, which bind approximately 15 bp operators, QacR recognizes an unusually long 28 bp operator, IR1, which it appears to bind cooperatively. To elucidate the DNA-binding mechanism of QacR, we determined the 2.90 A resolution crystal structure of a QacR-IR1 complex. Strikingly, our data reveal that the DNA recognition mode of QacR is distinct from TetR and involves the binding of a pair of QacR dimers. In this unique binding mode, recognition at each IR1 half-site is mediated by a complement of DNA contacts made by two helix-turn-helix motifs. The inferred cooperativity does not arise from cross-dimer protein-protein contacts, but from the global undertwisting and major groove widening elicited by the binding of two QacR dimers.

Reviews - 1jt0 mentioned but not cited (5)

  1. The TetR family of transcriptional repressors. Ramos JL, Martínez-Bueno M, Molina-Henares AJ, Terán W, Watanabe K, Zhang X, Gallegos MT, Brennan R, Tobes R. Microbiol Mol Biol Rev 69 326-356 (2005)
  2. Transcription factor-based biosensors enlightened by the analyte. Fernandez-López R, Ruiz R, de la Cruz F, Moncalián G. Front Microbiol 6 648 (2015)
  3. Quorum Sensing Gene Regulation by LuxR/HapR Master Regulators in Vibrios. Ball AS, Chaparian RR, van Kessel JC. J Bacteriol 199 e00105-17 (2017)
  4. Structures of AcrR and CmeR: insight into the mechanisms of transcriptional repression and multi-drug recognition in the TetR family of regulators. Routh MD, Su CC, Zhang Q, Yu EW. Biochim Biophys Acta 1794 844-851 (2009)
  5. Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Housseini B Issa K, Phan G, Broutin I. Front Mol Biosci 5 57 (2018)

Articles - 1jt0 mentioned but not cited (36)

  1. Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR. Schumacher MA, Miller MC, Grkovic S, Brown MH, Skurray RA, Brennan RG. EMBO J 21 1210-1218 (2002)
  2. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. Hernández A, Ruiz FM, Romero A, Martínez JL. PLoS Pathog 7 e1002103 (2011)
  3. Crystal structure of the transcriptional regulator AcrR from Escherichia coli. Li M, Gu R, Su CC, Routh MD, Harris KC, Jewell ES, McDermott G, Yu EW. J Mol Biol 374 591-603 (2007)
  4. Crystal structure of the Vibrio cholerae quorum-sensing regulatory protein HapR. De Silva RS, Kovacikova G, Lin W, Taylor RK, Skorupski K, Kull FJ. J Bacteriol 189 5683-5691 (2007)
  5. Crystal structure of IcaR, a repressor of the TetR family implicated in biofilm formation in Staphylococcus epidermidis. Jeng WY, Ko TP, Liu CI, Guo RT, Liu CL, Shr HL, Wang AH. Nucleic Acids Res 36 1567-1577 (2008)
  6. A protein-DNA docking benchmark. van Dijk M, Bonvin AM. Nucleic Acids Res 36 e88 (2008)
  7. Prediction of DNA-binding residues from protein sequence information using random forests. Wang L, Yang MQ, Yang JY. BMC Genomics 10 Suppl 1 S1 (2009)
  8. Crystal structure of the transcriptional regulator CmeR from Campylobacter jejuni. Gu R, Su CC, Shi F, Li M, McDermott G, Zhang Q, Yu EW. J Mol Biol 372 583-593 (2007)
  9. Binding of the RamR repressor to wild-type and mutated promoters of the RamA gene involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Baucheron S, Coste F, Canepa S, Maurel MC, Giraud E, Culard F, Castaing B, Roussel A, Cloeckaert A. Antimicrob Agents Chemother 56 942-948 (2012)
  10. Crystal structure of SmcR, a quorum-sensing master regulator of Vibrio vulnificus, provides insight into its regulation of transcription. Kim Y, Kim BS, Park YJ, Choi WC, Hwang J, Kang BS, Oh TK, Choi SH, Kim MH. J Biol Chem 285 14020-14030 (2010)
  11. Structural and functional basis of transcriptional regulation by TetR family protein CprB from S. coelicolor A3(2). Bhukya H, Bhujbalrao R, Bitra A, Anand R. Nucleic Acids Res 42 10122-10133 (2014)
  12. Structural basis for the regulation of β-glucuronidase expression by human gut Enterobacteriaceae. Little MS, Pellock SJ, Walton WG, Tripathy A, Redinbo MR. Proc Natl Acad Sci U S A 115 E152-E161 (2018)
  13. Interaction of bacterial fatty-acid-displaced regulators with DNA is interrupted by tyrosine phosphorylation in the helix-turn-helix domain. Derouiche A, Bidnenko V, Grenha R, Pigonneau N, Ventroux M, Franz-Wachtel M, Nessler S, Noirot-Gros MF, Mijakovic I. Nucleic Acids Res 41 9371-9381 (2013)
  14. Small local variations in B-form DNA lead to a large variety of global geometries which can accommodate most DNA-binding protein motifs. Marathe A, Karandur D, Bansal M. BMC Struct Biol 9 24 (2009)
  15. Mechanistic and Structural Insights Into the Unique TetR-Dependent Regulation of a Drug Efflux Pump in Mycobacterium abscessus. Richard M, Gutiérrez AV, Viljoen AJ, Ghigo E, Blaise M, Kremer L. Front Microbiol 9 649 (2018)
