1jh4 Citations

Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase.

Abstract

The C-terminal domain of poly(A)-binding protein (PABC) is a peptide-binding domain found in poly(A)-binding proteins (PABPs) and a HECT (homologous to E6-AP C-terminus) family E3 ubiquitin ligase. In protein synthesis, the PABC domain of PABP functions to recruit several translation factors possessing the PABP-interacting motif 2 (PAM2) to the mRNA poly(A) tail. We have determined the solution structure of the human PABC domain in complex with two peptides from PABP-interacting protein-1 (Paip1) and Paip2. The structures show a novel mode of peptide recognition, in which the peptide binds as a pair of beta-turns with extensive hydrophobic, electrostatic and aromatic stacking interactions. Mutagenesis of PABC and peptide residues was used to identify key protein-peptide interactions and quantified by isothermal calorimetry, surface plasmon resonance and GST pull-down assays. The results provide insight into the specificity of PABC in mediating PABP-protein interactions.

Articles - 1jh4 mentioned but not cited (1)

  1. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. Kozlov G, De Crescenzo G, Lim NS, Siddiqui N, Fantus D, Kahvejian A, Trempe JF, Elias D, Ekiel I, Sonenberg N, O'Connor-McCourt M, Gehring K. EMBO J 23 272-281 (2004)


Reviews citing this publication (18)

  1. Regulation of mRNA translation and stability by microRNAs. Fabian MR, Sonenberg N, Filipowicz W. Annu Rev Biochem 79 351-379 (2010)
  2. Stress granules and cell signaling: more than just a passing phase? Kedersha N, Ivanov P, Anderson P. Trends Biochem Sci 38 494-506 (2013)
  3. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Scheffner M, Kumar S. Biochim Biophys Acta 1843 61-74 (2014)
  4. Translational control by viral proteinases. Lloyd RE. Virus Res 119 76-88 (2006)
  5. The DAZL and PABP families: RNA-binding proteins with interrelated roles in translational control in oocytes. Brook M, Smith JW, Gray NK. Reproduction 137 595-617 (2009)
  6. HECT E3s and human disease. Scheffner M, Staub O. BMC Biochem 8 Suppl 1 S6 (2007)
  7. Survey of the year 2004 commercial optical biosensor literature. Rich RL, Myszka DG. J Mol Recognit 18 431-478 (2005)
  8. Poly(A) binding proteins: are they all created equal? Goss DJ, Kleiman FE. Wiley Interdiscip Rev RNA 4 167-179 (2013)
  9. Role of GW182 proteins and PABPC1 in the miRNA pathway: a sense of déjà vu. Tritschler F, Huntzinger E, Izaurralde E. Nat Rev Mol Cell Biol 11 379-384 (2010)
  10. The "tale" of poly(A) binding protein: the MLLE domain and PAM2-containing proteins. Xie J, Kozlov G, Gehring K. Biochim Biophys Acta 1839 1062-1068 (2014)
  11. mRNA trafficking in fungi. Zarnack K, Feldbrügge M. Mol Genet Genomics 278 347-359 (2007)
  12. Microtubule-dependent mRNA transport in fungi. Zarnack K, Feldbrügge M. Eukaryot Cell 9 982-990 (2010)
  13. Structure and putative function of NFX1-like proteins in plants. Müssig C, Schröder F, Usadel B, Lisso J. Plant Biol (Stuttg) 12 381-394 (2010)
  14. Poly(A)-binding proteins are required for translational regulation in vertebrate oocytes and early embryos. Ozturk S, Uysal F. Reprod Fertil Dev 29 1890-1901 (2017)
  15. E3 ubiquitin ligases in B-cell malignancies. Choi J, Busino L. Cell Immunol 340 103905 (2019)
  16. LARP1 and LARP4: up close with PABP for mRNA 3' poly(A) protection and stabilization. Mattijssen S, Kozlov G, Fonseca BD, Gehring K, Maraia RJ. RNA Biol 18 259-274 (2021)
  17. Potential roles of the poly(A)-binding proteins in translational regulation during spermatogenesis. Ozturk S, Uysal F. J Reprod Dev 64 289-296 (2018)
  18. Post-Transcriptional Gene Regulation by HPV 16E6 and Its Host Protein Partners. Billingsley CL, Chintala S, Katzenellenbogen RA. Viruses 14 1483 (2022)

Articles citing this publication (54)

