1jm4 Citations

Structural basis of lysine-acetylated HIV-1 Tat recognition by PCAF bromodomain.

Mol Cell 9 575-86 (2002)
Cited: 140 times
EuropePMC logo PMID: 11931765

Abstract

The human immunodeficiency virus type 1 (HIV-1) trans-activator protein Tat stimulates transcription of the integrated HIV-1 genome and promotes viral replication in infected cells. Tat transactivation activity is dependent on lysine acetylation and its association with nuclear histone acetyltransferases p300/CBP (CREB binding protein) and p300/CBP-associated factor (PCAF). Here, we show that the bromodomain of PCAF binds specifically to HIV-1 Tat acetylated at lysine 50 and that this interaction competes effectively against HIV-1 TAR RNA binding to the lysine-acetylated Tat. The three-dimensional solution structure of the PCAF bromodomain in complex with a lysine 50-acetylated Tat peptide together with biochemical analyses provides the structural basis for the specificity of this molecular recognition and reveals insights into the differences in ligand selectivity of bromodomains.

Reviews - 1jm4 mentioned but not cited (2)

Articles - 1jm4 mentioned but not cited (3)

  1. Structural basis of site-specific histone recognition by the bromodomains of human coactivators PCAF and CBP/p300. Zeng L, Zhang Q, Gerona-Navarro G, Moshkina N, Zhou MM. Structure 16 643-652 (2008)
  2. HIV-1 Tat Binding to PCAF Bromodomain: Structural Determinants from Computational Methods. Quy VC, Pantano S, Rossetti G, Giacca M, Carloni P. Biology (Basel) 1 277-296 (2012)
  3. Molecular Mechanism of Sirtuin 1 Inhibition by Human Immunodeficiency Virus 1 Tat Protein. Adolph RS, Beck E, Schweimer K, Di Fonzo A, Weyand M, Rösch P, Wöhrl BM, Steegborn C. Life (Basel) 13 949 (2023)


Reviews citing this publication (53)

  1. The growing landscape of lysine acetylation links metabolism and cell signalling. Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. Nat Rev Mol Cell Biol 15 536-550 (2014)
  2. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Yang XJ. Nucleic Acids Res 32 959-976 (2004)
  3. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Fujisawa T, Filippakopoulos P. Nat Rev Mol Cell Biol 18 246-262 (2017)
  4. Structure and acetyl-lysine recognition of the bromodomain. Mujtaba S, Zeng L, Zhou MM. Oncogene 26 5521-5527 (2007)
  5. Lysine acetylation and the bromodomain: a new partnership for signaling. Yang XJ. Bioessays 26 1076-1087 (2004)
  6. Writers and readers of histone acetylation: structure, mechanism, and inhibition. Marmorstein R, Zhou MM. Cold Spring Harb Perspect Biol 6 a018762 (2014)
  7. The bromodomain interaction module. Filippakopoulos P, Knapp S. FEBS Lett 586 2692-2704 (2012)
  8. HIV-1 transcription and latency: an update. Van Lint C, Bouchat S, Marcello A. Retrovirology 10 67 (2013)
  9. An integrated overview of HIV-1 latency. Ruelas DS, Greene WC. Cell 155 519-529 (2013)
  10. Regulation of distinct biological activities of the NF-kappaB transcription factor complex by acetylation. Chen LF, Greene WC. J Mol Med (Berl) 81 549-557 (2003)
  11. The control of HIV transcription: keeping RNA polymerase II on track. Ott M, Geyer M, Zhou Q. Cell Host Microbe 10 426-435 (2011)
  12. HIV tat and neurotoxicity. King JE, Eugenin EA, Buckner CM, Berman JW. Microbes Infect 8 1347-1357 (2006)