  16. Transcriptional repression mediated by a TetR family protein, PfmR, from Thermus thermophilus HB8. Agari Y, Sakamoto K, Kuramitsu S, Shinkai A. J Bacteriol 194 4630-4641 (2012)
  17. A structural-alphabet-based strategy for finding structural motifs across protein families. Wu CY, Chen YC, Lim C. Nucleic Acids Res 38 e150 (2010)
  18. Novel sequence-based method for identifying transcription factor binding sites in prokaryotic genomes. Sahota G, Stormo GD. Bioinformatics 26 2672-2677 (2010)
  19. Structural plasticity and distinct drug-binding modes of LfrR, a mycobacterial efflux pump regulator. Bellinzoni M, Buroni S, Schaeffer F, Riccardi G, De Rossi E, Alzari PM. J Bacteriol 191 7531-7537 (2009)
  20. The protein-DNA contacts in RutR•carAB operator complexes. Nguyen Ple M, Bervoets I, Maes D, Charlier D. Nucleic Acids Res 38 6286-6300 (2010)
  21. Loop-to-helix transition in the structure of multidrug regulator AcrR at the entrance of the drug-binding cavity. Manjasetty BA, Halavaty AS, Luan CH, Osipiuk J, Mulligan R, Kwon K, Anderson WF, Joachimiak A. J Struct Biol 194 18-28 (2016)
  22. Benchmarks for flexible and rigid transcription factor-DNA docking. Kim R, Corona RI, Hong B, Guo JT. BMC Struct Biol 11 45 (2011)
  23. Crystal structure of Bacillus cereus HlyIIR, a transcriptional regulator of the gene for pore-forming toxin hemolysin II. Kovalevskiy OV, Lebedev AA, Surin AK, Solonin AS, Antson AA. J Mol Biol 365 825-834 (2007)
  24. Local conformational changes in the DNA interfaces of proteins. Sunami T, Kono H. PLoS One 8 e56080 (2013)
  25. Crystal structure of a transcriptional regulator TM1030 from Thermotoga maritima solved by an unusual MAD experiment. Koclega KD, Chruszcz M, Zimmerman MD, Cymborowski M, Evdokimova E, Minor W. J Struct Biol 159 424-432 (2007)
  26. High performance transcription factor-DNA docking with GPU computing. Wu J, Hong B, Takeda T, Guo JT. Proteome Sci 10 Suppl 1 S17 (2012)
  27. Crystal Structure of TetR Family Repressor AlkX from Dietzia sp. Strain DQ12-45-1b Implicated in Biodegradation of n-Alkanes. Liang JL, Gao Y, He Z, Nie Y, Wang M, JiangYang JH, Zhang XC, Shu WS, Wu XL. Appl Environ Microbiol 83 e01447-17 (2017)
  28. Crystal structure of an inactive variant of the quorum-sensing master regulator HapR from the protease-deficient non-O1, non-O139 Vibrio cholerae strain V2. Cruite J, Succo P, Raychaudhuri S, Kull FJ. Acta Crystallogr F Struct Biol Commun 74 331-336 (2018)
  29. Structural changes in DNA-binding proteins on complexation. Poddar S, Chakravarty D, Chakrabarti P. Nucleic Acids Res 46 3298-3308 (2018)
  30. DNA-binding residues and binding mode prediction with binding-mechanism concerned models. Huang YF, Huang CC, Liu YC, Oyang YJ, Huang CK. BMC Genomics 10 Suppl 3 S23 (2009)
  31. The DNA binding domain of the Vibrio vulnificus SmcR transcription factor is flexible and binds diverse DNA sequences. Newman JD, Russell MM, Fan L, Wang YX, Gonzalez-Gutierrez G, van Kessel JC. Nucleic Acids Res 49 5967-5984 (2021)
  32. A DNA-Binding Protein Tunes Septum Placement during Bacillus subtilis Sporulation. Brown EE, Miller AK, Krieger IV, Otto RM, Sacchettini JC, Herman JK. J Bacteriol 201 e00287-19 (2019)
  33. Integrating genome sequence and structural data for statistical learning to predict transcription factor binding sites. Long P, Zhang L, Huang B, Chen Q, Liu H. Nucleic Acids Res 48 12604-12617 (2020)
  34. Pfit is a structurally novel Crohn's disease-associated superantigen. Liu L, Chen H, Brecher MB, Li Z, Wei B, Nandi B, Zhang J, Ling H, Winslow G, Braun J, Li H. PLoS Pathog 9 e1003837 (2013)
  35. research-article A simple mechanism for integration of quorum sensing and cAMP signalling in V. cholerae. Walker LM, Haycocks JRJ, van Kessel JC, Dalia TN, Dalia AB, Grainger DC. bioRxiv 2023.02.08.527633 (2023)
  36. A simple mechanism for integration of quorum sensing and cAMP signalling in Vibrio cholerae. Walker LM, Haycocks JRJ, Van Kessel JC, Dalia TN, Dalia AB, Grainger DC. Elife 12 RP86699 (2023)


Reviews citing this publication (19)

  1. The TetR family of regulators. Cuthbertson L, Nodwell JR. Microbiol Mol Biol Rev 77 440-475 (2013)
  2. Regulation of bacterial drug export systems. Grkovic S, Brown MH, Skurray RA. Microbiol Mol Biol Rev 66 671-701, table of contents (2002)
  3. Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. Tsai CJ, Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM, Nussinov R. J Mol Biol 383 281-291 (2008)
  4. Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. Molina-Henares AJ, Krell T, Eugenia Guazzaroni M, Segura A, Ramos JL. FEMS Microbiol Rev 30 157-186 (2006)
  5. The power of the pump: mechanisms of action of P-glycoprotein (ABCB1). Ambudkar SV, Kim IW, Sauna ZE. Eur J Pharm Sci 27 392-400 (2006)
