1jmo Citations

Crystal structures of native and thrombin-complexed heparin cofactor II reveal a multistep allosteric mechanism.

Proc Natl Acad Sci U S A 99 11079-84 (2002)
Cited: 131 times
EuropePMC logo PMID: 12169660

Abstract

The serine proteases sequentially activated to form a fibrin clot are inhibited primarily by members of the serpin family, which use a unique beta-sheet expansion mechanism to trap and destroy their targets. Since the discovery that serpins were a family of serine protease inhibitors there has been controversy as to the role of conformational change in their mechanism. It now is clear that protease inhibition depends entirely on rapid serpin beta-sheet expansion after proteolytic attack. The regulatory advantage afforded by the conformational mobility of serpins is demonstrated here by the structures of native and S195A thrombin-complexed heparin cofactor II (HCII). HCII inhibits thrombin, the final protease of the coagulation cascade, in a glycosaminoglycan-dependent manner that involves the release of a sequestered hirudin-like N-terminal tail for interaction with thrombin. The native structure of HCII resembles that of native antithrombin and suggests an alternative mechanism of allosteric activation, whereas the structure of the S195A thrombin-HCII complex defines the molecular basis of allostery. Together, these structures reveal a multistep allosteric mechanism that relies on sequential contraction and expansion of the central beta-sheet of HCII.

Reviews - 1jmo mentioned but not cited (5)

  1. Exosites in the substrate specificity of blood coagulation reactions. Bock PE, Panizzi P, Verhamme IM. J Thromb Haemost 5 Suppl 1 81-94 (2007)
  2. Serpins flex their muscle: II. Structural insights into target peptidase recognition, polymerization, and transport functions. Whisstock JC, Silverman GA, Bird PI, Bottomley SP, Kaiserman D, Luke CJ, Pak SC, Reichhart JM, Huntington JA. J Biol Chem 285 24307-24312 (2010)
  3. Exosite Binding in Thrombin: A Global Structural/Dynamic Overview of Complexes with Aptamers and Other Ligands. Troisi R, Balasco N, Autiero I, Vitagliano L, Sica F. Int J Mol Sci 22 10803 (2021)
  4. Sulfotyrosine residues: Interaction specificity determinants for extracellular protein-protein interactions. Stewart V, Ronald PC. J Biol Chem 298 102232 (2022)
  5. The Inhibition of Serine Proteases by Serpins Is Augmented by Negatively Charged Heparin: A Concise Review of Some Clinically Relevant Interactions. Chan ED, King PT, Bai X, Schoffstall AM, Sandhaus RA, Buckle AM. Int J Mol Sci 25 1804 (2024)

Articles - 1jmo mentioned but not cited (17)

  1. Benchmarking and analysis of protein docking performance in Rosetta v3.2. Chaudhury S, Berrondo M, Weitzner BD, Muthu P, Bergman H, Gray JJ. PLoS One 6 e22477 (2011)
  2. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  3. Crystal structure of an RNA aptamer bound to thrombin. Long SB, Long MB, White RR, Sullenger BA. RNA 14 2504-2512 (2008)
  4. SwarmDock and the use of normal modes in protein-protein docking. Moal IH, Bates PA. Int J Mol Sci 11 3623-3648 (2010)
  5. How structure defines affinity in protein-protein interactions. Erijman A, Rosenthal E, Shifman JM. PLoS One 9 e110085 (2014)
