1jql Citations

Mechanism of processivity clamp opening by the delta subunit wrench of the clamp loader complex of E. coli DNA polymerase III.

Abstract

The dimeric ring-shaped sliding clamp of E. coli DNA polymerase III (beta subunit, homolog of eukaryotic PCNA) is loaded onto DNA by the clamp loader gamma complex (homolog of eukaryotic Replication Factor C, RFC). The delta subunit of the gamma complex binds to the beta ring and opens it. The crystal structure of a beta:delta complex shows that delta, which is structurally related to the delta' and gamma subunits of the gamma complex, is a molecular wrench that induces or traps a conformational change in beta such that one of its dimer interfaces is destabilized. Structural comparisons and molecular dynamics simulations suggest a spring-loaded mechanism in which the beta ring opens spontaneously once a dimer interface is perturbed by the delta wrench.

Reviews - 1jql mentioned but not cited (1)

  1. Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Robinson A, Causer RJ, Dixon NE. Curr Drug Targets 13 352-372 (2012)

Articles - 1jql mentioned but not cited (8)

  1. Insights into the replisome from the structure of a ternary complex of the DNA polymerase III alpha-subunit. Wing RA, Bailey S, Steitz TA. J Mol Biol 382 859-869 (2008)
  2. Joint evolutionary trees: a large-scale method to predict protein interfaces based on sequence sampling. Engelen S, Trojan LA, Sacquin-Mora S, Lavery R, Carbone A. PLoS Comput Biol 5 e1000267 (2009)
  3. Protein subunit interfaces: heterodimers versus homodimers. Zhanhua C, Gan JG, Lei L, Sakharkar MK, Kangueane P. Bioinformation 1 28-39 (2005)
  4. Evolutionary clues to DNA polymerase III beta clamp structural mechanisms. Neuwald AF. Nucleic Acids Res 31 4503-4516 (2003)
  5. Dynamics of Open DNA Sliding Clamps. Oakley AJ. PLoS One 11 e0154899 (2016)
  6. Structural insight into β-Clamp and its interaction with DNA Ligase in Helicobacter pylori. Pandey P, Tarique KF, Mazumder M, Rehman SA, Kumari N, Gourinath S. Sci Rep 6 31181 (2016)
  7. The Mutant βE202K Sliding Clamp Protein Impairs DNA Polymerase III Replication Activity. Homiski C, Scotland MK, Babu VMP, Chodavarapu S, Maul RW, Kaguni JM, Sutton MD. J Bacteriol 203 e0030321 (2021)
  8. Classification of heterodimer interfaces using docking models and construction of scoring functions for the complex structure prediction. Tsuchiya Y, Kanamori E, Nakamura H, Kinoshita K. Adv Appl Bioinform Chem 2 79-100 (2009)


Reviews citing this publication (40)

  1. DNA replication in eukaryotic cells. Bell SP, Dutta A. Annu Rev Biochem 71 333-374 (2002)
  2. Evolutionary relationships and structural mechanisms of AAA+ proteins. Erzberger JP, Berger JM. Annu Rev Biophys Biomol Struct 35 93-114 (2006)
  3. Cellular DNA replicases: components and dynamics at the replication fork. Johnson A, O'Donnell M. Annu Rev Biochem 74 283-315 (2005)
  4. DnaA: controlling the initiation of bacterial DNA replication and more. Kaguni JM. Annu Rev Microbiol 60 351-375 (2006)
  5. The replication clamp-loading machine at work in the three domains of life. Indiani C, O'Donnell M. Nat Rev Mol Cell Biol 7 751-761 (2006)
  6. Motors and switches: AAA+ machines within the replisome. Davey MJ, Jeruzalmi D, Kuriyan J, O'Donnell M. Nat Rev Mol Cell Biol 3 826-835 (2002)
  7. DNA replicases from a bacterial perspective. McHenry CS. Annu Rev Biochem 80 403-436 (2011)
  8. Chromosomal replicases as asymmetric dimers: studies of subunit arrangement and functional consequences. McHenry CS. Mol Microbiol 49 1157-1165 (2003)
  9. Clamp loaders and sliding clamps. Jeruzalmi D, O'Donnell M, Kuriyan J. Curr Opin Struct Biol 12 217-224 (2002)
  10. Y-family DNA polymerases in Escherichia coli. Jarosz DF, Beuning PJ, Cohen SE, Walker GC. Trends Microbiol 15 70-77 (2007)
  11. The role of interactions between phage and bacterial proteins within the infected cell: a diverse and puzzling interactome. Roucourt B, Lavigne R. Environ Microbiol 11 2789-2805 (2009)