  6. The underling mechanism of bacterial TetR/AcrR family transcriptional repressors. Deng W, Li C, Xie J. Cell Signal 25 1608-1613 (2013)
  7. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. Niu G, Chater KF, Tian Y, Zhang J, Tan H. FEMS Microbiol Rev 40 554-573 (2016)
  8. Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Schumacher MA, Brennan RG. Mol Microbiol 45 885-893 (2002)
  9. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens. Andersen JL, He GX, Kakarla P, K C R, Kumar S, Lakra WS, Mukherjee MM, Ranaweera I, Shrestha U, Tran T, Varela MF. Int J Environ Res Public Health 12 1487-1547 (2015)
  10. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective. Wong JJ, Lu J, Glover JN. Mol Microbiol 85 602-617 (2012)
  11. Hormonal control by A-factor of morphological development and secondary metabolism in Streptomyces. Horinouchi S, Beppu T. Proc Jpn Acad Ser B Phys Biol Sci 83 277-295 (2007)
  12. Efflux pumps of the resistance-nodulation-division family: a perspective of their structure, function, and regulation in gram-negative bacteria. Routh MD, Zalucki Y, Su CC, Zhang Q, Shafer WM, Yu EW. Adv Enzymol Relat Areas Mol Biol 77 109-146 (2011)
  13. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Dashtbani-Roozbehani A, Brown MH. Antibiotics (Basel) 10 1502 (2021)
  14. Insights into mechanisms of induction and ligands recognition in the transcriptional repressor EthR from Mycobacterium tuberculosis. Frénois F, Baulard AR, Villeret V. Tuberculosis (Edinb) 86 110-114 (2006)
  15. Advancements in the Development of Non-Nitrogen-Based Amphiphilic Antiseptics to Overcome Pathogenic Bacterial Resistance. Carden RG, Sommers KJ, Schrank CL, Leitgeb AJ, Feliciano JA, Wuest WM, Minbiole KPC. ChemMedChem 15 1974-1984 (2020)
  16. The Major Facilitator Superfamily and Antimicrobial Resistance Efflux Pumps of the ESKAPEE Pathogen Staphylococcus aureus. Stephen J, Salam F, Lekshmi M, Kumar SH, Varela MF. Antibiotics (Basel) 12 343 (2023)
  17. Structural insights into simocyclinone as an antibiotic, effector ligand and substrate. Buttner MJ, Schäfer M, Lawson DM, Maxwell A. FEMS Microbiol Rev 42 (2018)
  18. Applications and Tuning Strategies for Transcription Factor-Based Metabolite Biosensors. Zhou GJ, Zhang F. Biosensors (Basel) 13 428 (2023)
  19. Functional Roles of the Conserved Amino Acid Sequence Motif C, the Antiporter Motif, in Membrane Transporters of the Major Facilitator Superfamily. Varela MF, Ortiz-Alegria A, Lekshmi M, Stephen J, Kumar S. Biology (Basel) 12 1336 (2023)

Articles citing this publication (115)

  1. Quorum sensing controls biofilm formation in Vibrio cholerae through modulation of cyclic di-GMP levels and repression of vpsT. Waters CM, Lu W, Rabinowitz JD, Bassler BL. J Bacteriol 190 2527-2536 (2008)
  2. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Liu T, Ramesh A, Ma Z, Ward SK, Zhang L, George GN, Talaat AM, Sacchettini JC, Giedroc DP. Nat Chem Biol 3 60-68 (2007)
  3. Multidrug Efflux Pumps in Staphylococcus aureus: an Update. Costa SS, Viveiros M, Amaral L, Couto I. Open Microbiol J 7 59-71 (2013)
  4. Clinically relevant mutations that cause derepression of the Neisseria gonorrhoeae MtrC-MtrD-MtrE Efflux pump system confer different levels of antimicrobial resistance and in vivo fitness. Warner DM, Shafer WM, Jerse AE. Mol Microbiol 70 462-478 (2008)
  5. Molecular mechanism by which the nucleoid occlusion factor, SlmA, keeps cytokinesis in check. Tonthat NK, Arold ST, Pickering BF, Van Dyke MW, Liang S, Lu Y, Beuria TK, Margolin W, Schumacher MA. EMBO J 30 154-164 (2011)
  6. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Terán W, Felipe A, Segura A, Rojas A, Ramos JL, Gallegos MT. Antimicrob Agents Chemother 47 3067-3072 (2003)
  7. A comprehensive analysis of structural and sequence conservation in the TetR family transcriptional regulators. Yu Z, Reichheld SE, Savchenko A, Parkinson J, Davidson AR. J Mol Biol 400 847-864 (2010)
  8. Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. Nesbit AD, Giel JL, Rose JC, Kiley PJ. J Mol Biol 387 28-41 (2009)
  9. Structure of EthR in a ligand bound conformation reveals therapeutic perspectives against tuberculosis. Frénois F, Engohang-Ndong J, Locht C, Baulard AR, Villeret V. Mol Cell 16 301-307 (2004)
  10. Structural mechanism of the simultaneous binding of two drugs to a multidrug-binding protein. Schumacher MA, Miller MC, Brennan RG. EMBO J 23 2923-2930 (2004)
  11. Crystal structure of the TetR/CamR family repressor Mycobacterium tuberculosis EthR implicated in ethionamide resistance. Dover LG, Corsino PE, Daniels IR, Cocklin SL, Tatituri V, Besra GS, Fütterer K. J Mol Biol 340 1095-1105 (2004)