  6. Crystal structure of wild-type human thrombin in the Na+-free state. Johnson DJ, Adams TE, Li W, Huntington JA. Biochem J 392 21-28 (2005)
  7. Understanding Dermatan Sulfate-Heparin Cofactor II Interaction through Virtual Library Screening. Raghuraman A, Mosier PD, Desai UR. ACS Med Chem Lett 1 281-285 (2010)
  8. Protein-protein binding site identification by enumerating the configurations. Guo F, Li SC, Wang L, Zhu D. BMC Bioinformatics 13 158 (2012)
  9. How to use not-always-reliable binding site information in protein-protein docking prediction. Li L, Huang Y, Xiao Y. PLoS One 8 e75936 (2013)
  10. PRISM-EM: template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps. Kuzu G, Keskin O, Nussinov R, Gursoy A. Acta Crystallogr D Struct Biol 72 1137-1148 (2016)
  11. Cryo-EM Data Are Superior to Contact and Interface Information in Integrative Modeling. de Vries SJ, Chauvot de Beauchêne I, Schindler CE, Zacharias M. Biophys J 110 785-797 (2016)
  12. Identification and partial characterization of a novel serpin from Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). Roudnický P, Vorel J, Ilgová J, Benovics M, Norek A, Jedličková L, Mikeš L, Potěšil D, Zdráhal Z, Dvořák J, Gelnar M, Kašný M. Parasite 25 61 (2018)
  13. ANISERP: a new serpin from the parasite Anisakis simplex. Valdivieso E, Perteguer MJ, Hurtado C, Campioli P, Rodríguez E, Saborido A, Martínez-Sernández V, Gómez-Puertas P, Ubeira FM, Gárate T. Parasit Vectors 8 399 (2015)
  14. Relating the shape of protein binding sites to binding affinity profiles: is there an association? Simon Z, Vigh-Smeller M, Peragovics A, Csukly G, Zahoránszky-Kohalmi G, Rauscher AA, Jelinek B, Hári P, Bitter I, Málnási-Csizmadia A, Czobor P. BMC Struct Biol 10 32 (2010)
  15. The complete N-terminal extension of heparin cofactor II is required for maximal effectiveness as a thrombin exosite 1 ligand. Boyle AJ, Roddick LA, Bhakta V, Lambourne MD, Junop MS, Liaw PC, Weitz JI, Sheffield WP. BMC Biochem 14 6 (2013)
  16. CARDIO-PRED: an in silico tool for predicting cardiovascular-disorder associated proteins. Jain P, Thukral N, Gahlot LK, Hasija Y. Syst Synth Biol 9 55-66 (2015)
  17. PRISM-EM: template interface-based modelling of multi-protein complexes guided by cryo-electron microscopy density maps. Corrigendum. Kuzu G, Keskin O, Nussinov R, Gursoy A. Acta Crystallogr D Struct Biol 74 65-66 (2018)


Reviews citing this publication (37)

  1. The interactions between inflammation and coagulation. Esmon CT. Br J Haematol 131 417-430 (2005)
  2. An overview of the serpin superfamily. Law RH, Zhang Q, McGowan S, Buckle AM, Silverman GA, Wong W, Rosado CJ, Langendorf CG, Pike RN, Bird PI, Whisstock JC. Genome Biol 7 216 (2006)
  3. Thrombin. Di Cera E. Mol Aspects Med 29 203-254 (2008)
  4. Serpins in thrombosis, hemostasis and fibrinolysis. Rau JC, Beaulieu LM, Huntington JA, Church FC. J Thromb Haemost 5 Suppl 1 102-115 (2007)
  5. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Gooptu B, Lomas DA. Annu Rev Biochem 78 147-176 (2009)
  6. Serpin structure, function and dysfunction. Huntington JA. J Thromb Haemost 9 Suppl 1 26-34 (2011)