  12. The diverse spectrum of sliding clamp interacting proteins. Vivona JB, Kelman Z. FEBS Lett 546 167-172 (2003)
  13. Replication clamps and clamp loaders. Hedglin M, Kumar R, Benkovic SJ. Cold Spring Harb Perspect Biol 5 a010165 (2013)
  14. DNA replication fidelity in Escherichia coli: a multi-DNA polymerase affair. Fijalkowska IJ, Schaaper RM, Jonczyk P. FEMS Microbiol Rev 36 1105-1121 (2012)
  15. AAA+ ATPases in the initiation of DNA replication. Duderstadt KE, Berger JM. Crit Rev Biochem Mol Biol 43 163-187 (2008)
  16. Clamp loader structure predicts the architecture of DNA polymerase III holoenzyme and RFC. O'Donnell M, Jeruzalmi D, Kuriyan J. Curr Biol 11 R935-46 (2001)
  17. Replisome mechanics: insights into a twin DNA polymerase machine. Pomerantz RT, O'Donnell M. Trends Microbiol 15 156-164 (2007)
  18. Coordinating DNA polymerase traffic during high and low fidelity synthesis. Sutton MD. Biochim Biophys Acta 1804 1167-1179 (2010)
  19. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A. J Struct Biol 146 113-122 (2004)
  20. Opening of the clamp: an intimate view of an ATP-driven biological machine. Ellison V, Stillman B. Cell 106 655-660 (2001)
  21. Protein--protein interactions in the eubacterial replisome. Schaeffer PM, Headlam MJ, Dixon NE. IUBMB Life 57 5-12 (2005)
  22. DNA polymerase clamp loaders and DNA recognition. Bowman GD, Goedken ER, Kazmirski SL, O'Donnell M, Kuriyan J. FEBS Lett 579 863-867 (2005)
  23. Essential biological processes of an emerging pathogen: DNA replication, transcription, and cell division in Acinetobacter spp. Robinson A, Brzoska AJ, Turner KM, Withers R, Harry EJ, Lewis PJ, Dixon NE. Microbiol Mol Biol Rev 74 273-297 (2010)
  24. The RFC clamp loader: structure and function. Yao NY, O'Donnell M. Subcell Biochem 62 259-279 (2012)
  25. Loading clamps for DNA replication and repair. Bloom LB. DNA Repair (Amst) 8 570-578 (2009)
  26. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Kelch BA. Biopolymers 105 532-546 (2016)
  27. Biomolecular motors: the F1-ATPase paradigm. Karplus M, Gao YQ. Curr Opin Struct Biol 14 250-259 (2004)
  28. Structural analysis of bacteriophage T4 DNA replication: a review in the Virology Journal series on bacteriophage T4 and its relatives. Mueser TC, Hinerman JM, Devos JM, Boyer RA, Williams KJ. Virol J 7 359 (2010)
  29. Intricacies in ATP-dependent clamp loading: variations across replication systems. Trakselis MA, Benkovic SJ. Structure 9 999-1004 (2001)
  30. Dynamics of loading the Escherichia coli DNA polymerase processivity clamp. Bloom LB. Crit Rev Biochem Mol Biol 41 179-208 (2006)
  31. A structural view of bacterial DNA replication. Oakley AJ. Protein Sci 28 990-1004 (2019)
  32. Replisome dynamics and use of DNA trombone loops to bypass replication blocks. Yao NY, O'Donnell M. Mol Biosyst 4 1075-1084 (2008)
  33. Modeling supramolecular assemblages. Elcock AH. Curr Opin Struct Biol 12 154-160 (2002)
  34. Strand discrimination in DNA mismatch repair. Putnam CD. DNA Repair (Amst) 105 103161 (2021)
  35. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery. Kaguni JM. Antibiotics (Basel) 7 E23 (2018)
  36. Diversity of the DNA replication system in the Archaea domain. Sarmiento F, Long F, Cann I, Whitman WB. Archaea 2014 675946 (2014)
  37. DNA sliding clamps: just the right twist to load onto DNA. Barsky D, Venclovas C. Curr Biol 15 R989-92 (2005)
  38. Proteomic dissection of DNA polymerization. Beck JL, Urathamakul T, Watt SJ, Sheil MM, Schaeffer PM, Dixon NE. Expert Rev Proteomics 3 197-211 (2006)
  39. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase. Matsui I, Matsui E, Yamasaki K, Yokoyama H. Life (Basel) 3 375-385 (2013)
  40. From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps. Mulye M, Singh MI, Jain V. Genes (Basel) 13 2058 (2022)

Articles citing this publication (122)

  1. Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Bowman GD, O'Donnell M, Kuriyan J. Nature 429 724-730 (2004)