  12. Structural and mechanistic basis of zinc regulation across the E. coli Zur regulon. Gilston BA, Wang S, Marcus MD, Canalizo-Hernández MA, Swindell EP, Xue Y, Mondragón A, O'Halloran TV. PLoS Biol 12 e1001987 (2014)
  13. Vibrio cholerae AphA uses a novel mechanism for virulence gene activation that involves interaction with the LysR-type regulator AphB at the tcpPH promoter. Kovacikova G, Lin W, Skorupski K. Mol Microbiol 53 129-142 (2004)
  14. MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. Matsuo Y, Eda S, Gotoh N, Yoshihara E, Nakae T. FEMS Microbiol Lett 238 23-28 (2004)
  15. Crystal structure of a gamma-butyrolactone autoregulator receptor protein in Streptomyces coelicolor A3(2). Natsume R, Ohnishi Y, Senda T, Horinouchi S. J Mol Biol 336 409-419 (2004)
  16. Analysis of activator and repressor functions reveals the requirements for transcriptional control by LuxR, the master regulator of quorum sensing in Vibrio harveyi. van Kessel JC, Ulrich LE, Zhulin IB, Bassler BL. mBio 4 e00378-13 (2013)
  17. Toxin-antitoxin regulation: bimodal interaction of YefM-YoeB with paired DNA palindromes exerts transcriptional autorepression. Kedzierska B, Lian LY, Hayes F. Nucleic Acids Res 35 325-339 (2007)
  18. In vivo and in vitro evidence that TtgV is the specific regulator of the TtgGHI multidrug and solvent efflux pump of Pseudomonas putida. Rojas A, Segura A, Guazzaroni ME, Terán W, Hurtado A, Gallegos MT, Ramos JL. J Bacteriol 185 4755-4763 (2003)
  19. Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. Hamès C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gérard F, Martiel JL, Benlloch R, Parcy F, Müller CW. EMBO J 27 2628-2637 (2008)
  20. Characterization of the multidrug efflux regulator AcrR from Escherichia coli. Su CC, Rutherford DJ, Yu EW. Biochem Biophys Res Commun 361 85-90 (2007)
  21. Crystal structures of the BlaI repressor from Staphylococcus aureus and its complex with DNA: insights into transcriptional regulation of the bla and mec operons. Safo MK, Zhao Q, Ko TP, Musayev FN, Robinson H, Scarsdale N, Wang AH, Archer GL. J Bacteriol 187 1833-1844 (2005)
  22. Crystal structures of the Streptomyces coelicolor TetR-like protein ActR alone and in complex with actinorhodin or the actinorhodin biosynthetic precursor (S)-DNPA. Willems AR, Tahlan K, Taguchi T, Zhang K, Lee ZZ, Ichinose K, Junop MS, Nodwell JR. J Mol Biol 376 1377-1387 (2008)
  23. Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization. Murray DS, Schumacher MA, Brennan RG. J Biol Chem 279 14365-14371 (2004)
  24. The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442. de Eugenio LI, Galán B, Escapa IF, Maestro B, Sanz JM, García JL, Prieto MA. Environ Microbiol 12 1591-1603 (2010)
  25. The crystal structure of the TetR family transcriptional repressor SimR bound to DNA and the role of a flexible N-terminal extension in minor groove binding. Le TB, Schumacher MA, Lawson DM, Brennan RG, Buttner MJ. Nucleic Acids Res 39 9433-9447 (2011)
  26. Mutations define cross-talk between the N-terminal nucleotide-binding domain and transmembrane helix-2 of the yeast multidrug transporter Pdr5: possible conservation of a signaling interface for coupling ATP hydrolysis to drug transport. Sauna ZE, Bohn SS, Rutledge R, Dougherty MP, Cronin S, May L, Xia D, Ambudkar SV, Golin J. J Biol Chem 283 35010-35022 (2008)
  27. Structural and functional analysis of SmeT, the repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. Hernández A, Maté MJ, Sánchez-Díaz PC, Romero A, Rojo F, Martínez JL. J Biol Chem 284 14428-14438 (2009)
  28. Characterization of the multiple transferable resistance repressor, MtrR, from Neisseria gonorrhoeae. Hoffmann KM, Williams D, Shafer WM, Brennan RG. J Bacteriol 187 5008-5012 (2005)
  29. Integration host factor and LuxR synergistically bind DNA to coactivate quorum-sensing genes in Vibrio harveyi. Chaparian RR, Olney SG, Hustmyer CM, Rowe-Magnus DA, van Kessel JC. Mol Microbiol 101 823-840 (2016)
  30. Structural basis of cooperative DNA recognition by the plasmid conjugation factor, TraM. Wong JJ, Lu J, Edwards RA, Frost LS, Glover JN. Nucleic Acids Res 39 6775-6788 (2011)
  31. Atomic-level simulations of seeman DNA nanostructures: the paranemic crossover in salt solution. Maiti PK, Pascal TA, Vaidehi N, Heo J, Goddard WA. Biophys J 90 1463-1479 (2006)
  32. The IclR family of transcriptional activators and repressors can be defined by a single profile. Krell T, Molina-Henares AJ, Ramos JL. Protein Sci 15 1207-1213 (2006)
  33. Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators. Kahmann JD, Sass HJ, Allan MG, Seto H, Thompson CJ, Grzesiek S. EMBO J 22 1824-1834 (2003)
