1jsy Citations

Scaffolding functions of arrestin-2 revealed by crystal structure and mutagenesis.

Biochemistry 41 3321-8 (2002)
Cited: 119 times
EuropePMC logo PMID: 11876640

Abstract

Arrestin binding to activated, phosphorylated G protein-coupled receptors (GPCRs) represents a critical step in regulation of light- and hormone-dependent signaling. Nonvisual arrestins, such as arrestin-2, interact with multiple proteins for the purpose of propagating and terminating signaling events. Using a combination of X-ray crystallography, molecular modeling, mutagenesis, and binding analysis, we reveal structural features of arrestin-2 that may enable simultaneous binding to phosphorylated receptor, SH3 domains, phosphoinositides, and beta-adaptin. The structure of full-length arrestin-2 thus provides a uniquely oriented scaffold for assembly of multiple, diverse molecules involved in GPCR signal transduction.

Reviews - 1jsy mentioned but not cited (5)

  1. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Peterson YK, Luttrell LM. Pharmacol Rev 69 256-297 (2017)
  2. Role of β-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Kang DS, Tian X, Benovic JL. Curr Opin Cell Biol 27 63-71 (2014)
  3. Structural Basis of Arrestin-Dependent Signal Transduction. Chen Q, Iverson TM, Gurevich VV. Trends Biochem Sci 43 412-423 (2018)
  4. Arrestins: structural disorder creates rich functionality. Gurevich VV, Gurevich EV, Uversky VN. Protein Cell 9 986-1003 (2018)
  5. New Structural Perspectives in G Protein-Coupled Receptor-Mediated Src Family Kinase Activation. Berndt S, Liebscher I. Int J Mol Sci 22 6489 (2021)

Articles - 1jsy mentioned but not cited (15)

  1. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ. Nature 497 137-141 (2013)
  2. Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. Zhan X, Gimenez LE, Gurevich VV, Spiller BW. J Mol Biol 406 467-478 (2011)
  3. Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. Kang DS, Kern RC, Puthenveedu MA, von Zastrow M, Williams JC, Benovic JL. J Biol Chem 284 29860-29872 (2009)
  4. Structural basis of arrestin-3 activation and signaling. Chen Q, Perry NA, Vishnivetskiy SA, Berndt S, Gilbert NC, Zhuo Y, Singh PK, Tholen J, Ohi MD, Gurevich EV, Brautigam CA, Klug CS, Gurevich VV, Iverson TM. Nat Commun 8 1427 (2017)
  5. Mapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-immobilized peptide arrays. Baillie GS, Adams DR, Bhari N, Houslay TM, Vadrevu S, Meng D, Li X, Dunlop A, Milligan G, Bolger GB, Klussmann E, Houslay MD. Biochem J 404 71-80 (2007)
  6. The arrestin fold: variations on a theme. Aubry L, Guetta D, Klein G. Curr Genomics 10 133-142 (2009)
  7. A single mutation in arrestin-2 prevents ERK1/2 activation by reducing c-Raf1 binding. Coffa S, Breitman M, Spiller BW, Gurevich VV. Biochemistry 50 6951-6958 (2011)
  8. How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling. Latorraca NR, Masureel M, Hollingsworth SA, Heydenreich FM, Suomivuori CM, Brinton C, Townshend RJL, Bouvier M, Kobilka BK, Dror RO. Cell 183 1813-1825.e18 (2020)
  9. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Sente A, Peer R, Srivastava A, Baidya M, Lesk AM, Balaji S, Shukla AK, Babu MM, Flock T. Nat Struct Mol Biol 25 538-545 (2018)
  10. β-Arrestin-1 mediates the TCR-triggered re-routing of distal receptors to the immunological synapse by a PKC-mediated mechanism. Fernández-Arenas E, Calleja E, Martínez-Martín N, Gharbi SI, Navajas R, García-Medel N, Penela P, Alcamí A, Mayor F, Albar JP, Alarcón B. EMBO J 33 559-577 (2014)
  11. Crystal Structure of β-Arrestin 2 in Complex with CXCR7 Phosphopeptide. Min K, Yoon HJ, Park JY, Baidya M, Dwivedi-Agnihotri H, Maharana J, Chaturvedi M, Chung KY, Shukla AK, Lee HH. Structure 28 1014-1023.e4 (2020)
  12. GPCR-mediated β-arrestin activation deconvoluted with single-molecule precision. Asher WB, Terry DS, Gregorio GGA, Kahsai AW, Borgia A, Xie B, Modak A, Zhu Y, Jang W, Govindaraju A, Huang LY, Inoue A, Lambert NA, Gurevich VV, Shi L, Lefkowitz RJ, Blanchard SC, Javitch JA. Cell 185 1661-1675.e16 (2022)
  13. Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding. Fujieda N, Schätti J, Stuttfeld E, Ohkubo K, Maier T, Fukuzumi S, Ward TR. Chem Sci 6 4060-4065 (2015)
  14. Distinct activation mechanisms of β-arrestin-1 revealed by 19F NMR spectroscopy. Zhai R, Wang Z, Chai Z, Niu X, Li C, Jin C, Hu Y. Nat Commun 14 7865 (2023)
  15. Surveying nonvisual arrestins reveals allosteric interactions between functional sites. Seckler JM, Robinson EN, Lewis SJ, Grossfield A. Proteins 91 99-107 (2023)