  2. Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. Ellison V, Stillman B. PLoS Biol 1 E33 (2003)
  3. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2-7 helicase. Randell JC, Bowers JL, Rodríguez HK, Bell SP. Mol Cell 21 29-39 (2006)
  4. Structural basis for recruitment of translesion DNA polymerase Pol IV/DinB to the beta-clamp. Bunting KA, Roe SM, Pearl LH. EMBO J 22 5883-5892 (2003)
  5. Structure of a sliding clamp on DNA. Georgescu RE, Kim SS, Yurieva O, Kuriyan J, Kong XP, O'Donnell M. Cell 132 43-54 (2008)
  6. A sliding-clamp toolbelt binds high- and low-fidelity DNA polymerases simultaneously. Indiani C, McInerney P, Georgescu R, Goodman MF, O'Donnell M. Mol Cell 19 805-815 (2005)
  7. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome. Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN. Mol Cell 24 39-50 (2006)
  8. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Hersch GL, Burton RE, Bolon DN, Baker TA, Sauer RT. Cell 121 1017-1027 (2005)
  9. How a DNA polymerase clamp loader opens a sliding clamp. Kelch BA, Makino DL, O'Donnell M, Kuriyan J. Science 334 1675-1680 (2011)
  10. The DnaC helicase loader is a dual ATP/ADP switch protein. Davey MJ, Fang L, McInerney P, Georgescu RE, O'Donnell M. EMBO J 21 3148-3159 (2002)
  11. The mechanism of ATP-dependent primer-template recognition by a clamp loader complex. Simonetta KR, Kazmirski SL, Goedken ER, Cantor AJ, Kelch BA, McNally R, Seyedin SN, Makino DL, O'Donnell M, Kuriyan J. Cell 137 659-671 (2009)
  12. The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 A resolution. Krzywda S, Brzozowski AM, Verma C, Karata K, Ogura T, Wilkinson AJ. Structure 10 1073-1083 (2002)
  13. Beta clamp directs localization of mismatch repair in Bacillus subtilis. Simmons LA, Davies BW, Grossman AD, Walker GC. Mol Cell 29 291-301 (2008)
  14. Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Tanner NA, Hamdan SM, Jergic S, Loscha KV, Schaeffer PM, Dixon NE, van Oijen AM. Nat Struct Mol Biol 15 170-176 (2008)
  15. Open clamp structure in the clamp-loading complex visualized by electron microscopic image analysis. Miyata T, Suzuki H, Oyama T, Mayanagi K, Ishino Y, Morikawa K. Proc Natl Acad Sci U S A 102 13795-13800 (2005)
  16. The processivity factor beta controls DNA polymerase IV traffic during spontaneous mutagenesis and translesion synthesis in vivo. Lenne-Samuel N, Wagner J, Etienne H, Fuchs RP. EMBO Rep 3 45-49 (2002)
  17. Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. López de Saro FJ, Georgescu RE, Goodman MF, O'Donnell M. EMBO J 22 6408-6418 (2003)
  18. Analysis of the role of PCNA-DNA contacts during clamp loading. McNally R, Bowman GD, Goedken ER, O'Donnell M, Kuriyan J. BMC Struct Biol 10 3 (2010)
  19. Ring-shaped architecture of RecR: implications for its role in homologous recombinational DNA repair. Lee BI, Kim KH, Park SJ, Eom SH, Song HK, Suh SW. EMBO J 23 2029-2038 (2004)
  20. A model for DNA polymerase switching involving a single cleft and the rim of the sliding clamp. Heltzel JM, Maul RW, Scouten Ponticelli SK, Sutton MD. Proc Natl Acad Sci U S A 106 12664-12669 (2009)
  21. Activation-triggered subunit exchange between CaMKII holoenzymes facilitates the spread of kinase activity. Stratton M, Lee IH, Bhattacharyya M, Christensen SM, Chao LH, Schulman H, Groves JT, Kuriyan J. Elife 3 e01610 (2014)
  22. A bipartite polymerase-processivity factor interaction: only the internal beta binding site of the alpha subunit is required for processive replication by the DNA polymerase III holoenzyme. Dohrmann PR, McHenry CS. J Mol Biol 350 228-239 (2005)
  23. Atomic structure of the clamp loader small subunit from Pyrococcus furiosus. Oyama T, Ishino Y, Cann IK, Ishino S, Morikawa K. Mol Cell 8 455-463 (2001)
  24. Ordered ATP hydrolysis in the gamma complex clamp loader AAA+ machine. Johnson A, O'Donnell M. J Biol Chem 278 14406-14413 (2003)