  34. A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius. Wang K, Sybers D, Maklad HR, Lemmens L, Lewyllie C, Zhou X, Schult F, Bräsen C, Siebers B, Valegård K, Lindås AC, Peeters E. Nat Commun 10 1542 (2019)
  35. Structural and functional analysis of the transcriptional regulator Rv3066 of Mycobacterium tuberculosis. Bolla JR, Do SV, Long F, Dai L, Su CC, Lei HT, Chen X, Gerkey JE, Murphy DC, Rajashankar KR, Zhang Q, Yu EW. Nucleic Acids Res 40 9340-9355 (2012)
  36. Structures of BmrR-drug complexes reveal a rigid multidrug binding pocket and transcription activation through tyrosine expulsion. Newberry KJ, Huffman JL, Miller MC, Vazquez-Laslop N, Neyfakh AA, Brennan RG. J Biol Chem 283 26795-26804 (2008)
  37. The role of the TetR-family transcriptional regulator Aur1R in negative regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Novakova R, Kutas P, Feckova L, Kormanec J. Microbiology (Reading) 156 2374-2383 (2010)
  38. Structures of the TetR-like simocyclinone efflux pump repressor, SimR, and the mechanism of ligand-mediated derepression. Le TB, Stevenson CE, Fiedler HP, Maxwell A, Lawson DM, Buttner MJ. J Mol Biol 408 40-56 (2011)
  39. An unusual repressor controls the expression of a crucial nicotine-degrading gene cluster in Pseudomonas putida S16. Wang L, Tang H, Yu H, Yao Y, Xu P. Mol Microbiol 91 1252-1269 (2014)
  40. Optimization of the palindromic order of the TtgR operator enhances binding cooperativity. Krell T, Terán W, Mayorga OL, Rivas G, Jiménez M, Daniels C, Molina-Henares AJ, Martínez-Bueno M, Gallegos MT, Ramos JL. J Mol Biol 369 1188-1199 (2007)
  41. Scaffold-Hopping of Multicationic Amphiphiles Yields Three New Classes of Antimicrobials. Mitchell MA, Iannetta AA, Jennings MC, Fletcher MH, Wuest WM, Minbiole KP. Chembiochem 16 2299-2303 (2015)
  42. The zinc efflux activator SczA protects Streptococcus pneumoniae serotype 2 D39 from intracellular zinc toxicity. Martin JE, Edmonds KA, Bruce KE, Campanello GC, Eijkelkamp BA, Brazel EB, McDevitt CA, Winkler ME, Giedroc DP. Mol Microbiol 104 636-651 (2017)
  43. QacR-cation recognition is mediated by a redundancy of residues capable of charge neutralization. Peters KM, Schuman JT, Skurray RA, Brown MH, Brennan RG, Schumacher MA. Biochemistry 47 8122-8129 (2008)
  44. The pqrAB operon is responsible for paraquat resistance in Streptomyces coelicolor. Cho YH, Kim EJ, Chung HJ, Choi JH, Chater KF, Ahn BE, Shin JH, Roe JH. J Bacteriol 185 6756-6763 (2003)
  45. A dual role in regulation and toxicity for the disordered N-terminus of the toxin GraT. Talavera A, Tamman H, Ainelo A, Konijnenberg A, Hadži S, Sobott F, Garcia-Pino A, Hõrak R, Loris R. Nat Commun 10 972 (2019)
  46. Regulation of RamA by RamR in Salmonella enterica serovar Typhimurium: isolation of a RamR superrepressor. Ricci V, Busby SJ, Piddock LJ. Antimicrob Agents Chemother 56 6037-6040 (2012)
  47. Jungle Express is a versatile repressor system for tight transcriptional control. Ruegg TL, Pereira JH, Chen JC, DeGiovanni A, Novichkov P, Mutalik VK, Tomaleri GP, Singer SW, Hillson NJ, Simmons BA, Adams PD, Thelen MP. Nat Commun 9 3617 (2018)
  48. Structural and functional characterization of a ketosteroid transcriptional regulator of Mycobacterium tuberculosis. Crowe AM, Stogios PJ, Casabon I, Evdokimova E, Savchenko A, Eltis LD. J Biol Chem 290 872-882 (2015)
  49. Structure to function of an α-glucan metabolic pathway that promotes Listeria monocytogenes pathogenesis. Light SH, Cahoon LA, Halavaty AS, Freitag NE, Anderson WF. Nat Microbiol 2 16202 (2016)
  50. The fusidic acid stimulon of Staphylococcus aureus. Delgado A, Zaman S, Muthaiyan A, Nagarajan V, Elasri MO, Wilkinson BJ, Gustafson JE. J Antimicrob Chemother 62 1207-1214 (2008)
  51. The purine repressor of Bacillus subtilis: a novel combination of domains adapted for transcription regulation. Sinha SC, Krahn J, Shin BS, Tomchick DR, Zalkin H, Smith JL. J Bacteriol 185 4087-4098 (2003)
  52. Inducer-modulated cooperative binding of the tetrameric CggR repressor to operator DNA. Zorrilla S, Doan T, Alfonso C, Margeat E, Ortega A, Rivas G, Aymerich S, Royer CA, Declerck N. Biophys J 92 3215-3227 (2007)
  53. Structural Basis for the Regulation of the MmpL Transporters of Mycobacterium tuberculosis. Delmar JA, Chou TH, Wright CC, Licon MH, Doh JK, Radhakrishnan A, Kumar N, Lei HT, Bolla JR, Rajashankar KR, Su CC, Purdy GE, Yu EW. J Biol Chem 290 28559-28574 (2015)
  54. Structural activation of the transcriptional repressor EthR from Mycobacterium tuberculosis by single amino acid change mimicking natural and synthetic ligands. Carette X, Blondiaux N, Willery E, Hoos S, Lecat-Guillet N, Lens Z, Wohlkönig A, Wintjens R, Soror SH, Frénois F, Dirié B, Villeret V, England P, Lippens G, Deprez B, Locht C, Willand N, Baulard AR. Nucleic Acids Res 40 3018-3030 (2012)