Reviews citing this publication (36)

  1. Beta-arrestins and cell signaling. DeWire SM, Ahn S, Lefkowitz RJ, Shenoy SK. Annu Rev Physiol 69 483-510 (2007)
  2. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. Pharmacol Rev 61 119-161 (2009)
  3. Regulation of receptor trafficking by GRKs and arrestins. Moore CA, Milano SK, Benovic JL. Annu Rev Physiol 69 451-482 (2007)
  4. Tickets to ride: selecting cargo for clathrin-regulated internalization. Traub LM. Nat Rev Mol Cell Biol 10 583-596 (2009)
  5. Adaptors for clathrin coats: structure and function. Owen DJ, Collins BM, Evans PR. Annu Rev Cell Dev Biol 20 153-191 (2004)
  6. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Gurevich VV, Gurevich EV. Pharmacol Ther 110 465-502 (2006)
  7. The molecular acrobatics of arrestin activation. Gurevich VV, Gurevich EV. Trends Pharmacol Sci 25 105-111 (2004)
  8. Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection. Traub LM. J Cell Biol 163 203-208 (2003)
  9. Regulation of Clathrin-Mediated Endocytosis. Mettlen M, Chen PH, Srinivasan S, Danuser G, Schmid SL. Annu Rev Biochem 87 871-896 (2018)
  10. Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane. Traub LM. Biochim Biophys Acta 1744 415-437 (2005)
  11. The N-formyl peptide receptors and the anaphylatoxin C5a receptors: an overview. Rabiet MJ, Huet E, Boulay F. Biochimie 89 1089-1106 (2007)
  12. The functional cycle of visual arrestins in photoreceptor cells. Gurevich VV, Hanson SM, Song X, Vishnivetskiy SA, Gurevich EV. Prog Retin Eye Res 30 405-430 (2011)
  13. Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Luttrell LM. Mol Biotechnol 39 239-264 (2008)
  14. β-arrestins and G protein-coupled receptor trafficking. Tian X, Kang DS, Benovic JL. Handb Exp Pharmacol 219 173-186 (2014)
  15. Structural determinants of arrestin functions. Gurevich VV, Gurevich EV. Prog Mol Biol Transl Sci 118 57-92 (2013)
  16. Molecular structures of coat and coat-associated proteins: function follows form. Brett TJ, Traub LM. Curr Opin Cell Biol 18 395-406 (2006)
  17. Extensive shape shifting underlies functional versatility of arrestins. Gurevich VV, Gurevich EV. Curr Opin Cell Biol 27 1-9 (2014)
  18. Molecular Mechanisms of GPCR Signaling: A Structural Perspective. Gurevich VV, Gurevich EV. Int J Mol Sci 18 E2519 (2017)
  19. Custom-designed proteins as novel therapeutic tools? The case of arrestins. Gurevich VV, Gurevich EV. Expert Rev Mol Med 12 e13 (2010)
  20. Beta-arrestins: multifunctional cellular mediators. Barki-Harrington L, Rockman HA. Physiology (Bethesda) 23 17-22 (2008)
  21. Receptor-Arrestin Interactions: The GPCR Perspective. Seyedabadi M, Gharghabi M, Gurevich EV, Gurevich VV. Biomolecules 11 218 (2021)
  22. Arrestins: Critical Players in Trafficking of Many GPCRs. Gurevich VV, Gurevich EV. Prog Mol Biol Transl Sci 132 1-14 (2015)
  23. Weak Molecular Interactions in Clathrin-Mediated Endocytosis. Smith SM, Baker M, Halebian M, Smith CJ. Front Mol Biosci 4 72 (2017)
  24. The structural basis of the arrestin binding to GPCRs. Gurevich VV, Gurevich EV. Mol Cell Endocrinol 484 34-41 (2019)
  25. Molecular mechanism of phosphorylation-dependent arrestin activation. Ostermaier MK, Schertler GF, Standfuss J. Curr Opin Struct Biol 29 143-151 (2014)
  26. Plethora of functions packed into 45 kDa arrestins: biological implications and possible therapeutic strategies. Gurevich VV, Gurevich EV. Cell Mol Life Sci 76 4413-4421 (2019)
  27. Identifying protein interactors in gonadotropin action. Dias JA, Nechamen CA, Atari R. Endocrine 26 241-247 (2005)
  28. Hedgehog signaling: an Arrestin connection? Kalderon D. Curr Biol 15 R175-8 (2005)
  29. α-Arrestins and Their Functions: From Yeast to Human Health. Zbieralski K, Wawrzycka D. Int J Mol Sci 23 4988 (2022)
  30. β-Arrestins: multifunctional signaling adaptors in type 2 diabetes. Feng X, Wang W, Liu J, Liu Y. Mol Biol Rep 38 2517-2528 (2011)
  31. Many faces of the GPCR-arrestin interaction. Kim K, Chung KY. Arch Pharm Res 43 890-899 (2020)
  32. MicroRNAs Regulating Cytoskeleton Dynamics, Endocytosis, and Cell Motility-A Link Between Neurodegeneration and Cancer? Gerasymchuk D, Hubiernatorova A, Domanskyi A. Front Neurol 11 549006 (2020)
  33. Arrestins: Introducing Signaling Bias Into Multifunctional Proteins. Gurevich VV, Chen Q, Gurevich EV. Prog Mol Biol Transl Sci 160 47-61 (2018)
  34. Structural Basis of Arrestin Selectivity for Active Phosphorylated G Protein-Coupled Receptors. Karnam PC, Vishnivetskiy SA, Gurevich VV. Int J Mol Sci 22 12481 (2021)
  35. Solo vs. Chorus: Monomers and Oligomers of Arrestin Proteins. Gurevich VV, Gurevich EV. Int J Mol Sci 23 7253 (2022)
  36. Targeting arrestin interactions with its partners for therapeutic purposes. Gurevich VV, Gurevich EV. Adv Protein Chem Struct Biol 121 169-197 (2020)