  1. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, Chen CY, Shyu AB, Yates JR, Hannon GJ, Filipowicz W, Duchaine TF, Sonenberg N. Mol Cell 35 868-880 (2009)
  2. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. Singh G, Rebbapragada I, Lykke-Andersen J. PLoS Biol 6 e111 (2008)
  3. Human TOB, an antiproliferative transcription factor, is a poly(A)-binding protein-dependent positive regulator of cytoplasmic mRNA deadenylation. Ezzeddine N, Chang TC, Zhu W, Yamashita A, Chen CY, Zhong Z, Yamashita Y, Zheng D, Shyu AB. Mol Cell Biol 27 7791-7801 (2007)
  4. EARLY RESPONSIVE TO DEHYDRATION 15, a negative regulator of abscisic acid responses in Arabidopsis. Kariola T, Brader G, Helenius E, Li J, Heino P, Palva ET. Plant Physiol 142 1559-1573 (2006)
  5. Poly(A) binding protein (PABP) homeostasis is mediated by the stability of its inhibitor, Paip2. Yoshida M, Yoshida K, Kozlov G, Lim NS, De Crescenzo G, Pang Z, Berlanga JJ, Kahvejian A, Gehring K, Wing SS, Sonenberg N. EMBO J 25 1934-1944 (2006)
  6. Structural insights into the human GW182-PABC interaction in microRNA-mediated deadenylation. Jinek M, Fabian MR, Coyle SM, Sonenberg N, Doudna JA. Nat Struct Mol Biol 17 238-240 (2010)
  7. Two PABPC1-binding sites in GW182 proteins promote miRNA-mediated gene silencing. Huntzinger E, Braun JE, Heimstädt S, Zekri L, Izaurralde E. EMBO J 29 4146-4160 (2010)
  8. Survey on the PABC recognition motif PAM2. Albrecht M, Lengauer T. Biochem Biophys Res Commun 316 129-138 (2004)
  9. Poly(A) nuclease interacts with the C-terminal domain of polyadenylate-binding protein domain from poly(A)-binding protein. Siddiqui N, Mangus DA, Chang TC, Palermino JM, Shyu AB, Gehring K. J Biol Chem 282 25067-25075 (2007)
  10. La-related protein 4 binds poly(A), interacts with the poly(A)-binding protein MLLE domain via a variant PAM2w motif, and can promote mRNA stability. Yang R, Gaidamakov SA, Xie J, Lee J, Martino L, Kozlov G, Crawford AK, Russo AN, Conte MR, Gehring K, Maraia RJ. Mol Cell Biol 31 542-556 (2011)
  11. NFX1-123 and poly(A) binding proteins synergistically augment activation of telomerase in human papillomavirus type 16 E6-expressing cells. Katzenellenbogen RA, Egelkrout EM, Vliet-Gregg P, Gewin LC, Gafken PR, Galloway DA. J Virol 81 3786-3796 (2007)
  12. Structural basis of binding of P-body-associated proteins GW182 and ataxin-2 by the Mlle domain of poly(A)-binding protein. Kozlov G, Safaee N, Rosenauer A, Gehring K. J Biol Chem 285 13599-13606 (2010)
  13. Herpes simplex virus proteins ICP27 and UL47 associate with polyadenylate-binding protein and control its subcellular distribution. Dobrikova E, Shveygert M, Walters R, Gromeier M. J Virol 84 270-279 (2010)
  14. Cleavage of poly(A)-binding protein by poliovirus 3C proteinase inhibits viral internal ribosome entry site-mediated translation. Bonderoff JM, Larey JL, Lloyd RE. J Virol 82 9389-9399 (2008)
  15. Embryonic poly(A)-binding protein stimulates translation in germ cells. Wilkie GS, Gautier P, Lawson D, Gray NK. Mol Cell Biol 25 2060-2071 (2005)
  16. Molecular determinants of PAM2 recognition by the MLLE domain of poly(A)-binding protein. Kozlov G, Ménade M, Rosenauer A, Nguyen L, Gehring K. J Mol Biol 397 397-407 (2010)
  17. The interaction of cytoplasmic poly(A)-binding protein with eukaryotic initiation factor 4G suppresses nonsense-mediated mRNA decay. Fatscher T, Boehm V, Weiche B, Gehring NH. RNA 20 1579-1592 (2014)
  18. A specific role for the C-terminal region of the Poly(A)-binding protein in mRNA decay. Simón E, Séraphin B. Nucleic Acids Res 35 6017-6028 (2007)
  19. Rubella virus capsid protein interacts with poly(a)-binding protein and inhibits translation. Ilkow CS, Mancinelli V, Beatch MD, Hobman TC. J Virol 82 4284-4294 (2008)
  20. Molecular basis of eRF3 recognition by the MLLE domain of poly(A)-binding protein. Kozlov G, Gehring K. PLoS One 5 e10169 (2010)