  7. Molecular recognition mechanisms of thrombin. Huntington JA. J Thromb Haemost 3 1861-1872 (2005)
  8. Heparin-binding domains in vascular biology. Muñoz EM, Linhardt RJ. Arterioscler Thromb Vasc Biol 24 1549-1557 (2004)
  9. Interactions between the innate immune and blood coagulation systems. Esmon CT. Trends Immunol 25 536-542 (2004)
  10. Shape-shifting serpins--advantages of a mobile mechanism. Huntington JA. Trends Biochem Sci 31 427-435 (2006)
  11. Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans. Pike RN, Buckle AM, le Bonniec BF, Church FC. FEBS J 272 4842-4851 (2005)
  12. Serpins in arthropod biology. Meekins DA, Kanost MR, Michel K. Semin Cell Dev Biol 62 105-119 (2017)
  13. Mechanisms of glycosaminoglycan activation of the serpins in hemostasis. Huntington JA. J Thromb Haemost 1 1535-1549 (2003)
  14. Serpins in plants and green algae. Roberts TH, Hejgaard J. Funct Integr Genomics 8 1-27 (2008)
  15. Thrombin-cofactor interactions: structural insights into regulatory mechanisms. Adams TE, Huntington JA. Arterioscler Thromb Vasc Biol 26 1738-1745 (2006)
  16. New antithrombin-based anticoagulants. Desai UR. Med Res Rev 24 151-181 (2004)
  17. Inhibitory serpins. New insights into their folding, polymerization, regulation and clearance. Gettins PG, Olson ST. Biochem J 473 2273-2293 (2016)
  18. Exosite determinants of serpin specificity. Gettins PG, Olson ST. J Biol Chem 284 20441-20445 (2009)
  19. Structure and interaction modes of thrombin. Bode W. Blood Cells Mol Dis 36 122-130 (2006)
  20. The roles of serpins in mosquito immunology and physiology. Gulley MM, Zhang X, Michel K. J Insect Physiol 59 138-147 (2013)
  21. Molecular and structural basis of steroid hormone binding and release from corticosteroid-binding globulin. Lin HY, Muller YA, Hammond GL. Mol Cell Endocrinol 316 3-12 (2010)
  22. Sulodexide: a renewed interest in this glycosaminoglycan. Lauver DA, Lucchesi BR. Cardiovasc Drug Rev 24 214-226 (2006)
  23. Targeting thrombin--rational drug design from natural mechanisms. Huntington JA, Baglin TP. Trends Pharmacol Sci 24 589-595 (2003)
  24. Protease inhibitors and proteolytic signalling cascades in insects. Gubb D, Sanz-Parra A, Barcena L, Troxler L, Fullaondo A. Biochimie 92 1749-1759 (2010)
  25. Thrombin as procoagulant and anticoagulant. Di Cera E. J Thromb Haemost 5 Suppl 1 196-202 (2007)
  26. Heparin cofactor II modulates the response to vascular injury. Tollefsen DM. Arterioscler Thromb Vasc Biol 27 454-460 (2007)
  27. Thrombin inhibition by the serpins. Huntington JA. J Thromb Haemost 11 Suppl 1 254-264 (2013)
  28. Thrombin allostery. Di Cera E, Page MJ, Bah A, Bush-Pelc LA, Garvey LC. Phys Chem Chem Phys 9 1291-1306 (2007)
  29. Natural inhibitors of thrombin. Huntington JA. Thromb Haemost 111 583-589 (2014)
  30. Emerging patterns of tyrosine sulfation and O-glycosylation cross-talk and co-localization. Mehta AY, Heimburg-Molinaro J, Cummings RD, Goth CK. Curr Opin Struct Biol 62 102-111 (2020)
  31. The initiating proteases of the complement system: controlling the cleavage. Duncan RC, Wijeyewickrema LC, Pike RN. Biochimie 90 387-395 (2008)
  32. The structure of thrombin, a chameleon-like proteinase. Bode W. J Thromb Haemost 3 2379-2388 (2005)