  13. The role of human bromodomains in chromatin biology and gene transcription. Sanchez R, Zhou MM. Curr Opin Drug Discov Devel 12 659-665 (2009)
  14. Bromodomain inhibitors and cancer therapy: From structures to applications. Pérez-Salvia M, Esteller M. Epigenetics 12 323-339 (2017)
  15. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Ali I, Conrad RJ, Verdin E, Ott M. Chem Rev 118 1216-1252 (2018)
  16. Snapshots: chromatin control of viral infection. Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, Ott M, Margolis D, Nieto A, Nevels M, Parks RJ, Kristie TM. Virology 435 141-156 (2013)
  17. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Stevens M, De Clercq E, Balzarini J. Med Res Rev 26 595-625 (2006)
  18. Keeping it in the family: diverse histone recognition by conserved structural folds. Yap KL, Zhou MM. Crit Rev Biochem Mol Biol 45 488-505 (2010)
  19. Structures of protein domains that create or recognize histone modifications. Bottomley MJ. EMBO Rep 5 464-469 (2004)
  20. HIV Tat, its TARgets and the control of viral gene expression. Brigati C, Giacca M, Noonan DM, Albini A. FEMS Microbiol Lett 220 57-65 (2003)
  21. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Xue B, Mizianty MJ, Kurgan L, Uversky VN. Cell Mol Life Sci 69 1211-1259 (2012)
  22. Bromodomains and their pharmacological inhibitors. Gallenkamp D, Gelato KA, Haendler B, Weinmann H. ChemMedChem 9 438-464 (2014)
  23. Chromatin dynamics associated with HIV-1 Tat-activated transcription. Easley R, Van Duyne R, Coley W, Guendel I, Dadgar S, Kehn-Hall K, Kashanchi F. Biochim Biophys Acta 1799 275-285 (2010)
  24. Roles of HIV-1 auxiliary proteins in viral pathogenesis and host-pathogen interactions. Li L, Li HS, Pauza CD, Bukrinsky M, Zhao RY. Cell Res 15 923-934 (2005)
  25. The viral control of cellular acetylation signaling. Caron C, Col E, Khochbin S. Bioessays 25 58-65 (2003)
  26. Decoding Tat: the biology of HIV Tat posttranslational modifications. Hetzer C, Dormeyer W, Schnölzer M, Ott M. Microbes Infect 7 1364-1369 (2005)
  27. Nuclear organization and the control of HIV-1 transcription. Marcello A, Lusic M, Pegoraro G, Pellegrini V, Beltram F, Giacca M. Gene 326 1-11 (2004)
  28. Virus-host interactions: role of HIV proteins Vif, Tat, and Rev. Strebel K. AIDS 17 Suppl 4 S25-34 (2003)
  29. KDM1 class flavin-dependent protein lysine demethylases. Burg JM, Link JE, Morgan BS, Heller FJ, Hargrove AE, McCafferty DG. Biopolymers 104 213-246 (2015)
  30. Tits and bits of HIV Tat protein. Johri MK, Mishra R, Chhatbar C, Unni SK, Singh SK. Expert Opin Biol Ther 11 269-283 (2011)
  31. Genetic variation and function of the HIV-1 Tat protein. Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Med Microbiol Immunol 208 131-169 (2019)
  32. Bromodomain proteins in HIV infection. Boehm D, Conrad RJ, Ott M. Viruses 5 1571-1586 (2013)
  33. Chemical modulators for epigenome reader domains as emerging epigenetic therapies for cancer and inflammation. Zaware N, Zhou MM. Curr Opin Chem Biol 39 116-125 (2017)
  34. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology. Galdeano C, Ciulli A. Future Med Chem 8 1655-1680 (2016)
  35. Pharmacological targeting of lysine acetyltransferases in human disease: a progress report. Heery DM, Fischer PM. Drug Discov Today 12 88-99 (2007)