Articles citing this publication (63)

  1. Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly. Schmid EM, Ford MG, Burtey A, Praefcke GJ, Peak-Chew SY, Mills IG, Benmerah A, McMahon HT. PLoS Biol 4 e262 (2006)
  2. Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly. Edeling MA, Mishra SK, Keyel PA, Steinhauser AL, Collins BM, Roth R, Heuser JE, Owen DJ, Traub LM. Dev Cell 10 329-342 (2006)
  3. Crystal structure of cone arrestin at 2.3A: evolution of receptor specificity. Sutton RB, Vishnivetskiy SA, Robert J, Hanson SM, Raman D, Knox BE, Kono M, Navarro J, Gurevich VV. J Mol Biol 354 1069-1080 (2005)
  4. Monomeric rhodopsin is sufficient for normal rhodopsin kinase (GRK1) phosphorylation and arrestin-1 binding. Bayburt TH, Vishnivetskiy SA, McLean MA, Morizumi T, Huang CC, Tesmer JJ, Ernst OP, Sligar SG, Gurevich VV. J Biol Chem 286 1420-1428 (2011)
  5. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Shi H, Rojas R, Bonifacino JS, Hurley JH. Nat Struct Mol Biol 13 540-548 (2006)
  6. Epsin 1 is a polyubiquitin-selective clathrin-associated sorting protein. Hawryluk MJ, Keyel PA, Mishra SK, Watkins SC, Heuser JE, Traub LM. Traffic 7 262-281 (2006)
  7. How does arrestin assemble MAPKs into a signaling complex? Song X, Coffa S, Fu H, Gurevich VV. J Biol Chem 284 685-695 (2009)
  8. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, Xiao KH, Wang JY, Sun JP. Nat Commun 6 8202 (2015)
  9. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins. Vishnivetskiy SA, Gimenez LE, Francis DJ, Hanson SM, Hubbell WL, Klug CS, Gurevich VV. J Biol Chem 286 24288-24299 (2011)
  10. The active conformation of beta-arrestin1: direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. Nobles KN, Guan Z, Xiao K, Oas TG, Lefkowitz RJ. J Biol Chem 282 21370-21381 (2007)
  11. Transition of arrestin into the active receptor-binding state requires an extended interdomain hinge. Vishnivetskiy SA, Hirsch JA, Velez MG, Gurevich YV, Gurevich VV. J Biol Chem 277 43961-43967 (2002)
  12. Homo- and hetero-oligomerization of beta-arrestins in living cells. Storez H, Scott MG, Issafras H, Burtey A, Benmerah A, Muntaner O, Piolot T, Tramier M, Coppey-Moisan M, Bouvier M, Labbé-Jullié C, Marullo S. J Biol Chem 280 40210-40215 (2005)
  13. The role of arrestin alpha-helix I in receptor binding. Vishnivetskiy SA, Francis D, Van Eps N, Kim M, Hanson SM, Klug CS, Hubbell WL, Gurevich VV. J Mol Biol 395 42-54 (2010)
  14. Ubiquitin ligase parkin promotes Mdm2-arrestin interaction but inhibits arrestin ubiquitination. Ahmed MR, Zhan X, Song X, Kook S, Gurevich VV, Gurevich EV. Biochemistry 50 3749-3763 (2011)
  15. Ubiquitin-mediated regulation of endocytosis by proteins of the arrestin family. Becuwe M, Herrador A, Haguenauer-Tsapis R, Vincent O, Léon S. Biochem Res Int 2012 242764 (2012)
  16. Unraveling G protein-coupled receptor endocytosis pathways using real-time monitoring of agonist-promoted interaction between beta-arrestins and AP-2. Hamdan FF, Rochdi MD, Breton B, Fessart D, Michaud DE, Charest PG, Laporte SA, Bouvier M. J Biol Chem 282 29089-29100 (2007)