  33. Anticoagulant SERPINs: Endogenous Regulators of Hemostasis and Thrombosis. Grover SP, Mackman N. Front Cardiovasc Med 9 878199 (2022)
  34. Serpins in cartilage and osteoarthritis: what do we know? Wilkinson DJ. Biochem Soc Trans 49 1013-1026 (2021)
  35. Serpin crystal structure and serpin polymer structure. Marszal E, Shrake A. Arch Biochem Biophys 453 123-129 (2006)
  36. Revisiting the Pharmacology of Unfractionated Heparin. Derbalah A, Duffull S, Newall F, Moynihan K, Al-Sallami H. Clin Pharmacokinet 58 1015-1028 (2019)
  37. Regulation of Peptidase Activity beyond the Active Site in Human Health and Disease. Obaha A, Novinec M. Int J Mol Sci 24 17120 (2023)

Articles citing this publication (72)

  1. Structure of the antithrombin-thrombin-heparin ternary complex reveals the antithrombotic mechanism of heparin. Li W, Johnson DJ, Esmon CT, Huntington JA. Nat Struct Mol Biol 11 857-862 (2004)
  2. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. Johnson DJ, Li W, Adams TE, Huntington JA. EMBO J 25 2029-2037 (2006)
  3. The ternary complex of antithrombin-anhydrothrombin-heparin reveals the basis of inhibitor specificity. Dementiev A, Petitou M, Herbert JM, Gettins PG. Nat Struct Mol Biol 11 863-867 (2004)
  4. The molecular basis of thrombin allostery revealed by a 1.8 A structure of the "slow" form. Huntington JA, Esmon CT. Structure 11 469-479 (2003)
  5. Long range communication between exosites 1 and 2 modulates thrombin function. Petrera NS, Stafford AR, Leslie BA, Kretz CA, Fredenburgh JC, Weitz JI. J Biol Chem 284 25620-25629 (2009)
  6. A nonsense polymorphism in the protein Z-dependent protease inhibitor increases the risk for venous thrombosis. Corral J, González-Conejero R, Soria JM, González-Porras JR, Pérez-Ceballos E, Lecumberri R, Roldán V, Souto JC, Miñano A, Hernández-Espinosa D, Alberca I, Fontcuberta J, Vicente V. Blood 108 177-183 (2006)
  7. Crystal structure of anticoagulant thrombin variant E217K provides insights into thrombin allostery. Carter WJ, Myles T, Gibbs CS, Leung LL, Huntington JA. J Biol Chem 279 26387-26394 (2004)
  8. Mutations within the protein Z-dependent protease inhibitor gene are associated with venous thromboembolic disease: a new form of thrombophilia. Van de Water N, Tan T, Ashton F, O'Grady A, Day T, Browett P, Ockelford P, Harper P. Br J Haematol 127 190-194 (2004)
  9. Molecular basis of thrombin recognition by protein C inhibitor revealed by the 1.6-A structure of the heparin-bridged complex. Li W, Adams TE, Nangalia J, Esmon CT, Huntington JA. Proc Natl Acad Sci U S A 105 4661-4666 (2008)
  10. The heparin binding properties of heparin cofactor II suggest an antithrombin-like activation mechanism. O'Keeffe D, Olson ST, Gasiunas N, Gallagher J, Baglin TP, Huntington JA. J Biol Chem 279 50267-50273 (2004)
  11. On the specificity of heparin/heparan sulfate binding to proteins. Anion-binding sites on antithrombin and thrombin are fundamentally different. Mosier PD, Krishnasamy C, Kellogg GE, Desai UR. PLoS One 7 e48632 (2012)
  12. A Hexasaccharide Containing Rare 2-O-Sulfate-Glucuronic Acid Residues Selectively Activates Heparin Cofactor II. Sankarayanarayanan NV, Strebel TR, Boothello RS, Sheerin K, Raghuraman A, Sallas F, Mosier PD, Watermeyer ND, Oscarson S, Desai UR. Angew Chem Int Ed Engl 56 2312-2317 (2017)