  36. Chemical probes and inhibitors of bromodomains outside the BET family. Moustakim M, Clark PGK, Hay DA, Dixon DJ, Brennan PE. Medchemcomm 7 2246-2264 (2016)
  37. Progress in the Development of non-BET Bromodomain Chemical Probes. Theodoulou NH, Tomkinson NC, Prinjha RK, Humphreys PG. ChemMedChem 11 477-487 (2016)
  38. Design of small molecule epigenetic modulators. Pachaiyappan B, Woster PM. Bioorg Med Chem Lett 24 21-32 (2014)
  39. Manipulation of the host protein acetylation network by human immunodeficiency virus type 1. Jeng MY, Ali I, Ott M. Crit Rev Biochem Mol Biol 50 314-325 (2015)
  40. Binding Mode of Acetylated Histones to Bromodomains: Variations on a Common Motif. Marchand JR, Caflisch A. ChemMedChem 10 1327-1333 (2015)
  41. Phenotypic screening and fragment-based approaches to the discovery of small-molecule bromodomain ligands. Jennings LE, Measures AR, Wilson BG, Conway SJ. Future Med Chem 6 179-204 (2014)
  42. Anti-viral opportunities during transcriptional activation of latent HIV in the host chromatin. Mujtaba S, Zhou MM. Methods 53 97-101 (2011)
  43. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Front Microbiol 13 862270 (2022)
  44. Characterizing Post-Translational Modifications and Their Effects on Protein Conformation Using NMR Spectroscopy. Kumar A, Narayanan V, Sekhar A. Biochemistry 59 57-73 (2020)
  45. Integration of small-molecule discovery in academic biomedical research. Ohlmeyer M, Zhou MM. Mt Sinai J Med 77 350-357 (2010)
  46. Tat basic domain: A "Swiss army knife" of HIV-1 Tat? Kurnaeva MA, Sheval EV, Musinova YR, Vassetzky YS. Rev Med Virol 29 e2031 (2019)
  47. Emerging therapeutic targets in human acute myeloid leukemia (part 2) - bromodomain inhibition should be considered as a possible strategy for various patient subsets. Reikvam H, Hoang TT, Bruserud Ø. Expert Rev Hematol 8 315-327 (2015)
  48. Retroviral proteomics and interactomes: intricate balances of cell survival and viral replication. Van Duyne R, Kehn-Hall K, Klase Z, Easley R, Heydarian M, Saifuddin M, Wu W, Kashanchi F. Expert Rev Proteomics 5 507-528 (2008)
  49. Concise Review: The Regulatory Mechanism of Lysine Acetylation in Mesenchymal Stem Cell Differentiation. Yang H, Liu Y, Liu X, Gu H, Zhang J, Sun C. Stem Cells Int 2020 7618506 (2020)
  50. SET domain-mediated lysine methylation in lower organisms regulates growth and transcription in hosts. Nwasike C, Ewert S, Jovanovic S, Haider S, Mujtaba S. Ann N Y Acad Sci 1376 18-28 (2016)
  51. Cure and Long-Term Remission Strategies. Mori L, Valente ST. Methods Mol Biol 2407 391-428 (2022)
  52. The Biological Significance of Targeting Acetylation-Mediated Gene Regulation for Designing New Mechanistic Tools and Potential Therapeutics. O'Garro C, Igbineweka L, Ali Z, Mezei M, Mujtaba S. Biomolecules 11 455 (2021)
  53. Targeting bromodomain-containing proteins: research advances of drug discovery. Pan Z, Zhao Y, Wang X, Xie X, Liu M, Zhang K, Wang L, Bai D, Foster LJ, Shu R, He G. Mol Biomed 4 13 (2023)

Articles citing this publication (82)

  1. Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Huang B, Yang XD, Zhou MM, Ozato K, Chen LF. Mol Cell Biol 29 1375-1387 (2009)
  2. Selective recognition of acetylated histones by bromodomain proteins visualized in living cells. Kanno T, Kanno Y, Siegel RM, Jang MK, Lenardo MJ, Ozato K. Mol Cell 13 33-43 (2004)