  25. Structural and biochemical analysis of sliding clamp/ligand interactions suggest a competition between replicative and translesion DNA polymerases. Burnouf DY, Olieric V, Wagner J, Fujii S, Reinbolt J, Fuchs RP, Dumas P. J Mol Biol 335 1187-1197 (2004)
  26. Structure of a small-molecule inhibitor of a DNA polymerase sliding clamp. Georgescu RE, Yurieva O, Kim SS, Kuriyan J, Kong XP, O'Donnell M. Proc Natl Acad Sci U S A 105 11116-11121 (2008)
  27. Clamp loader ATPases and the evolution of DNA replication machinery. Kelch BA, Makino DL, O'Donnell M, Kuriyan J. BMC Biol 10 34 (2012)
  28. A peptide switch regulates DNA polymerase processivity. López de Saro FJ, Georgescu RE, O'Donnell M. Proc Natl Acad Sci U S A 100 14689-14694 (2003)
  29. DNA replication is the target for the antibacterial effects of nonsteroidal anti-inflammatory drugs. Yin Z, Wang Y, Whittell LR, Jergic S, Liu M, Harry E, Dixon NE, Kelso MJ, Beck JL, Oakley AJ. Chem Biol 21 481-487 (2014)
  30. cryo-EM structures of the E. coli replicative DNA polymerase reveal its dynamic interactions with the DNA sliding clamp, exonuclease and τ. Fernandez-Leiro R, Conrad J, Scheres SH, Lamers MH. Elife 4 e11134 (2015)
  31. Crystal structure of the chi:psi sub-assembly of the Escherichia coli DNA polymerase clamp-loader complex. Gulbis JM, Kazmirski SL, Finkelstein J, Kelman Z, O'Donnell M, Kuriyan J. Eur J Biochem 271 439-449 (2004)
  32. Interaction of the sliding clamp beta-subunit and Hda, a DnaA-related protein. Kurz M, Dalrymple B, Wijffels G, Kongsuwan K. J Bacteriol 186 3508-3515 (2004)
  33. Out-of-plane motions in open sliding clamps: molecular dynamics simulations of eukaryotic and archaeal proliferating cell nuclear antigen. Kazmirski SL, Zhao Y, Bowman GD, O'donnell M, Kuriyan J. Proc Natl Acad Sci U S A 102 13801-13806 (2005)
  34. Physical interaction between proliferating cell nuclear antigen and replication factor C from Pyrococcus furiosus. Matsumiya S, Ishino S, Ishino Y, Morikawa K. Genes Cells 7 911-922 (2002)
  35. Cdt1 stabilizes an open MCM ring for helicase loading. Frigola J, He J, Kinkelin K, Pye VE, Renault L, Douglas ME, Remus D, Cherepanov P, Costa A, Diffley JFX. Nat Commun 8 15720 (2017)
  36. Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex. Kazmirski SL, Podobnik M, Weitze TF, O'Donnell M, Kuriyan J. Proc Natl Acad Sci U S A 101 16750-16755 (2004)
  37. The Escherichia coli dnaN159 mutant displays altered DNA polymerase usage and chronic SOS induction. Sutton MD. J Bacteriol 186 6738-6748 (2004)
  38. Transposition into replicating DNA occurs through interaction with the processivity factor. Parks AR, Li Z, Shi Q, Owens RM, Jin MM, Peters JE. Cell 138 685-695 (2009)
  39. The clamp-loading complex for processive DNA replication. Miyata T, Oyama T, Mayanagi K, Ishino S, Ishino Y, Morikawa K. Nat Struct Mol Biol 11 632-636 (2004)
  40. Mutant forms of the Escherichia colibeta sliding clamp that distinguish between its roles in replication and DNA polymerase V-dependent translesion DNA synthesis. Sutton MD, Duzen JM, Maul RW. Mol Microbiol 55 1751-1766 (2005)
  41. The unstructured C-terminus of the tau subunit of Escherichia coli DNA polymerase III holoenzyme is the site of interaction with the alpha subunit. Jergic S, Ozawa K, Williams NK, Su XC, Scott DD, Hamdan SM, Crowther JA, Otting G, Dixon NE. Nucleic Acids Res 35 2813-2824 (2007)
  42. Distinct roles for ATP binding and hydrolysis at individual subunits of an archaeal clamp loader. Seybert A, Wigley DB. EMBO J 23 1360-1371 (2004)
  43. Congress Replication, recombination, and repair: going for the gold. Klein HL, Kreuzer KN. Mol Cell 9 471-480 (2002)
  44. Examination of the role of the clamp-loader and ATP hydrolysis in the formation of the bacteriophage T4 polymerase holoenzyme. Trakselis MA, Berdis AJ, Benkovic SJ. J Mol Biol 326 435-451 (2003)
  45. Biochemical characterisation of the clamp/clamp loader proteins from the euryarchaeon Archaeoglobus fulgidus. Seybert A, Scott DJ, Scaife S, Singleton MR, Wigley DB. Nucleic Acids Res 30 4329-4338 (2002)