  17. Development of a BRET2 screening assay using beta-arrestin 2 mutants. Vrecl M, Jorgensen R, Pogacnik A, Heding A. J Biomol Screen 9 322-333 (2004)
  18. Identification of arrestin-3-specific residues necessary for JNK3 kinase activation. Seo J, Tsakem EL, Breitman M, Gurevich VV. J Biol Chem 286 27894-27901 (2011)
  19. Manipulation of very few receptor discriminator residues greatly enhances receptor specificity of non-visual arrestins. Gimenez LE, Vishnivetskiy SA, Baameur F, Gurevich VV. J Biol Chem 287 29495-29505 (2012)
  20. Identification of receptor binding-induced conformational changes in non-visual arrestins. Zhuo Y, Vishnivetskiy SA, Zhan X, Gurevich VV, Klug CS. J Biol Chem 289 20991-21002 (2014)
  21. N-formyl peptide receptor phosphorylation domains differentially regulate arrestin and agonist affinity. Key TA, Foutz TD, Gurevich VV, Sklar LA, Prossnitz ER. J Biol Chem 278 4041-4047 (2003)
  22. Conformational differences between arrestin2 and pre-activated mutants as revealed by hydrogen exchange mass spectrometry. Carter JM, Gurevich VV, Prossnitz ER, Engen JR. J Mol Biol 351 865-878 (2005)
  23. beta-Arrestin1 interacts with the G-protein subunits beta1gamma2 and promotes beta1gamma2-dependent Akt signalling for NF-kappaB activation. Yang M, He RL, Benovic JL, Ye RD. Biochem J 417 287-296 (2009)
  24. Nonvisual arrestins function as simple scaffolds assembling the MKK4-JNK3α2 signaling complex. Zhan X, Kaoud TS, Dalby KN, Gurevich VV. Biochemistry 50 10520-10529 (2011)
  25. The AP-2 adaptor beta2 appendage scaffolds alternate cargo endocytosis. Keyel PA, Thieman JR, Roth R, Erkan E, Everett ET, Watkins SC, Heuser JE, Traub LM. Mol Biol Cell 19 5309-5326 (2008)
  26. Arrestin-3 binds the MAP kinase JNK3α2 via multiple sites on both domains. Zhan X, Perez A, Gimenez LE, Vishnivetskiy SA, Gurevich VV. Cell Signal 26 766-776 (2014)
  27. Beta-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling. Barthet G, Carrat G, Cassier E, Barker B, Gaven F, Pillot M, Framery B, Pellissier LP, Augier J, Kang DS, Claeysen S, Reiter E, Banères JL, Benovic JL, Marin P, Bockaert J, Dumuis A. EMBO J 28 2706-2718 (2009)
  28. Critical role of the central 139-loop in stability and binding selectivity of arrestin-1. Vishnivetskiy SA, Baameur F, Findley KR, Gurevich VV. J Biol Chem 288 11741-11750 (2013)
  29. JNK3 enzyme binding to arrestin-3 differentially affects the recruitment of upstream mitogen-activated protein (MAP) kinase kinases. Zhan X, Kaoud TS, Kook S, Dalby KN, Gurevich VV. J Biol Chem 288 28535-28547 (2013)
  30. Opposing effects of inositol hexakisphosphate on rod arrestin and arrestin2 self-association. Hanson SM, Vishnivetskiy SA, Hubbell WL, Gurevich VV. Biochemistry 47 1070-1075 (2008)
  31. Elucidation of inositol hexaphosphate and heparin interaction sites and conformational changes in arrestin-1 by solution nuclear magnetic resonance. Zhuang T, Vishnivetskiy SA, Gurevich VV, Sanders CR. Biochemistry 49 10473-10485 (2010)