  13. X-ray crystal structure of MENT: evidence for functional loop-sheet polymers in chromatin condensation. McGowan S, Buckle AM, Irving JA, Ong PC, Bashtannyk-Puhalovich TA, Kan WT, Henderson KN, Bulynko YA, Popova EY, Smith AI, Bottomley SP, Rossjohn J, Grigoryev SA, Pike RN, Whisstock JC. EMBO J 25 3144-3155 (2006)
  14. Exploiting conformational ensembles in modeling protein-protein interactions on the proteome scale. Kuzu G, Gursoy A, Nussinov R, Keskin O. J Proteome Res 12 2641-2653 (2013)
  15. Through-bond effects in the ternary complexes of thrombin sandwiched by two DNA aptamers. Pica A, Russo Krauss I, Parente V, Tateishi-Karimata H, Nagatoishi S, Tsumoto K, Sugimoto N, Sica F. Nucleic Acids Res 45 461-469 (2017)
  16. Homozygous deficiency of heparin cofactor II: relevance of P17 glutamate residue in serpins, relationship with conformational diseases, and role in thrombosis. Corral J, Aznar J, Gonzalez-Conejero R, Villa P, Miñano A, Vayá A, Carrell RW, Huntington JA, Vicente V. Circulation 110 1303-1307 (2004)
  17. The reactive-center loop of active PAI-1 is folded close to the protein core and can be partially inserted. Hägglöf P, Bergström F, Wilczynska M, Johansson LB, Ny T. J Mol Biol 335 823-832 (2004)
  18. The 3-O-sulfation of heparan sulfate modulates protein binding and lyase degradation. Chopra P, Joshi A, Wu J, Lu W, Yadavalli T, Wolfert MA, Shukla D, Zaia J, Boons GJ. Proc Natl Acad Sci U S A 118 e2012935118 (2021)
  19. Whole-exome sequencing in evaluation of patients with venous thromboembolism. Lee EJ, Dykas DJ, Leavitt AD, Camire RM, Ebberink E, García de Frutos P, Gnanasambandan K, Gu SX, Huntington JA, Lentz SR, Mertens K, Parish CR, Rezaie AR, Sayeski PP, Cromwell C, Bar N, Halene S, Neparidze N, Parker TL, Burns AJ, Dumont A, Yao X, Chaar CIO, Connors JM, Bale AE, Lee AI. Blood Adv 1 1224-1237 (2017)
  20. Crystal structures of protease nexin-1 in complex with heparin and thrombin suggest a 2-step recognition mechanism. Li W, Huntington JA. Blood 120 459-467 (2012)
  21. Crystallographic and cellular characterisation of two mechanisms stabilising the native fold of alpha1-antitrypsin: implications for disease and drug design. Gooptu B, Miranda E, Nobeli I, Mallya M, Purkiss A, Brown SC, Summers C, Phillips RL, Lomas DA, Barrett TE. J Mol Biol 387 857-868 (2009)
  22. Proteolytic activation transforms heparin cofactor II into a host defense molecule. Kalle M, Papareddy P, Kasetty G, Tollefsen DM, Malmsten M, Mörgelin M, Schmidtchen A. J Immunol 190 6303-6310 (2013)
  23. Crystal structure of protein C inhibitor provides insights into hormone binding and heparin activation. Huntington JA, Kjellberg M, Stenflo J. Structure 11 205-215 (2003)
  24. Sulodexide ameliorates early but not late kidney disease in models of radiation nephropathy and diabetic nephropathy. Rossini M, Naito T, Yang H, Freeman M, Donnert E, Ma LJ, Dunn SR, Sharma K, Fogo AB. Nephrol Dial Transplant 25 1803-1810 (2010)
  25. RNA aptamer to thrombin binds anion-binding exosite-2 and alters protease inhibition by heparin-binding serpins. Jeter ML, Ly LV, Fortenberry YM, Whinna HC, White RR, Rusconi CP, Sullenger BA, Church FC. FEBS Lett 568 10-14 (2004)