  3. SIRT1 regulates HIV transcription via Tat deacetylation. Pagans S, Pedal A, North BJ, Kaehlcke K, Marshall BL, Dorr A, Hetzer-Egger C, Henklein P, Frye R, McBurney MW, Hruby H, Jung M, Verdin E, Ott M. PLoS Biol 3 e41 (2005)
  4. Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation. Mujtaba S, He Y, Zeng L, Yan S, Plotnikova O, Sachchidanand, Sanchez R, Zeleznik-Le NJ, Ronai Z, Zhou MM. Mol Cell 13 251-263 (2004)
  5. Acetylation-dependent chromatin reorganization by BRDT, a testis-specific bromodomain-containing protein. Pivot-Pajot C, Caron C, Govin J, Vion A, Rousseaux S, Khochbin S. Mol Cell Biol 23 5354-5365 (2003)
  6. Regulation of HIV-1 gene expression by histone acetylation and factor recruitment at the LTR promoter. Lusic M, Marcello A, Cereseto A, Giacca M. EMBO J 22 6550-6561 (2003)
  7. BET bromodomain-targeting compounds reactivate HIV from latency via a Tat-independent mechanism. Boehm D, Calvanese V, Dar RD, Xing S, Schroeder S, Martins L, Aull K, Li PC, Planelles V, Bradner JE, Zhou MM, Siliciano RF, Weinberger L, Verdin E, Ott M. Cell Cycle 12 452-462 (2013)
  8. Tandem bromodomains in the chromatin remodeler RSC recognize acetylated histone H3 Lys14. Kasten M, Szerlong H, Erdjument-Bromage H, Tempst P, Werner M, Cairns BR. EMBO J 23 1348-1359 (2004)
  9. Acetylation of mitogen-activated protein kinase phosphatase-1 inhibits Toll-like receptor signaling. Cao W, Bao C, Padalko E, Lowenstein CJ. J Exp Med 205 1491-1503 (2008)
  10. PFI-1, a highly selective protein interaction inhibitor, targeting BET Bromodomains. Picaud S, Da Costa D, Thanasopoulou A, Filippakopoulos P, Fish PV, Philpott M, Fedorov O, Brennan P, Bunnage ME, Owen DR, Bradner JE, Taniere P, O'Sullivan B, Müller S, Schwaller J, Stankovic T, Knapp S. Cancer Res 73 3336-3346 (2013)
  11. Human immunodeficiency virus type 1 Tat protein inhibits the SIRT1 deacetylase and induces T cell hyperactivation. Kwon HS, Brent MM, Getachew R, Jayakumar P, Chen LF, Schnolzer M, McBurney MW, Marmorstein R, Greene WC, Ott M. Cell Host Microbe 3 158-167 (2008)
  12. Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. Tréand C, du Chéné I, Brès V, Kiernan R, Benarous R, Benkirane M, Emiliani S. EMBO J 25 1690-1699 (2006)
  13. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. VanDemark AP, Kasten MM, Ferris E, Heroux A, Hill CP, Cairns BR. Mol Cell 27 817-828 (2007)
  14. Transcriptional synergy between Tat and PCAF is dependent on the binding of acetylated Tat to the PCAF bromodomain. Dorr A, Kiermer V, Pedal A, Rackwitz HR, Henklein P, Schubert U, Zhou MM, Verdin E, Ott M. EMBO J 21 2715-2723 (2002)
  15. Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Kaehlcke K, Dorr A, Hetzer-Egger C, Kiermer V, Henklein P, Schnoelzer M, Loret E, Cole PA, Verdin E, Ott M. Mol Cell 12 167-176 (2003)
  16. Human AP endonuclease (APE1/Ref-1) and its acetylation regulate YB-1-p300 recruitment and RNA polymerase II loading in the drug-induced activation of multidrug resistance gene MDR1. Sengupta S, Mantha AK, Mitra S, Bhakat KK. Oncogene 30 482-493 (2011)
  17. HIV-1 Tat is a natively unfolded protein: the solution conformation and dynamics of reduced HIV-1 Tat-(1-72) by NMR spectroscopy. Shojania S, O'Neil JD. J Biol Chem 281 8347-8356 (2006)