  46. Escherichia coli processivity clamp β from DNA polymerase III is dynamic in solution. Fang J, Engen JR, Beuning PJ. Biochemistry 50 5958-5968 (2011)
  47. Differential binding of Escherichia coli DNA polymerases to the beta-sliding clamp. Maul RW, Ponticelli SK, Duzen JM, Sutton MD. Mol Microbiol 65 811-827 (2007)
  48. Escherichia coli cells with increased levels of DnaA and deficient in recombinational repair have decreased viability. Grigorian AV, Lustig RB, Guzmán EC, Mahaffy JM, Zyskind JW. J Bacteriol 185 630-644 (2003)
  49. On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication. Hingorani MM, Coman MM. J Biol Chem 277 47213-47224 (2002)
  50. Sliding clamp-DNA interactions are required for viability and contribute to DNA polymerase management in Escherichia coli. Heltzel JM, Scouten Ponticelli SK, Sanders LH, Duzen JM, Cody V, Pace J, Snell EH, Sutton MD. J Mol Biol 387 74-91 (2009)
  51. Two processivity clamp interactions differentially alter the dual activities of UmuC. Beuning PJ, Sawicka D, Barsky D, Walker GC. Mol Microbiol 59 460-474 (2006)
  52. Lethality of bypass polymerases in Escherichia coli cells with a defective clamp loader complex of DNA polymerase III. Viguera E, Petranovic M, Zahradka D, Germain K, Ehrlich DS, Michel B. Mol Microbiol 50 193-204 (2003)
  53. Mapping the interaction of DNA with the Escherichia coli DNA polymerase clamp loader complex. Goedken ER, Kazmirski SL, Bowman GD, O'Donnell M, Kuriyan J. Nat Struct Mol Biol 12 183-190 (2005)
  54. Regulation of interactions with sliding clamps during DNA replication and repair. López de Saro FJ. Curr Genomics 10 206-215 (2009)
  55. Replication factor C is a more effective proliferating cell nuclear antigen (PCNA) opener than the checkpoint clamp loader, Rad24-RFC. Thompson JA, Marzahn MR, O'Donnell M, Bloom LB. J Biol Chem 287 2203-2209 (2012)
  56. Specific amino acid residues in the beta sliding clamp establish a DNA polymerase usage hierarchy in Escherichia coli. Sutton MD, Duzen JM. DNA Repair (Amst) 5 312-323 (2006)
  57. Intermolecular ion pairs maintain the toroidal structure of Pyrococcus furiosus PCNA. Matsumiya S, Ishino S, Ishino Y, Morikawa K. Protein Sci 12 823-831 (2003)
  58. Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process. Venclovas C, Colvin ME, Thelen MP. Protein Sci 11 2403-2416 (2002)
  59. Communication between subunits within an archaeal clamp-loader complex. Seybert A, Singleton MR, Cook N, Hall DR, Wigley DB. EMBO J 25 2209-2218 (2006)
  60. An isolated Hda-clamp complex is functional in the regulatory inactivation of DnaA and DNA replication. Kawakami H, Su'etsugu M, Katayama T. J Struct Biol 156 220-229 (2006)
  61. Novel essential residues of Hda for interaction with DnaA in the regulatory inactivation of DnaA: unique roles for Hda AAA Box VI and VII motifs. Nakamura K, Katayama T. Mol Microbiol 76 302-317 (2010)
  62. Proofreading exonuclease on a tether: the complex between the E. coli DNA polymerase III subunits α, epsilon, θ and β reveals a highly flexible arrangement of the proofreading domain. Ozawa K, Horan NP, Robinson A, Yagi H, Hill FR, Jergic S, Xu ZQ, Loscha KV, Li N, Tehei M, Oakley AJ, Otting G, Huber T, Dixon NE. Nucleic Acids Res 41 5354-5367 (2013)
  63. Structure of the human clamp loader reveals an autoinhibited conformation of a substrate-bound AAA+ switch. Gaubitz C, Liu X, Magrino J, Stone NP, Landeck J, Hedglin M, Kelch BA. Proc Natl Acad Sci U S A 117 23571-23580 (2020)
  64. Systems Biology Approaches for the Prediction of Possible Role of Chlamydia pneumoniae Proteins in the Etiology of Lung Cancer. Khan S, Imran A, Khan AA, Abul Kalam M, Alshamsan A. PLoS One 11 e0148530 (2016)
  65. A slow ATP-induced conformational change limits the rate of DNA binding but not the rate of beta clamp binding by the escherichia coli gamma complex clamp loader. Thompson JA, Paschall CO, O'Donnell M, Bloom LB. J Biol Chem 284 32147-32157 (2009)