  55. The gamma-butyrolactone receptors BulR1 and BulR2 of Streptomyces tsukubaensis: tacrolimus (FK506) and butyrolactone synthetases production control. Salehi-Najafabadi Z, Barreiro C, Rodríguez-García A, Cruz A, López GE, Martín JF. Appl Microbiol Biotechnol 98 4919-4936 (2014)
  56. Genome-scale analysis reveals a role for NdgR in the thiol oxidative stress response in Streptomyces coelicolor. Kim JN, Jeong Y, Yoo JS, Roe JH, Cho BK, Kim BG. BMC Genomics 16 116 (2015)
  57. Regulation of alkane degradation pathway by a TetR family repressor via an autoregulation positive feedback mechanism in a Gram-positive Dietzia bacterium. Liang JL, Nie Y, Wang M, Xiong G, Wang YP, Maser E, Wu XL. Mol Microbiol 99 338-359 (2016)
  58. Bacillus subtilis CodY operators contain overlapping CodY binding sites. Wray LV, Fisher SH. J Bacteriol 193 4841-4848 (2011)
  59. AtuR is a repressor of acyclic terpene utilization (Atu) gene cluster expression and specifically binds to two 13 bp inverted repeat sequences of the atuA-atuR intergenic region. Förster-Fromme K, Jendrossek D. FEMS Microbiol Lett 308 166-174 (2010)
  60. Epoxide-mediated CifR repression of cif gene expression utilizes two binding sites in Pseudomonas aeruginosa. Ballok AE, Bahl CD, Dolben EL, Lindsay AK, St Laurent JD, Hogan DA, Madden DR, O'Toole GA. J Bacteriol 194 5315-5324 (2012)
  61. Regulatory Mechanism of Nicotine Degradation in Pseudomonas putida. Hu H, Wang L, Wang W, Wu G, Tao F, Xu P, Deng Z, Tang H. mBio 10 e00602-19 (2019)
  62. Structural basis for interaction between Mycobacterium smegmatis Ms6564, a TetR family master regulator, and its target DNA. Yang S, Gao Z, Li T, Yang M, Zhang T, Dong Y, He ZG. J Biol Chem 288 23687-23695 (2013)
  63. The TetR-type transcriptional repressor RolR from Corynebacterium glutamicum regulates resorcinol catabolism by binding to a unique operator, rolO. Li T, Zhao K, Huang Y, Li D, Jiang CY, Zhou N, Fan Z, Liu SJ. Appl Environ Microbiol 78 6009-6016 (2012)
  64. Structural analysis of the regulatory mechanism of MarR protein Rv2887 in M. tuberculosis. Gao YR, Li DF, Fleming J, Zhou YF, Liu Y, Deng JY, Zhou L, Zhou J, Zhu GF, Zhang XE, Wang DC, Bi LJ. Sci Rep 7 6471 (2017)
  65. Structural basis of operator sites recognition and effector binding in the TetR family transcription regulator FadR. Yeo HK, Park YW, Lee JY. Nucleic Acids Res 45 4244-4254 (2017)
  66. VceR regulates the vceCAB drug efflux pump operon of Vibrio cholerae by alternating between mutually exclusive conformations that bind either drugs or promoter DNA. Borges-Walmsley MI, Du D, Du D, McKeegan KS, Sharples GJ, Walmsley AR. J Mol Biol 349 387-400 (2005)
  67. Equilibrium binding and kinetic characterization of putative tetracycline repressor family transcription regulator Fad35R from Mycobacterium tuberculosis. Anand S, Singh V, Singh AK, Mittal M, Datt M, Subramani B, Kumaran S. FEBS J 279 3214-3228 (2012)
  68. Functional consequences of substitution mutations in MepR, a repressor of the Staphylococcus aureus MepA multidrug efflux pump gene. Schindler BD, Seo SM, Jacinto PL, Kumaraswami M, Birukou I, Brennan RG, Kaatz GW. J Bacteriol 195 3651-3662 (2013)
  69. Ligand binding specificity of RutR, a member of the TetR family of transcription regulators in Escherichia coli. Nguyen Le Minh P, de Cima S, Bervoets I, Maes D, Rubio V, Charlier D. FEBS Open Bio 5 76-84 (2015)
  70. Structural mechanism of signal transduction between the RNA-binding domain and the phosphotransferase system regulation domain of the LicT antiterminator. Déméné H, Ducat T, De Guillen K, Birck C, Aymerich S, Kochoyan M, Declerck N. J Biol Chem 283 30838-30849 (2008)
  71. The complex formed between a synthetic RNA aptamer and the transcription repressor TetR is a structural and functional twin of the operator DNA-TetR regulator complex. Grau FC, Jaeger J, Groher F, Suess B, Muller YA. Nucleic Acids Res 48 3366-3378 (2020)
  72. A single acidic residue can guide binding site selection but does not govern QacR cationic-drug affinity. Peters KM, Brooks BE, Schumacher MA, Skurray RA, Brennan RG, Brown MH. PLoS One 6 e15974 (2011)
  73. Binding site profiles and N-terminal minor groove interactions of the master quorum-sensing regulator LuxR enable flexible control of gene activation and repression. Zhang J, Liu B, Gu D, Hao Y, Chen M, Ma Y, Zhou X, Reverter D, Zhang Y, Wang Q. Nucleic Acids Res 49 3274-3293 (2021)
  74. Discovery of potent inhibitors targeting Vibrio harveyi LuxR through shape and e-pharmacophore based virtual screening and its biological evaluation. Rajamanikandan S, Jeyakanthan J, Srinivasan P. Microb Pathog 103 40-56 (2017)