  18. The role of bromodomain proteins in regulating gene expression. Josling GA, Selvarajah SA, Petter M, Duffy MF. Genes (Basel) 3 320-343 (2012)
  19. Structures of the dual bromodomains of the P-TEFb-activating protein Brd4 at atomic resolution. Vollmuth F, Blankenfeldt W, Geyer M. J Biol Chem 284 36547-36556 (2009)
  20. Mechanisms of P/CAF auto-acetylation. Santos-Rosa H, Valls E, Kouzarides T, Martínez-Balbás M. Nucleic Acids Res 31 4285-4292 (2003)
  21. Structural basis for acetylated histone H4 recognition by the human BRD2 bromodomain. Umehara T, Nakamura Y, Jang MK, Nakano K, Tanaka A, Ozato K, Padmanabhan B, Yokoyama S. J Biol Chem 285 7610-7618 (2010)
  22. The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Pagans S, Kauder SE, Kaehlcke K, Sakane N, Schroeder S, Dormeyer W, Trievel RC, Verdin E, Schnolzer M, Ott M. Cell Host Microbe 7 234-244 (2010)
  23. In vitro nuclear interactome of the HIV-1 Tat protein. Gautier VW, Gu L, O'Donoghue N, Pennington S, Sheehy N, Hall WW. Retrovirology 6 47 (2009)
  24. Activation of HIV transcription by the viral Tat protein requires a demethylation step mediated by lysine-specific demethylase 1 (LSD1/KDM1). Sakane N, Kwon HS, Pagans S, Kaehlcke K, Mizusawa Y, Kamada M, Lassen KG, Chan J, Greene WC, Schnoelzer M, Ott M. PLoS Pathog 7 e1002184 (2011)
  25. Target structure-based discovery of small molecules that block human p53 and CREB binding protein association. Sachchidanand, Resnick-Silverman L, Yan S, Mutjaba S, Liu WJ, Zeng L, Manfredi JJ, Zhou MM. Chem Biol 13 81-90 (2006)
  26. Differential acetylation of Tat coordinates its interaction with the co-activators cyclin T1 and PCAF. Brès V, Tagami H, Péloponèse JM, Loret E, Jeang KT, Nakatani Y, Emiliani S, Benkirane M, Kiernan RE. EMBO J 21 6811-6819 (2002)
  27. Structural basis and specificity of acetylated transcription factor GATA1 recognition by BET family bromodomain protein Brd3. Gamsjaeger R, Webb SR, Lamonica JM, Billin A, Blobel GA, Mackay JP. Mol Cell Biol 31 2632-2640 (2011)
  28. Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. Berro R, Kehn K, de la Fuente C, Pumfery A, Adair R, Wade J, Colberg-Poley AM, Hiscott J, Kashanchi F. J Virol 80 3189-3204 (2006)
  29. The STAT3 NH2-terminal domain stabilizes enhanceosome assembly by interacting with the p300 bromodomain. Hou T, Ray S, Lee C, Brasier AR. J Biol Chem 283 30725-30734 (2008)
  30. Regulation of Tat acetylation and transactivation activity by the microtubule-associated deacetylase HDAC6. Huo L, Li D, Sun X, Shi X, Karna P, Yang W, Liu M, Qiao W, Aneja R, Zhou J. J Biol Chem 286 9280-9286 (2011)
  31. The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. Li S, Li S, Shogren-Knaak MA. J Biol Chem 284 9411-9417 (2009)
  32. Malignant brain tumor repeats: a three-leaved propeller architecture with ligand/peptide binding pockets. Wang WK, Tereshko V, Boccuni P, MacGrogan D, Nimer SD, Patel DJ. Structure 11 775-789 (2003)
  33. Structural insights into selective histone H3 recognition by the human Polybromo bromodomain 2. Charlop-Powers Z, Zeng L, Zhang Q, Zhou MM. Cell Res 20 529-538 (2010)
  34. Epigenetic transcriptional repression of cellular genes by a viral SET protein. Mujtaba S, Manzur KL, Gurnon JR, Kang M, Van Etten JL, Zhou MM. Nat Cell Biol 10 1114-1122 (2008)