  26. Mapping of heparin/heparan sulfate binding sites on αvβ3 integrin by molecular docking. Ballut L, Sapay N, Chautard E, Imberty A, Ricard-Blum S. J Mol Recognit 26 76-85 (2013)
  27. Investigation into the effects of antioxidant-rich extract of Tamarindus indica leaf on antioxidant enzyme activities, oxidative stress and gene expression profiles in HepG2 cells. Razali N, Abdul Aziz A, Lim CY, Mat Junit S. PeerJ 3 e1292 (2015)
  28. Molecular basis of thrombomodulin activation of slow thrombin. Adams TE, Li W, Huntington JA. J Thromb Haemost 7 1688-1695 (2009)
  29. Identification and analysis of serpin-family genes by homology and synteny across the 12 sequenced Drosophilid genomes. Garrett M, Fullaondo A, Troxler L, Micklem G, Gubb D. BMC Genomics 10 489 (2009)
  30. Identification of SERPINB1 as a physiological inhibitor of human granzyme H. Wang L, Li Q, Wu L, Liu S, Zhang Y, Yang X, Zhu P, Zhang H, Zhang K, Lou J, Liu P, Tong L, Sun F, Fan Z. J Immunol 190 1319-1330 (2013)
  31. Biochemical characterization of Anopheles gambiae SRPN6, a malaria parasite invasion marker in mosquitoes. An C, Hiromasa Y, Zhang X, Lovell S, Zolkiewski M, Tomich JM, Michel K. PLoS One 7 e48689 (2012)
  32. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands. Pedersen KE, Einholm AP, Christensen A, Schack L, Wind T, Kenney JM, Andreasen PA. Biochem J 372 747-755 (2003)
  33. Structural differences between active forms of plasminogen activator inhibitor type 1 revealed by conformationally sensitive ligands. Li SH, Gorlatova NV, Lawrence DA, Schwartz BS. J Biol Chem 283 18147-18157 (2008)
  34. Immune challenge induces N-terminal cleavage of the Drosophila serpin Necrotic. Pelte N, Robertson AS, Zou Z, Belorgey D, Dafforn TR, Jiang H, Lomas D, Reichhart JM, Gubb D. Insect Biochem Mol Biol 36 37-46 (2006)
  35. Engineering functional antithrombin exosites in alpha1-proteinase inhibitor that specifically promote the inhibition of factor Xa and factor IXa. Izaguirre G, Rezaie AR, Olson ST. J Biol Chem 284 1550-1558 (2009)
  36. Thrombin-activated thrombelastography for evaluation of thrombin interaction with thrombin inhibitors. Taketomi T, Szlam F, Vinten-Johansen J, Levy JH, Tanaka KA. Blood Coagul Fibrinolysis 18 761-767 (2007)
  37. Zinc ions promote the interaction between heparin and heparin cofactor II. Eckert R, Ragg H. FEBS Lett 541 121-125 (2003)
  38. A computational modeling and molecular dynamics study of the Michaelis complex of human protein Z-dependent protease inhibitor (ZPI) and factor Xa (FXa). Chandrasekaran V, Lee CJ, Lin P, Duke RE, Pedersen LG. J Mol Model 15 897-911 (2009)
  39. Antithrombin activity and disaccharide composition of dermatan sulfate from different bovine tissues. Osborne SA, Daniel RA, Desilva K, Seymour RB. Glycobiology 18 225-234 (2008)
  40. Crystal structure of native Anopheles gambiae serpin-2, a negative regulator of melanization in mosquitoes. An C, Lovell S, Kanost MR, Battaile KP, Michel K. Proteins 79 1999-2003 (2011)
  41. Molecular mapping of the thrombin-heparin cofactor II complex. Fortenberry YM, Whinna HC, Gentry HR, Myles T, Leung LL, Church FC. J Biol Chem 279 43237-43244 (2004)