  32. Clathrin-mediated endocytosis of m3 muscarinic receptors. Roles for Gbetagamma and tubulin. Popova JS, Rasenick MM. J Biol Chem 279 30410-30418 (2004)
  33. beta-Arrestins bind and decrease cell-surface abundance of the Na+/H+ exchanger NHE5 isoform. Szabó EZ, Numata M, Lukashova V, Iannuzzi P, Orlowski J. Proc Natl Acad Sci U S A 102 2790-2795 (2005)
  34. The conserved isoleucine-valine-phenylalanine motif couples activation state and endocytic functions of beta-arrestins. Burtey A, Schmid EM, Ford MG, Rappoport JZ, Scott MG, Marullo S, Simon SM, McMahon HT, Benmerah A. Traffic 8 914-931 (2007)
  35. Adaptor protein-2 interaction with arrestin regulates GPCR recycling and apoptosis. Wagener BM, Marjon NA, Revankar CM, Prossnitz ER. Traffic 10 1286-1300 (2009)
  36. A non-stop S-antigen gene mutation is associated with late onset hereditary retinal degeneration in dogs. Goldstein O, Jordan JA, Aguirre GD, Acland GM. Mol Vis 19 1871-1884 (2013)
  37. Binding between a distal C-terminus fragment of cannabinoid receptor 1 and arrestin-2. Singh SN, Bakshi K, Mercier RW, Makriyannis A, Pavlopoulos S. Biochemistry 50 2223-2234 (2011)
  38. Self-association of arrestin family members. Chen Q, Zhuo Y, Kim M, Hanson SM, Francis DJ, Vishnivetskiy SA, Altenbach C, Klug CS, Hubbell WL, Gurevich VV. Handb Exp Pharmacol 219 205-223 (2014)
  39. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors. Prokop S, Perry NA, Vishnivetskiy SA, Toth AD, Inoue A, Milligan G, Iverson TM, Hunyady L, Gurevich VV. Cell Signal 36 98-107 (2017)
  40. In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis. Schneider J, Mielich-Süss B, Böhme R, Lopez D. Microbiology (Reading) 161 1871-1887 (2015)
  41. Lysine in the lariat loop of arrestins does not serve as phosphate sensor. Vishnivetskiy SA, Zheng C, May MB, Karnam PC, Gurevich EV, Gurevich VV. J Neurochem 156 435-444 (2021)
  42. Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine. Zurkovsky L, Sedaghat K, Ahmed MR, Gurevich VV, Gurevich EV. Neuropharmacology 121 20-29 (2017)
  43. Arrestin-dependent activation of JNK family kinases. Zhan X, Kook S, Gurevich EV, Gurevich VV. Handb Exp Pharmacol 219 259-280 (2014)
  44. Different conformational dynamics of various active states of β-arrestin1 analyzed by hydrogen/deuterium exchange mass spectrometry. Kim DK, Yun Y, Kim HR, Seo MD, Chung KY. J Struct Biol 190 250-259 (2015)
  45. Arrestin2/clathrin interaction is regulated by key N- and C-terminal regions in arrestin2. Kern RC, Kang DS, Benovic JL. Biochemistry 48 7190-7200 (2009)
  46. Molecular Defects of the Disease-Causing Human Arrestin-1 C147F Mutant. Vishnivetskiy SA, Sullivan LS, Bowne SJ, Daiger SP, Gurevich EV, Gurevich VV. Invest Ophthalmol Vis Sci 59 13-20 (2018)
  47. N-terminal and C-terminal domains of arrestin both contribute in binding to rhodopsin. Skegro D, Pulvermüller A, Krafft B, Granzin J, Hofmann KP, Büldt G, Schlesinger R. Photochem Photobiol 83 385-392 (2007)
  48. Critical role of the finger loop in arrestin binding to the receptors. Zheng C, Tholen J, Gurevich VV. PLoS One 14 e0213792 (2019)