  35. Patterns of HIV-1 protein interaction identify perturbed host-cellular subsystems. MacPherson JI, Dickerson JE, Pinney JW, Robertson DL. PLoS Comput Biol 6 e1000863 (2010)
  36. Selective recognition of acetylated histones by bromodomains in transcriptional co-activators. Hassan AH, Awad S, Al-Natour Z, Othman S, Mustafa F, Rizvi TA. Biochem J 402 125-133 (2007)
  37. Structural ramification for acetyl-lysine recognition by the bromodomain of human BRG1 protein, a central ATPase of the SWI/SNF remodeling complex. Singh M, Popowicz GM, Krajewski M, Holak TA. Chembiochem 8 1308-1316 (2007)
  38. The bromodomain of Gcn5 regulates site specificity of lysine acetylation on histone H3. Cieniewicz AM, Moreland L, Ringel AE, Mackintosh SG, Raman A, Gilbert TM, Wolberger C, Tackett AJ, Taverna SD. Mol Cell Proteomics 13 2896-2910 (2014)
  39. Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Sun H, Liu J, Zhang J, Shen W, Huang H, Xu C, Dai H, Wu J, Shi Y. Biochem Biophys Res Commun 358 435-441 (2007)
  40. Solution structure of the second bromodomain of Brd2 and its specific interaction with acetylated histone tails. Huang H, Zhang J, Shen W, Wang X, Wu J, Wu J, Shi Y. BMC Struct Biol 7 57 (2007)
  41. The Swi2/Snf2 bromodomain is required for the displacement of SAGA and the octamer transfer of SAGA-acetylated nucleosomes. Hassan AH, Awad S, Prochasson P. J Biol Chem 281 18126-18134 (2006)
  42. The biology of lysine acetylation integrates transcriptional programming and metabolism. Patel J, Pathak RR, Mujtaba S. Nutr Metab (Lond) 8 12 (2011)
  43. HIV-1 Tat interactions with cellular 7SK and viral TAR RNAs identifies dual structural mimicry. Pham VV, Salguero C, Khan SN, Meagher JL, Brown WC, Humbert N, de Rocquigny H, Smith JL, D'Souza VM. Nat Commun 9 4266 (2018)
  44. Polybromo-1-bromodomains bind histone H3 at specific acetyl-lysine positions. Chandrasekaran R, Thompson M. Biochem Biophys Res Commun 355 661-666 (2007)
  45. Regulation of human immunodeficiency virus type 1 gene expression by clade-specific Tat proteins. Desfosses Y, Solis M, Sun Q, Grandvaux N, Van Lint C, Burny A, Gatignol A, Wainberg MA, Lin R, Hiscott J. J Virol 79 9180-9191 (2005)
  46. Structural implications for K5/K12-di-acetylated histone H4 recognition by the second bromodomain of BRD2. Umehara T, Nakamura Y, Wakamori M, Ozato K, Yokoyama S, Padmanabhan B. FEBS Lett 584 3901-3908 (2010)
  47. Biochemical profiling of histone binding selectivity of the yeast bromodomain family. Zhang Q, Chakravarty S, Ghersi D, Zeng L, Plotnikov AN, Sanchez R, Zhou MM. PLoS One 5 e8903 (2010)
  48. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Warren K, Warrilow D, Meredith L, Harrich D. Viruses 1 873-894 (2009)
  49. Anthrax SET protein: a potential virulence determinant that epigenetically represses NF-κB activation in infected macrophages. Mujtaba S, Winer BY, Jaganathan A, Patel J, Sgobba M, Schuch R, Gupta YK, Haider S, Wang R, Fischetti VA. J Biol Chem 288 23458-23472 (2013)
  50. p73 Interacts with human immunodeficiency virus type 1 Tat in astrocytic cells and prevents its acetylation on lysine 28. Amini S, Mameli G, Del Valle L, Skowronska A, Reiss K, Gelman BB, White MK, Khalili K, Sawaya BE. Mol Cell Biol 25 8126-8138 (2005)