  66. Crystal structure of a DNA polymerase sliding clamp from a Gram-positive bacterium. Argiriadi MA, Goedken ER, Bruck I, O'Donnell M, Kuriyan J. BMC Struct Biol 6 2 (2006)
  67. Solution structure of Domains IVa and V of the tau subunit of Escherichia coli DNA polymerase III and interaction with the alpha subunit. Su XC, Jergic S, Keniry MA, Dixon NE, Otting G. Nucleic Acids Res 35 2825-2832 (2007)
  68. Contributions of the individual hydrophobic clefts of the Escherichia coli beta sliding clamp to clamp loading, DNA replication and clamp recycling. Scouten Ponticelli SK, Duzen JM, Sutton MD. Nucleic Acids Res 37 2796-2809 (2009)
  69. Multiple ATP binding is required to stabilize the "activated" (clamp open) clamp loader of the T4 DNA replication complex. Pietroni P, von Hippel PH. J Biol Chem 283 28338-28353 (2008)
  70. Replication factor C from the hyperthermophilic archaeon Pyrococcus abyssi does not need ATP hydrolysis for clamp-loading and contains a functionally conserved RFC PCNA-binding domain. Henneke G, Gueguen Y, Flament D, Azam P, Querellou J, Dietrich J, Hübscher U, Raffin JP. J Mol Biol 323 795-810 (2002)
  71. Fluorescence measurements on the E.coli DNA polymerase clamp loader: implications for conformational changes during ATP and clamp binding. Goedken ER, Levitus M, Johnson A, Bustamante C, O'Donnell M, Kuriyan J. J Mol Biol 336 1047-1059 (2004)
  72. Nucleotide-induced conformational changes in an isolated Escherichia coli DNA polymerase III clamp loader subunit. Podobnik M, Weitze TF, O'Donnell M, Kuriyan J. Structure 11 253-263 (2003)
  73. Mutations in the Bacillus subtilis beta clamp that separate its roles in DNA replication from mismatch repair. Dupes NM, Walsh BW, Klocko AD, Lenhart JS, Peterson HL, Gessert DA, Pavlick CE, Simmons LA. J Bacteriol 192 3452-3463 (2010)
  74. The UmuC subunit of the E. coli DNA polymerase V shows a unique interaction with the β-clamp processivity factor. Patoli AA, Winter JA, Bunting KA. BMC Struct Biol 13 12 (2013)
  75. A phage-encoded inhibitor of Escherichia coli DNA replication targets the DNA polymerase clamp loader. Yano ST, Rothman-Denes LB. Mol Microbiol 79 1325-1338 (2011)
  76. Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader. Gaubitz C, Liu X, Pajak J, Stone NP, Hayes JA, Demo G, Kelch BA. Elife 11 e74175 (2022)
  77. The plasmid RK2 replication initiator protein (TrfA) binds to the sliding clamp beta subunit of DNA polymerase III: implication for the toxicity of a peptide derived from the amino-terminal portion of 33-kilodalton TrfA. Kongsuwan K, Josh P, Picault MJ, Wijffels G, Dalrymple B. J Bacteriol 188 5501-5509 (2006)
  78. The clamp-loader-helicase interaction in Bacillus. Atomic force microscopy reveals the structural organisation of the DnaB-tau complex in Bacillus. Haroniti A, Anderson C, Doddridge Z, Gardiner L, Roberts CJ, Allen S, Soultanas P. J Mol Biol 336 381-393 (2004)
  79. The mechanical properties of PCNA: implications for the loading and function of a DNA sliding clamp. Adelman JL, Chodera JD, Kuo IF, Miller TF, Barsky D. Biophys J 98 3062-3069 (2010)
  80. Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Belley A, Callejo M, Arhin F, Dehbi M, Fadhil I, Liu J, McKay G, Srikumar R, Bauda P, Bergeron D, Ha N, Dubow M, Gros P, Pelletier J, Moeck G. Mol Microbiol 62 1132-1143 (2006)
  81. Evolutionary clues to eukaryotic DNA clamp-loading mechanisms: analysis of the functional constraints imposed on replication factor C AAA+ ATPases. Neuwald AF. Nucleic Acids Res 33 3614-3628 (2005)
  82. A structural basis for the regulatory inactivation of DnaA. Xu Q, McMullan D, Abdubek P, Astakhova T, Carlton D, Chen C, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Elsliger MA, Feuerhelm J, Hale J, Han GW, Jaroszewski L, Jin KK, Johnson HA, Klock HE, Knuth MW, Kozbial P, Sri Krishna S, Kumar A, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Trame C, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. J Mol Biol 385 368-380 (2009)