  21. Viral subversion of host functions for picornavirus translation and RNA replication. Chase AJ, Semler BL. Future Virol 7 179-191 (2012)
  22. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking. Pohlmann T, Baumann S, Haag C, Albrecht M, Feldbrügge M. Elife 4 (2015)
  23. The RNA-binding protein Rrm4 is essential for efficient secretion of endochitinase Cts1. Koepke J, Kaffarnik F, Haag C, Zarnack K, Luscombe NM, König J, Ule J, Kellner R, Begerow D, Feldbrügge M. Mol Cell Proteomics 10 M111.011213 (2011)
  24. A novel transcription factor, ERD15 (Early Responsive to Dehydration 15), connects endoplasmic reticulum stress with an osmotic stress-induced cell death signal. Alves MS, Reis PA, Dadalto SP, Faria JA, Fontes EP, Fietto LG. J Biol Chem 286 20020-20030 (2011)
  25. Expression of poly(A)-binding protein is upregulated during recovery from heat shock in HeLa cells. Ma S, Bhattacharjee RB, Bag J. FEBS J 276 552-570 (2009)
  26. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. Huang KL, Chadee AB, Chen CY, Zhang Y, Shyu AB. RNA 19 295-305 (2013)
  27. Four distinct classes of proteins as interaction partners of the PABC domain of Arabidopsis thaliana Poly(A)-binding proteins. Bravo J, Aguilar-Henonin L, Olmedo G, Guzmán P. Mol Genet Genomics 272 651-665 (2005)
  28. The multifunctional poly(A)-binding protein (PABP) 1 is subject to extensive dynamic post-translational modification, which molecular modelling suggests plays an important role in co-ordinating its activities. Brook M, McCracken L, Reddington JP, Lu ZL, Morrice NA, Gray NK. Biochem J 441 803-812 (2012)
  29. GTP-dependent structural rearrangement of the eRF1:eRF3 complex and eRF3 sequence motifs essential for PABP binding. Kononenko AV, Mitkevich VA, Atkinson GC, Tenson T, Dubovaya VI, Frolova LY, Makarov AA, Hauryliuk V. Nucleic Acids Res 38 548-558 (2010)
  30. Modulation of enteroviral proteinase cleavage of poly(A)-binding protein (PABP) by conformation and PABP-associated factors. Rivera CI, Lloyd RE. Virology 375 59-72 (2008)
  31. Cytoplasmic poly(A) binding proteins regulate telomerase activity and cell growth in human papillomavirus type 16 E6-expressing keratinocytes. Katzenellenbogen RA, Vliet-Gregg P, Xu M, Galloway DA. J Virol 84 12934-12944 (2010)
  32. Quantitative characterization of Tob interactions provides the thermodynamic basis for translation termination-coupled deadenylase regulation. Ruan L, Osawa M, Hosoda N, Imai S, Machiyama A, Katada T, Hoshino S, Shimada I. J Biol Chem 285 27624-27631 (2010)
  33. alpha4 phosphoprotein interacts with EDD E3 ubiquitin ligase and poly(A)-binding protein. McDonald WJ, Sangster SM, Moffat LD, Henderson MJ, Too CK. J Cell Biochem 110 1123-1129 (2010)
  34. Biological role of the two overlapping poly(A)-binding protein interacting motifs 2 (PAM2) of eukaryotic releasing factor eRF3 in mRNA decay. Osawa M, Hosoda N, Nakanishi T, Uchida N, Kimura T, Imai S, Machiyama A, Katada T, Hoshino S, Shimada I. RNA 18 1957-1967 (2012)
  35. Makorin ring zinc finger protein 1 (MKRN1), a novel poly(A)-binding protein-interacting protein, stimulates translation in nerve cells. Miroci H, Schob C, Kindler S, Ölschläger-Schütt J, Fehr S, Jungenitz T, Schwarzacher SW, Bagni C, Mohr E. J Biol Chem 287 1322-1334 (2012)
  36. Progestin-inducible EDD E3 ubiquitin ligase binds to α4 phosphoprotein to regulate ubiquitination and degradation of protein phosphatase PP2Ac. McDonald WJ, Thomas LN, Koirala S, Too CKL. Mol Cell Endocrinol 382 254-261 (2014)
  37. The RNA-binding ubiquitin ligase MKRN1 functions in ribosome-associated quality control of poly(A) translation. Hildebrandt A, Brüggemann M, Rücklé C, Boerner S, Heidelberger JB, Busch A, Hänel H, Voigt A, Möckel MM, Ebersberger S, Scholz A, Dold A, Schmid T, Ebersberger I, Roignant JY, Zarnack K, König J, Beli P. Genome Biol 20 216 (2019)