  51. Discovery of a PCAF Bromodomain Chemical Probe. Moustakim M, Clark PG, Trulli L, Fuentes de Arriba AL, Ehebauer MT, Chaikuad A, Murphy EJ, Mendez-Johnson J, Daniels D, Hou CD, Lin YH, Walker JR, Hui R, Yang H, Dorrell L, Rogers CM, Monteiro OP, Fedorov O, Huber KV, Knapp S, Heer J, Dixon DJ, Brennan PE. Angew Chem Int Ed Engl 56 827-831 (2017)
  52. HDAC1/NFκB pathway is involved in curcumin inhibiting of Tat-mediated long terminal repeat transactivation. Zhang HS, Ruan Z, Sang WW. J Cell Physiol 226 3385-3391 (2011)
  53. Interplay of bromodomain and histone acetylation in the regulation of p300-dependent genes. Chen J, Ghazawi FM, Li Q. Epigenetics 5 509-515 (2010)
  54. Coactivator MYST1 regulates nuclear factor-κB and androgen receptor functions during proliferation of prostate cancer cells. Jaganathan A, Chaurasia P, Xiao GQ, Philizaire M, Lv X, Yao S, Burnstein KL, Liu DP, Levine AC, Mujtaba S. Mol Endocrinol 28 872-885 (2014)
  55. HIV-Tat regulates macrophage gene expression in the context of neuroAIDS. Carvallo L, Lopez L, Fajardo JE, Jaureguiberry-Bravo M, Fiser A, Berman JW. PLoS One 12 e0179882 (2017)
  56. Characterization of HIV Tat modifications using novel methyl-lysine-specific antibodies. Pagans S, Sakane N, Schnölzer M, Ott M. Methods 53 91-96 (2011)
  57. Molecular and genetic characterization of natural HIV-1 Tat Exon-1 variants from North India and their functional implications. Ronsard L, Lata S, Singh J, Ramachandran VG, Das S, Banerjea AC. PLoS One 9 e85452 (2014)
  58. Tat-controlled protein acetylation. Col E, Gilquin B, Caron C, Khochbin S. J Biol Chem 277 37955-37960 (2002)
  59. The chromatin remodeling factor CSB recruits histone acetyltransferase PCAF to rRNA gene promoters in active state for transcription initiation. Shen M, Zhou T, Xie W, Ling T, Zhu Q, Zong L, Lyu G, Gao Q, Zhang F, Tao W. PLoS One 8 e62668 (2013)
  60. Bromodomain proteins GTE9 and GTE11 are essential for specific BT2-mediated sugar and ABA responses in Arabidopsis thaliana. Misra A, McKnight TD, Mandadi KK. Plant Mol Biol 96 393-402 (2018)
  61. Comparative analysis of HIV-1 Tat variants. Pantano S, Carloni P. Proteins 58 638-643 (2005)
  62. New Synthetic Routes to Triazolo-benzodiazepine Analogues: Expanding the Scope of the Bump-and-Hole Approach for Selective Bromo and Extra-Terminal (BET) Bromodomain Inhibition. Baud MG, Lin-Shiao E, Zengerle M, Tallant C, Ciulli A. J Med Chem 59 1492-1500 (2016)
  63. The bromodomain mediates transcriptional intermediary factor 1alpha -nucleosome interactions. Remboutsika E, Yamamoto K, Harbers M, Schmutz M. J Biol Chem 277 50318-50325 (2002)
  64. The HIV-1 Tat Protein Is Monomethylated at Lysine 71 by the Lysine Methyltransferase KMT7. Ali I, Ramage H, Boehm D, Dirk LM, Sakane N, Hanada K, Pagans S, Kaehlcke K, Aull K, Weinberger L, Trievel R, Schnoelzer M, Kamada M, Houtz R, Ott M. J Biol Chem 291 16240-16248 (2016)
  65. Recruitment and activation of RSK2 by HIV-1 Tat. Hetzer C, Bisgrove D, Cohen MS, Pedal A, Kaehlcke K, Speyerer A, Bartscherer K, Taunton J, Ott M. PLoS One 2 e151 (2007)
  66. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins. Li J, Zhao G, Gao X. J Neurodev Disord 5 4 (2013)
  67. Kinetic analysis of acetylation-dependent Pb1 bromodomain-histone interactions. Kupitz C, Chandrasekaran R, Thompson M. Biophys Chem 136 7-12 (2008)