  83. Intrinsic stability and oligomerization dynamics of DNA processivity clamps. Binder JK, Douma LG, Ranjit S, Kanno DM, Chakraborty M, Bloom LB, Levitus M. Nucleic Acids Res 42 6476-6486 (2014)
  84. M. tuberculosis sliding β-clamp does not interact directly with the NAD+-dependent DNA ligase. Kukshal V, Khanam T, Chopra D, Singh N, Sanyal S, Ramachandran R. PLoS One 7 e35702 (2012)
  85. The clamp loader assembles the beta clamp onto either a 3' or 5' primer terminus: the underlying basis favoring 3' loading. Park MS, O'Donnell M. J Biol Chem 284 31473-31483 (2009)
  86. The β sliding clamp closes around DNA prior to release by the Escherichia coli clamp loader γ complex. Hayner JN, Bloom LB. J Biol Chem 288 1162-1170 (2013)
  87. Bayesian shadows of molecular mechanisms cast in the light of evolution. Neuwald AF. Trends Biochem Sci 31 374-382 (2006)
  88. Mechanism of the delta wrench in opening the beta sliding clamp. Indiani C, O'Donnell M. J Biol Chem 278 40272-40281 (2003)
  89. Plasmid replication initiator interactions with origin 13-mers and polymerase subunits contribute to strand-specific replisome assembly. Wawrzycka A, Gross M, Wasaznik A, Konieczny I. Proc Natl Acad Sci U S A 112 E4188-96 (2015)
  90. Solution structure of the N-terminal domain of the archaeal D-family DNA polymerase small subunit reveals evolutionary relationship to eukaryotic B-family polymerases. Yamasaki K, Urushibata Y, Yamasaki T, Arisaka F, Matsui I. FEBS Lett 584 3370-3375 (2010)
  91. The G157C mutation in the Escherichia coli sliding clamp specifically affects initiation of replication. Johnsen L, Flåtten I, Morigen, Dalhus B, Bjørås M, Waldminghaus T, Skarstad K. Mol Microbiol 79 433-446 (2011)
  92. Assembly and distributive action of an archaeal DNA polymerase holoenzyme. Bauer RJ, Wolff ID, Zuo X, Lin HK, Trakselis MA. J Mol Biol 425 4820-4836 (2013)
  93. Mechanism of opening a sliding clamp. Douma LG, Yu KK, England JK, Levitus M, Bloom LB. Nucleic Acids Res 45 10178-10189 (2017)
  94. Dual functions, clamp opening and primer-template recognition, define a key clamp loader subunit. Magdalena Coman M, Jin M, Ceapa R, Finkelstein J, O'Donnell M, Chait BT, Hingorani MM. J Mol Biol 342 1457-1469 (2004)
  95. Insights into the structure and assembly of the Bacillus subtilis clamp-loader complex and its interaction with the replicative helicase. Afonso JP, Chintakayala K, Suwannachart C, Sedelnikova S, Giles K, Hoyes JB, Soultanas P, Rafferty JB, Oldham NJ. Nucleic Acids Res 41 5115-5126 (2013)
  96. Protein trafficking on sliding clamps. López de Saro F, Georgescu RE, Leu F, O'Donnell M. Philos Trans R Soc Lond B Biol Sci 359 25-30 (2004)
  97. A General Strategy for Engineering Noncanonical Amino Acid Dependent Bacterial Growth. Koh M, Yao A, Gleason PR, Mills JH, Schultz PG. J Am Chem Soc 141 16213-16216 (2019)
  98. Dynamics of the E. coli β-Clamp Dimer Interface and Its Influence on DNA Loading. Koleva BN, Gokcan H, Rizzo AA, Lim S, Jeanne Dit Fouque K, Choy A, Liriano ML, Fernandez-Lima F, Korzhnev DM, Cisneros GA, Beuning PJ. Biophys J 117 587-601 (2019)
  99. Characterization of a coupled DNA replication and translesion synthesis polymerase supraholoenzyme from archaea. Cranford MT, Chu AM, Baguley JK, Bauer RJ, Trakselis MA. Nucleic Acids Res 45 8329-8340 (2017)
  100. Conserved residues in the delta subunit help the E. coli clamp loader, gamma complex, target primer-template DNA for clamp assembly. Chen S, Coman MM, Sakato M, O'Donnell M, Hingorani MM. Nucleic Acids Res 36 3274-3286 (2008)
  101. Identification of the critical region in replication factor C from Pyrococcus furiosus for the stable complex formation with proliferating cell nuclear antigen and DNA. Nishida H, Ishino S, Miyata T, Morikawa K, Ishino Y. Genes Genet Syst 80 83-93 (2005)