  75. Streptomyces coelicolor XdhR is a direct target of (p)ppGpp that controls expression of genes encoding xanthine dehydrogenase to promote purine salvage. Sivapragasam S, Grove A. Mol Microbiol 100 701-718 (2016)
  76. Comparative study between macrolide regulatory proteins MphR(A) and MphR(E) in ligand identification and DNA binding based on the rapid in vitro detection system. Cheng Y, Yang S, Jia M, Zhao L, Hou C, You X, Zhao J, Chen A. Anal Bioanal Chem 408 1623-1631 (2016)
  77. Conformational equilibrium defines the variable induction of the multidrug-binding transcriptional repressor QacR. Takeuchi K, Imai M, Shimada I. Proc Natl Acad Sci U S A 116 19963-19972 (2019)
  78. DNA Binding and Sensor Specificity of FarR, a Novel TetR Family Regulator Required for Induction of the Fatty Acid Efflux Pump FarE in Staphylococcus aureus. Alnaseri H, Kuiack RC, Ferguson KA, Schneider JET, Heinrichs DE, McGavin MJ. J Bacteriol 201 e00602-18 (2019)
  79. Mutation in the sdeS gene promotes expression of the sdeAB efflux pump genes and multidrug resistance in Serratia marcescens. Maseda H, Hashida Y, Shirai A, Omasa T, Nakae T. Antimicrob Agents Chemother 55 2922-2926 (2011)
  80. SCO4008, a putative TetR transcriptional repressor from Streptomyces coelicolor A3(2), regulates transcription of sco4007 by multidrug recognition. Hayashi T, Tanaka Y, Sakai N, Okada U, Yao M, Watanabe N, Tamura T, Tanaka I. J Mol Biol 425 3289-3300 (2013)
  81. Structure and function of a TetR family transcriptional regulator, SbtR, from thermus thermophilus HB8. Agari Y, Sakamoto K, Yutani K, Kuramitsu S, Shinkai A. Proteins 81 1166-1178 (2013)
  82. Structure of AmtR, the global nitrogen regulator of Corynebacterium glutamicum, in free and DNA-bound forms. Palanca C, Rubio V. FEBS J 283 1039-1059 (2016)
  83. A DNA-binding protein defines the precise region of chromosome capture during Bacillus sporulation. Miller AK, Brown EE, Mercado BT, Herman JK. Mol Microbiol 99 111-122 (2016)
  84. Crystal structure of the Mycobacterium tuberculosis transcriptional regulator Rv0302. Chou TH, Delmar JA, Wright CC, Kumar N, Radhakrishnan A, Doh JK, Licon MH, Bolla JR, Lei HT, Rajashankar KR, Su CC, Purdy GE, Yu EW. Protein Sci 24 1942-1955 (2015)
  85. Crystal structure of the P2 C-repressor: a binder of non-palindromic direct DNA repeats. Massad T, Skaar K, Nilsson H, Damberg P, Henriksson-Peltola P, Haggård-Ljungquist E, Högbom M, Stenmark P. Nucleic Acids Res 38 7778-7790 (2010)
  86. Recognition of dual symmetry by the controller protein C.Esp1396I based on the structure of the transcriptional activation complex. McGeehan JE, Ball NJ, Streeter SD, Thresh SJ, Kneale GG. Nucleic Acids Res 40 4158-4167 (2012)
  87. Structures of Neisseria gonorrhoeae MtrR-operator complexes reveal molecular mechanisms of DNA recognition and antibiotic resistance-conferring clinical mutations. Beggs GA, Ayala JC, Kavanaugh LG, Read TD, Hooks GM, Schumacher MA, Shafer WM, Brennan RG. Nucleic Acids Res 49 4155-4170 (2021)
  88. Thermodynamics of cooperative DNA recognition at a replication origin and transcription regulatory site. Dellarole M, Sánchez IE, de Prat Gay G. Biochemistry 49 10277-10286 (2010)
  89. A real-time analysis of QacR-regulated multidrug resistance in Staphylococcus aureus. Galluzzi L, Virtanen P, Karp M. Biochem Biophys Res Commun 301 24-30 (2003)
  90. Characterization of a two-gene operon epeRA involved in multidrug resistance in Streptomyces clavuligerus. Rodríguez-García A, Santamarta I, Pérez-Redondo R, Martín JF, Liras P. Res Microbiol 157 559-568 (2006)
  91. Crystal and solution studies reveal that the transcriptional regulator AcnR of Corynebacterium glutamicum is regulated by citrate-Mg2+ binding to a non-canonical pocket. García-Nafría J, Baumgart M, Turkenburg JP, Wilkinson AJ, Bott M, Wilson KS. J Biol Chem 288 15800-15812 (2013)
  92. Mutations within the mepA operator affect binding of the MepR regulatory protein and its induction by MepA substrates in Staphylococcus aureus. Schindler BD, Seo SM, Birukou I, Brennan RG, Kaatz GW. J Bacteriol 197 1104-1114 (2015)
  93. Physical basis of the inducer-dependent cooperativity of the Central glycolytic genes Repressor/DNA complex. Chaix D, Ferguson ML, Atmanene C, Van Dorsselaer A, Sanglier-Cianférani S, Royer CA, Declerck N. Nucleic Acids Res 38 5944-5957 (2010)
  94. Re-visiting protein-centric two-tier classification of existing DNA-protein complexes. Malhotra S, Sowdhamini R. BMC Bioinformatics 13 165 (2012)
  95. Structural insights into the EthR-DNA interaction using native mass spectrometry. Shiu-Hin Chan D, Seetoh WG, McConnell BN, Matak-Vinković D, Thomas SE, Mendes V, Blaszczyk M, Coyne AG, Blundell TL, Abell C. Chem Commun (Camb) 53 3527-3530 (2017)