  42. Mutation in a highly conserved glycine residue in strand 5B of plasminogen activator inhibitor 1 causes polymerisation. Iwaki T, Nagahashi K, Takano K, Suzuki-Inoue K, Kanayama N, Umemura K, Urano T. Thromb Haemost 117 860-869 (2017)
  43. γT -S195A thrombin reduces the anticoagulant effects of dabigatran in vitro and in vivo. Sheffield WP, Lambourne MD, Eltringham-Smith LJ, Bhakta V, Arnold DM, Crowther MA. J Thromb Haemost 12 1110-1115 (2014)
  44. Reformable intramolecular cross-linking of the N-terminal domain of heparin cofactor II: effects on enzyme inhibition. Brinkmeyer S, Eckert R, Ragg H. Eur J Biochem 271 4275-4283 (2004)
  45. Towards engineering hormone-binding globulins as drug delivery agents. Chan WL, Zhou A, Read RJ. PLoS One 9 e113402 (2014)
  46. Heparin Binds Lamprey Angiotensinogen and Promotes Thrombin Inhibition through a Template Mechanism. Wei H, Cai H, Wu J, Wei Z, Zhang F, Huang X, Ma L, Feng L, Zhang R, Wang Y, Ragg H, Zheng Y, Zhou A. J Biol Chem 291 24900-24911 (2016)
  47. Heparinase Is Essential for Pseudomonas aeruginosa Virulence during Thermal Injury and Infection. Dzvova N, Colmer-Hamood JA, Griswold JA, Hamood AN. Infect Immun 86 e00755-17 (2018)
  48. How Dextran Sulfate Affects C1-inhibitor Activity: A Model for Polysaccharide Potentiation. Dijk M, Holkers J, Voskamp P, Giannetti BM, Waterreus WJ, van Veen HA, Pannu NS. Structure 24 2182-2189 (2016)
  49. Molecular dynamics simulations of aptamer-binding reveal generalized allostery in thrombin. Xiao J, Salsbury FR. J Biomol Struct Dyn 35 3354-3369 (2017)
  50. Inhibition of thrombin formation by active site mutated (S360A) activated protein C. Nicolaes GA, Bock PE, Segers K, Wildhagen KC, Dahlbäck B, Rosing J. J Biol Chem 285 22890-22900 (2010)
  51. Molecular contortionism - on the physical limits of serpin 'loop-sheet' polymers. Huntington JA, Whisstock JC. Biol Chem 391 973-982 (2010)
  52. Genetic variants and evolutionary analyses of heparin cofactor II. Kumar A, Bhandari A, Sarde SJ, Goswami C. Immunobiology 219 713-728 (2014)
  53. Investigating serpin-enzyme complex formation and stability via single and multiple residue reactive centre loop substitutions in heparin cofactor II. Sutherland JS, Bhakta V, Sheffield WP. Thromb Res 117 447-461 (2006)
  54. Structural and inhibitory effects of hinge loop mutagenesis in serpin-2 from the malaria vector Anopheles gambiae. Zhang X, Meekins DA, An C, Zolkiewski M, Battaile KP, Kanost MR, Lovell S, Michel K. J Biol Chem 290 2946-2956 (2015)
  55. Localization of heparin cofactor II in injured human skin: a potential role in wound healing. Hoffman M, Loh KL, Bond VK, Palmieri D, Ryan JL, Church FC. Exp Mol Pathol 75 109-118 (2003)
  56. Retention of thrombin inhibitory activity by recombinant serpins expressed as integral membrane proteins tethered to the surface of mammalian cells. Gierczak RF, Sutherland JS, Bhakta V, Toltl LJ, Liaw PC, Sheffield WP. J Thromb Haemost 9 2424-2435 (2011)
  57. Two missense mutations identified in venous thrombosis patients impair the inhibitory function of the protein Z dependent protease inhibitor. Young LK, Birch NP, Browett PJ, Coughlin PB, Horvath AJ, Van de Water NS, Ockelford PA, Harper PL. Thromb Haemost 107 854-863 (2012)