  102. Identification of β Clamp-DNA Interaction Regions That Impair the Ability of E. coli to Tolerate Specific Classes of DNA Damage. Nanfara MT, Babu VM, Ghazy MA, Sutton MD. PLoS One 11 e0163643 (2016)
  103. The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA. Hayner JN, Douma LG, Bloom LB. Nucleic Acids Res 42 10655-10667 (2014)
  104. Clamp-loader-helicase interaction in Bacillus. Leucine 381 is critical for pentamerization and helicase binding of the Bacillus tau protein. Haroniti A, Till R, Smith MC, Soultanas P. Biochemistry 42 10955-10964 (2003)
  105. Replisome Dynamics during Chromosome Duplication. Kurth I, O'Donnell M. EcoSal Plus 3 (2009)
  106. The Roles of UmuD in Regulating Mutagenesis. Ollivierre JN, Fang J, Beuning PJ. J Nucleic Acids 2010 947680 (2010)
  107. A dnaN plasmid shuffle strain for rapid in vivo analysis of mutant Escherichia coli β clamps provides insight into the role of clamp in umuDC-mediated cold sensitivity. Babu VM, Sutton MD. PLoS One 9 e98791 (2014)
  108. Compartmentalization of the replication fork by single-stranded DNA-binding protein regulates translesion synthesis. Chang S, Thrall ES, Laureti L, Piatt SC, Pagès V, Loparo JJ. Nat Struct Mol Biol 29 932-941 (2022)
  109. Hypothesis: bacterial clamp loader ATPase activation through DNA-dependent repositioning of the catalytic base and of a trans-acting catalytic threonine. Neuwald AF. Nucleic Acids Res 34 5280-5290 (2006)
  110. Solution structure of an "open" E. coli Pol III clamp loader sliding clamp complex. Tondnevis F, Weiss TM, Matsui T, Bloom LB, McKenna R. J Struct Biol 194 272-281 (2016)
  111. Unexpected new insights into DNA clamp loaders: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage: Eukaryotic clamp loaders contain a second DNA site for recessed 5' ends that facilitates repair and signals DNA damage. Li H, O'Donnell M, Kelch B. Bioessays 44 e2200154 (2022)
  112. Comment 'Screw-cap' clamp loader proteins that thread. Zhuang Z, Spiering MM, Berdis AJ, Trakselis MA, Benkovic SJ. Nat Struct Mol Biol 11 580-581 (2004)
  113. Phosphorylation of the PCNA binding domain of the large subunit of replication factor C on Thr506 by cyclin-dependent kinases regulates binding to PCNA. Salles-Passador I, Munshi A, Cannella D, Pennaneach V, Koundrioukoff S, Jaquinod M, Forest E, Podust V, Fotedar A, Fotedar R. Nucleic Acids Res 31 5202-5211 (2003)
  114. Potassium Glutamate and Glycine Betaine Induce Self-Assembly of the PCNA and β-Sliding Clamps. Purohit A, Douma LG, Bloom LB, Levitus M. Biophys J 120 73-85 (2021)
  115. RecF protein targeting to post-replication (daughter strand) gaps II: RecF interaction with replisomes. Henry C, Kaur G, Cherry ME, Henrikus SS, Bonde NJ, Sharma N, Beyer HA, Wood EA, Chitteni-Pattu S, van Oijen AM, Robinson A, Cox MM. Nucleic Acids Res 51 5714-5742 (2023)
  116. Detection of subunit interfacial modifications by tracing the evolution of clamp-loader complex. Saito M, Oyama T, Shirai T. Protein Eng Des Sel 18 139-145 (2005)
  117. NMR resonance assignments for the N-terminal domain of the δ subunit of the E. coli γ clamp loader complex. Alyami EM, Rizzo AA, Beuning PJ, Korzhnev DM. Biomol NMR Assign 11 169-173 (2017)
  118. The opened processivity clamp slides into view. Jeruzalmi D. Proc Natl Acad Sci U S A 102 14939-14940 (2005)
  119. DNA Polymerase α Subunit Residues and Interactions Required for Efficient Initiation Complex Formation Identified by a Genetic Selection. Lindow JC, Dohrmann PR, McHenry CS. J Biol Chem 290 16851-16860 (2015)
  120. Long-Range PCR Amplification of DNA by DNA Polymerase III Holoenzyme from Thermus thermophilus. Ribble W, Kane SD, Bullard JM. Enzyme Res 2015 837842 (2015)
  121. Screening of E. coli β-clamp Inhibitors Revealed that Few Inhibit Helicobacter pylori More Effectively: Structural and Functional Characterization. Pandey P, Verma V, Dhar SK, Gourinath S. Antibiotics (Basel) 7 E5 (2018)
  122. The partner-swapping sliding clamp loader exposed. Jeruzalmi D. Nat Struct Mol Biol 29 283-286 (2022)