  49. Different conformational dynamics of β-arrestin1 and β-arrestin2 analyzed by hydrogen/deuterium exchange mass spectrometry. Yun Y, Kim DK, Seo MD, Kim KM, Chung KY. Biochem Biophys Res Commun 457 50-57 (2015)
  50. Identification of two-histidines one-carboxylate binding motifs in proteins amenable to facial coordination to metals. Amrein B, Schmid M, Collet G, Cuniasse P, Gilardoni F, Seebeck FP, Ward TR. Metallomics 4 379-388 (2012)
  51. Regulation of N-Formyl Peptide Receptor Signaling and Trafficking by Arrestin-Src Kinase Interaction. Wagener BM, Marjon NA, Prossnitz ER. PLoS One 11 e0147442 (2016)
  52. S-nitrosylation of ARH is required for LDL uptake by the LDL receptor. Zhao Z, Pompey S, Dong H, Weng J, Garuti R, Michaely P. J Lipid Res 54 1550-1559 (2013)
  53. Functional role of the three conserved cysteines in the N domain of visual arrestin-1. Vishnivetskiy SA, Lee RJ, Zhou XE, Franz A, Xu Q, Xu HE, Gurevich VV. J Biol Chem 292 12496-12502 (2017)
  54. The finger loop as an activation sensor in arrestin. Vishnivetskiy SA, Huh EK, Gurevich EV, Gurevich VV. J Neurochem 157 1138-1152 (2021)
  55. β-arrestin-2 in PAR-1-biased signaling has a crucial role in endothelial function via PDGF-β in stroke. Kanki H, Sasaki T, Matsumura S, Yokawa S, Yukami T, Shimamura M, Sakaguchi M, Furuno T, Suzuki T, Mochizuki H. Cell Death Dis 10 100 (2019)
  56. A non-GPCR-binding partner interacts with a novel surface on β-arrestin1 to mediate GPCR signaling. Zhuo Y, Gurevich VV, Vishnivetskiy SA, Klug CS, Marchese A. J Biol Chem 295 14111-14124 (2020)
  57. Computational design and characterization of nanobody-derived peptides that stabilize the active conformation of the β2-adrenergic receptor (β2-AR). Sencanski M, Glisic S, Šnajder M, Veljkovic N, Poklar Ulrih N, Mavri J, Vrecl M. Sci Rep 9 16555 (2019)
  58. Lipids and Phosphorylation Conjointly Modulate Complex Formation of β2-Adrenergic Receptor and β-arrestin2. Pluhackova K, Wilhelm FM, Müller DJ. Front Cell Dev Biol 9 807913 (2021)
  59. Calcium influx mediates the chemoattractant-induced translocation of the arrestin-related protein AdcC in Dictyostelium. Mas L, Cieren A, Delphin C, Journet A, Aubry L. J Cell Sci 131 jcs207951 (2018)
  60. Construction of covalently coupled, concatameric dimers of 7TM receptors. Terpager M, Scholl DJ, Kubale V, Martini L, Elling CE, Schwartz TW. J Recept Signal Transduct Res 29 235-245 (2009)
  61. Discrete GPCR-triggered endocytic modes enable β-arrestins to flexibly regulate cell signaling. Barsi-Rhyne B, Manglik A, von Zastrow M. Elife 11 e81563 (2022)
  62. GPCR Binding and JNK3 Activation by Arrestin-3 Have Different Structural Requirements. Zheng C, Weinstein LD, Nguyen KK, Grewal A, Gurevich EV, Gurevich VV. Cells 12 1563 (2023)
  63. Plasma membrane preassociation drives β-arrestin coupling to receptors and activation. Grimes J, Koszegi Z, Lanoiselée Y, Miljus T, O'Brien SL, Stepniewski TM, Medel-Lacruz B, Baidya M, Makarova M, Mistry R, Goulding J, Drube J, Hoffmann C, Owen DM, Shukla AK, Selent J, Hill SJ, Calebiro D. Cell 186 2238-2255.e20 (2023)