  58. Heparin cofactor II is more sensitive than antithrombin to secretory impairment arising from mutations introduced into its carboxy-terminal region. Bhakta V, Begbie ME, Gupta A, Sandhu V, Sheffield WP. Thromb Res 113 163-173 (2004)
  59. Sucrose octasulfate selectively accelerates thrombin inactivation by heparin cofactor II. Sarilla S, Habib SY, Kravtsov DV, Matafonov A, Gailani D, Verhamme IM. J Biol Chem 285 8278-8289 (2010)
  60. Active but inoperable thrombin is accumulated in a plasma protein layer surrounding Streptococcus pyogenes. Naudin C, Hurley SM, Malmström E, Plug T, Shannon O, Meijers JC, Mörgelin M, Björck L, Herwald H. Thromb Haemost 114 717-726 (2015)
  61. Heparin Blocks the Inhibition of Tissue Kallikrein 1 by Kallistatin through Electrostatic Repulsion. Ma L, Wu J, Zheng Y, Shu Z, Wei Z, Sun Y, Carrell RW, Zhou A. Biomolecules 10 E828 (2020)
  62. Paramount Importance of Core Conformational Changes for Heparin Allosteric Activation of Antithrombin. Izaguirre G, Swanson R, Roth R, Gettins PGW, Olson ST. Biochemistry 60 1201-1213 (2021)
  63. Fluorescent reporters of thrombin, heparin cofactor II, and heparin binding in a ternary complex. Verhamme IM. Anal Biochem 421 489-498 (2012)
  64. Fusion of the C-terminal triskaidecapeptide of hirudin variant 3 to alpha1-proteinase inhibitor M358R increases the serpin-mediated rate of thrombin inhibition. Roddick LA, Bhakta V, Sheffield WP. BMC Biochem 14 31 (2013)
  65. Glycosaminoglycan-binding properties and kinetic characterization of human heparin cofactor II expressed in Escherichia coli. Sarilla S, Habib SY, Tollefsen DM, Friedman DB, Arnett DR, Verhamme IM. Anal Biochem 406 166-175 (2010)
  66. Purification and characterization of alpha(1)-proteinase inhibitor and antithrombin III: major serpins of rainbow trout (Oncorhynchuss mykiss) and carp (Cyprinus carpio) blood plasma. Mickowska B. Fish Physiol Biochem 35 231-240 (2009)
  67. Studies on the effect of calcium in interactions between heparin and heparin cofactor II using surface plasmon resonance. Zhang F, Wu Y, Ma Q, Hoppensteadt D, Fareed J, Linhardt RJ. Clin Appl Thromb Hemost 10 249-257 (2004)
  68. 1.45 Å resolution structure of SRPN18 from the malaria vector Anopheles gambiae. Meekins DA, Zhang X, Battaile KP, Lovell S, Michel K. Acta Crystallogr F Struct Biol Commun 72 853-862 (2016)
  69. Mechanism of activation of heparin cofactor II by calcium spirulan. Hayakawa Y, Hirashima Y, Yamamoto H, Kurimoto M, Hayashi T, Lee JB, Endo S. Arch Biochem Biophys 416 47-52 (2003)
  70. DNA accelerates the protease inhibition of a bacterial serpin chloropin. Xu J, Ye W, Yang TT, Yan T, Cai H, Zhou A, Yang Y. Front Mol Biosci 10 1157186 (2023)
  71. Oral administration of dermatan sulphate reduces venous thrombus formation in vivo: potential use as a formulation for venous thromboembolism. Osborne SA, Masci PP, Du QS, Daniel RA, Desilva K, Vitetta L, Zhao KN, Seymour RB. Inflammopharmacology 29 525-535 (2021)
  72. Suggestions on leading an academic research laboratory group. Church FC. Open Life Sci 17 599-609 (2022)