  38. EhNCABP166: a nucleocytoplasmic actin-binding protein from Entamoeba histolytica. Campos-Parra AD, Hernández-Cuevas NA, Hernandez-Rivas R, Vargas M. Mol Biochem Parasitol 172 19-30 (2010)
  39. Poly(A)-binding protein interacts with the nucleocapsid protein of porcine reproductive and respiratory syndrome virus and participates in viral replication. Wang X, Bai J, Zhang L, Wang X, Li Y, Jiang P. Antiviral Res 96 315-323 (2012)
  40. The putative RNA helicase HELZ promotes cell proliferation, translation initiation and ribosomal protein S6 phosphorylation. Hasgall PA, Hoogewijs D, Faza MB, Panse VG, Wenger RH, Camenisch G. PLoS One 6 e22107 (2011)
  41. Phosphorylation and interactions associated with the control of the Leishmania Poly-A Binding Protein 1 (PABP1) function during translation initiation. de Melo Neto OP, da Costa Lima TDC, Merlo KC, Romão TP, Rocha PO, Assis LA, Nascimento LM, Xavier CC, Rezende AM, Reis CRS, Papadopoulou B. RNA Biol 15 739-755 (2018)
  42. The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding. Muñoz-Escobar J, Matta-Camacho E, Kozlov G, Gehring K. J Biol Chem 290 22841-22850 (2015)
  43. Studies on human eRF3-PABP interaction reveal the influence of eRF3a N-terminal glycin repeat on eRF3-PABP binding affinity and the lower affinity of eRF3a 12-GGC allele involved in cancer susceptibility. Jerbi S, Jolles B, Bouceba T, Jean-Jean O. RNA Biol 13 306-315 (2016)
  44. Depletion of cellular poly (A) binding protein prevents protein synthesis and leads to apoptosis in HeLa cells. Thangima Zannat M, Bhattacharjee RB, Bag J. Biochem Biophys Res Commun 408 375-381 (2011)
  45. Online optimization of surface plasmon resonance-based biosensor experiments for improved throughput and confidence. De Crescenzo G, Woodward L, Srinivasan B. J Mol Recognit 21 256-266 (2008)
  46. Characterization of the multimeric structure of poly(A)-binding protein on a poly(A) tail. Sawazaki R, Imai S, Yokogawa M, Hosoda N, Hoshino SI, Mio M, Mio K, Shimada I, Osawa M. Sci Rep 8 1455 (2018)
  47. Natural variation in the promoter of GsERD15B affects salt tolerance in soybean. Jin T, Sun Y, Shan Z, He J, Wang N, Gai J, Li Y. Plant Biotechnol J 19 1155-1169 (2021)
  48. Crystal Structure of a Variant PAM2 Motif of LARP4B Bound to the MLLE Domain of PABPC1. Grimm C, Pelz JP, Schneider C, Schäffler K, Fischer U. Biomolecules 10 (2020)
  49. The isolated La-module of LARP1 mediates 3' poly(A) protection and mRNA stabilization, dependent on its intrinsic PAM2 binding to PABPC1. Mattijssen S, Kozlov G, Gaidamakov S, Ranjan A, Fonseca BD, Gehring K, Maraia RJ. RNA Biol 18 275-289 (2021)
  50. A Fragmenting Protocol with Explicit Hydration for Calculation of Binding Enthalpies of Target-Ligand Complexes at a Quantum Mechanical Level. Horváth I, Jeszenői N, Bálint M, Paragi G, Hetényi C. Int J Mol Sci 20 (2019)
  51. Harnessing short poly(A)-binding protein-interacting peptides for the suppression of nonsense-mediated mRNA decay. Fatscher T, Gehring NH. Sci Rep 6 37311 (2016)
  52. UBR5 promotes tumor immune evasion through enhancing IFN-γ-induced PDL1 transcription in triple negative breast cancer. Wu B, Song M, Dong Q, Xiang G, Li J, Ma X, Wei F. Theranostics 12 5086-5102 (2022)
  53. A MademoiseLLE domain binding platform links the key RNA transporter to endosomes. Devan SK, Schott-Verdugo S, Müntjes K, Bismar L, Reiners J, Hachani E, Schmitt L, Höppner A, Smits SH, Gohlke H, Feldbrügge M. PLoS Genet 18 e1010269 (2022)
  54. Embryonic poly(A)-binding protein interacts with translation-related proteins and undergoes phosphorylation on the serine, threonine, and tyrosine residues in the mouse oocytes and early embryos. Ozturk S, Kosebent EG, Talibova G, Bilmez Y, Tire B, Can A. J Assist Reprod Genet (2023)


Related citations provided by authors (1)

  1. Structure and function of the C-terminal PABC domain of human poly(A)-binding protein.. Kozlov G, Trempe JF, Khaleghpour K, Kahvejian A, Ekiel I, Gehring K Proc Natl Acad Sci U S A 98 4409-13 (2001)