  96. Crystal structure of Pseudomonas aeruginosa PA2196, a putative TetR family transcriptional repressor. Kang Y, Choe J. Biochem Biophys Res Commun 410 52-56 (2011)
  97. Dynamic equilibrium on DNA defines transcriptional regulation of a multidrug binding transcriptional repressor, LmrR. Takeuchi K, Imai M, Shimada I. Sci Rep 7 267 (2017)
  98. Engineering DNA recognition and allosteric response properties of TetR family proteins by using a module-swapping strategy. Dimas RP, Jordan BR, Jiang XL, Martini C, Glavy JS, Patterson DP, Morcos F, Chan CTY. Nucleic Acids Res 47 8913-8925 (2019)
  99. Structure and regulatory targets of SCO3201, a highly promiscuous TetR-like regulator of Streptomyces coelicolor M145. Xu D, Waack P, Zhang Q, Werten S, Hinrichs W, Virolle MJ. Biochem Biophys Res Commun 450 513-518 (2014)
  100. The AibR-isovaleryl coenzyme A regulator and its DNA binding site - a model for the regulation of alternative de novo isovaleryl coenzyme A biosynthesis in Myxococcus xanthus. Bock T, Volz C, Hering V, Scrima A, Müller R, Blankenfeldt W. Nucleic Acids Res 45 2166-2178 (2017)
  101. Crystal structure of a putative transcriptional regulator SCO0520 from Streptomyces coelicolor A3(2) reveals an unusual dimer among TetR family proteins. Filippova EV, Chruszcz M, Cymborowski M, Gu J, Savchenko A, Edwards A, Minor W. J Struct Funct Genomics 12 149-157 (2011)
  102. Genome diversity of the TetR family of transcriptional regulators in a metal-reducing bacterial family Geobacteraceae and other microbial species. Krushkal J, Sontineni S, Leang C, Qu Y, Adkins RM, Lovley DR. OMICS 15 495-506 (2011)
  103. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression. Brunwasser-Meirom M, Pollak Y, Goldberg S, Levy L, Atar O, Amit R. Nat Commun 7 10407 (2016)
  104. Crystal structure of Pseudomonas aeruginosa transcriptional regulator PA2196 bound to its operator DNA. Kim Y, Kang Y, Choe J. Biochem Biophys Res Commun 440 317-321 (2013)
  105. Nonsynonymous Mutations in fepR Are Associated with Adaptation of Listeria monocytogenes and Other Listeria spp. to Low Concentrations of Benzalkonium Chloride but Do Not Increase Survival of L. monocytogenes and Other Listeria spp. after Exposure to Benzalkonium Chloride Concentrations Recommended for Use in Food Processing Environments. Bolten S, Harrand AS, Skeens J, Wiedmann M. Appl Environ Microbiol 88 e0048622 (2022)
  106. Structural analysis of the interaction between spiroisoxazoline SMARt-420 and the Mycobacterium tuberculosis repressor EthR2. Wohlkönig A, Remaut H, Moune M, Tanina A, Meyer F, Desroses M, Steyaert J, Willand N, Baulard AR, Wintjens R. Biochem Biophys Res Commun 487 403-408 (2017)
  107. The length of glycine-rich linker in DNA-binding domain is critical for optimal functioning of quorum-sensing master regulatory protein HapR. Singh NS, Kachhap S, Singh R, Mishra RC, Singh B, Raychaudhuri S. Mol Genet Genomics 289 1171-1182 (2014)
  108. Crystal Structure of Fad35R from Mycobacterium tuberculosis H37Rv in the Apo-State. Singh AK, Manjasetty B, Balasubramani GL, Koul S, Kaushik A, Ekka MK, Singh V, Kumaran S. PLoS One 10 e0124333 (2015)
  109. New Membrane Active Antibacterial and Antiviral Amphiphiles Derived from Heterocyclic Backbone of Pyridinium-4-Aldoxime. Crnčević D, Krce L, Cvitković M, Brkljača Z, Sabljić A, Vuko E, Primožič I, Odžak R, Šprung M. Pharmaceuticals (Basel) 15 775 (2022)
  110. Structural and genomic DNA analysis of the putative TetR transcriptional repressor SCO7518 from Streptomyces coelicolor A3(2). Hayashi T, Tanaka Y, Sakai N, Okada U, Yao M, Watanabe N, Tamura T, Tanaka I. FEBS Lett 588 4311-4318 (2014)
  111. Structural basis for the transcriptional repressor NicR2 in nicotine degradation from Pseudomonas. Zhang K, Wu G, Tang H, Hu C, Shi T, Xu P. Mol Microbiol 103 165-180 (2017)
  112. Cryo-EM structure of antibacterial efflux transporter QacA from Staphylococcus aureus reveals a novel extracellular loop with allosteric role. Majumder P, Ahmed S, Ahuja P, Athreya A, Ranjan R, Penmatsa A. EMBO J 42 e113418 (2023)
  113. Synthesis and Biological Evaluation of 3-Amidoquinuclidine Quaternary Ammonium Compounds as New Soft Antibacterial Agents. Odžak R, Crnčević D, Sabljić A, Primožič I, Šprung M. Pharmaceuticals (Basel) 16 187 (2023)
  114. Crystallization and preliminary X-ray diffraction analysis of the TetR-family transcriptional repressor YhgD from Bacillus halodurans. Yeo HK, Park YW, Kang J, Lee JY. Acta Crystallogr Sect F Struct Biol Cryst Commun 69 532-534 (2013)
  115. Structures of the DarR transcription regulator reveal unique modes of second messenger and DNA binding. Schumacher MA, Lent N, Chen VB, Salinas R. Nat Commun 14 7239 (2023)