  68. Structure-Based Identification of Inhibitory Fragments Targeting the p300/CBP-Associated Factor Bromodomain. Chaikuad A, Lang S, Brennan PE, Temperini C, Fedorov O, Hollander J, Nachane R, Abell C, Müller S, Siegal G, Knapp S. J Med Chem 59 1648-1653 (2016)
  69. Discovery of New Bromodomain Scaffolds by Biosensor Fragment Screening. Navratilova I, Aristotelous T, Picaud S, Chaikuad A, Knapp S, Filappakopoulos P, Hopkins AL. ACS Med Chem Lett 7 1213-1218 (2016)
  70. Insights on HIV-1 Tat:P/CAF bromodomain molecular recognition from in vivo experiments and molecular dynamics simulations. Pantano S, Marcello A, Ferrari A, Gaudiosi D, Sabò A, Pellegrini V, Beltram F, Giacca M, Carloni P. Proteins 62 1062-1073 (2006)
  71. Thermodynamic analysis of acetylation-dependent Pb1 bromodomain-histone H3 interactions. Thompson M, Chandrasekaran R. Anal Biochem 374 304-312 (2008)
  72. A DNA-Binding Bromodomain-Containing Protein Interacts with and Reduces Rx1-Mediated Immune Response to Potato Virus X. Sukarta OCA, Townsend PD, Llewelyn A, Dixon CH, Slootweg EJ, Pålsson LO, Takken FLW, Goverse A, Cann MJ. Plant Commun 1 100086 (2020)
  73. Fluorescence polarization for the evaluation of small-molecule inhibitors of PCAF BRD/Tat-AcK50 association. Hu P, Wang X, Zhang B, Zhang S, Wang Q, Wang Z. ChemMedChem 9 928-931 (2014)
  74. HIV-1 transcription: activation mediated by acetylation of Tat. Nakatani Y. Structure 10 443-444 (2002)
  75. Activation of IL-1β and TNFα genes is mediated by the establishment of permissive chromatin structures during monopoiesis. Wessels I, Rosenkranz E, Ventura Ferreira M, Neuss S, Zenke M, Rink L, Uciechowski P. Immunobiology 218 860-868 (2013)
  76. A Comprehensive Proteome and Acetyl-Proteome Atlas Reveals Molecular Mechanisms Adapting to the Physiological Changes From Pre-laying to Peak-Laying Stage in Liver of Hens (Gallus gallus). Wang Z, Wang D, Jiang K, Guo Y, Li Z, Jiang R, Han R, Li G, Tian Y, Li H, Kang X, Liu X. Front Vet Sci 8 700669 (2021)
  77. Analysis of p300 acetyltransferase substrate specificity by MALDI TOF mass spectrometry. Dormeyer W, Ott M, Schnölzer M. Methods 36 376-382 (2005)
  78. HIV-1 infection suppresses expression of host cell cycle-associated gene PDS5A. Capalbo G, Müller-Kuller T, Ottmann OG, Hoelzer D, Scheuring UJ. Intervirology 55 263-275 (2012)
  79. Inhibitor of CBP Histone Acetyltransferase Downregulates p53 Activation and Facilitates Methylation at Lysine 27 on Histone H3. Vincek AS, Patel J, Jaganathan A, Green A, Pierre-Louis V, Arora V, Rehmann J, Mezei M, Zhou MM, Ohlmeyer M, Mujtaba S. Molecules 23 (2018)
  80. Evidence that HDAC7 acts as an epigenetic "reader" of AR acetylation through NCoR-HDAC3 dissociation. Zhang Y, Andrade R, Hanna AA, Pflum MKH. Cell Chem Biol 29 1162-1173.e5 (2022)
  81. Unravelling novel congeners from acetyllysine mimicking ligand targeting a lysine acetyltransferase PCAF bromodomain. Suryanarayanan V, Singh SK. J Biomol Struct Dyn 36 4303-4319 (2018)
  82. α-Catenin acetylation is essential for its stability and blocks its tumor suppressor effects in breast cancer through Yap1. Yang Y, Li S, Li Y, Lv L, Ye D, Kang J, Yu T, Wang Y, Wu H. Cancer Gene Ther (2023)


Related citations provided by authors (1)

  1. Structure and Ligand of a Histone Acetyltransferase Bromodomain. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou M-M Nature 399 491-496 (1999)