1jg6 Citations

High resolution crystal structures of T4 phage beta-glucosyltransferase: induced fit and effect of substrate and metal binding.

J Mol Biol 311 569-77 (2001)
Related entries: 1jej, 1jg7, 1jiu, 1jiv, 1jix

Cited: 43 times
EuropePMC logo PMID: 11493010

Abstract

beta-Glucosyltransferase (BGT) is a DNA-modifying enzyme encoded by bacteriophage T4 that transfers glucose from uridine diphosphoglucose to 5-hydroxymethyl cytosine bases of phage T4 DNA. We report six X-ray structures of the substrate-free and the UDP-bound enzyme. Four also contain metal ions which activate the enzyme, including Mg(2+) in forms 1 and 2 and Mn(2+) or Ca(2+). The substrate-free BGT structure differs by a domain movement from one previously determined in another space group. Further domain movements are seen in the complex with UDP and the four UDP-metal complexes. Mg(2+), Mn(2+) and Ca(2+) bind near the beta-phosphate of the nucleotide, but they occupy slightly different positions and have different ligands depending on the metal and the crystal form. Whilst the metal site observed in these complexes with the product UDP is not compatible with a role in activating glucose transfer, it approximates the position of the positive charge in the oxocarbonium ion thought to form on the glucose moiety of the substrate during catalysis.

Articles - 1jg6 mentioned but not cited (3)

  1. Conformational transitions upon ligand binding: holo-structure prediction from apo conformations. Seeliger D, de Groot BL. PLoS Comput Biol 6 e1000634 (2010)
  2. Effects of macromolecular crowding on protein conformational changes. Dong H, Qin S, Zhou HX. PLoS Comput Biol 6 e1000833 (2010)
  3. Specific non-local interactions are not necessary for recovering native protein dynamics. Dasgupta B, Kasahara K, Kamiya N, Nakamura H, Kinjo AR. PLoS One 9 e91347 (2014)


Reviews citing this publication (8)

  1. Glycosyltransferases: structures, functions, and mechanisms. Lairson LL, Henrissat B, Davies GJ, Withers SG. Annu Rev Biochem 77 521-555 (2008)
  2. Glycoside hydrolases and glycosyltransferases: families and functional modules. Bourne Y, Henrissat B. Curr Opin Struct Biol 11 593-600 (2001)
  3. Remarkable structural similarities between diverse glycosyltransferases. Hu Y, Walker S. Chem Biol 9 1287-1296 (2002)
  4. Diversity and evolution of chromatin proteins encoded by DNA viruses. de Souza RF, Iyer LM, Aravind L. Biochim Biophys Acta 1799 302-318 (2010)
  5. Glycosyltransferase engineering for carbohydrate synthesis. McArthur JB, Chen X. Biochem Soc Trans 44 129-142 (2016)
  6. The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed: the significance for human UGTs from both the 1A and 2B families. Radominska-Pandya A, Bratton SM, Redinbo MR, Miley MJ. Drug Metab Rev 42 133-144 (2010)
  7. Monotopic Membrane Proteins Join the Fold. Allen KN, Entova S, Ray LC, Imperiali B. Trends Biochem Sci 44 7-20 (2019)
  8. Glycogen synthase: towards a minimum catalytic unit? Cid E, Geremia RA, Guinovart JJ, Ferrer JC. FEBS Lett 528 5-11 (2002)

Articles citing this publication (32)

  1. Inference of macromolecular assemblies from crystalline state. Krissinel E, Henrick K. J Mol Biol 372 774-797 (2007)
  2. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Iyer LM, Tahiliani M, Rao A, Aravind L. Cell Cycle 8 1698-1710 (2009)
  3. Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M, Walker S. Proc Natl Acad Sci U S A 100 845-849 (2003)
  4. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Liu J, Mushegian A. Protein Sci 12 1418-1431 (2003)
  5. Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. Miley MJ, Zielinska AK, Keenan JE, Bratton SM, Radominska-Pandya A, Redinbo MR. J Mol Biol 369 498-511 (2007)
  6. Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. Buschiazzo A, Ugalde JE, Guerin ME, Shepard W, Ugalde RA, Alzari PM. EMBO J 23 3196-3205 (2004)
  7. Mutations in POGLUT1, encoding protein O-glucosyltransferase 1, cause autosomal-dominant Dowling-Degos disease. Basmanav FB, Oprisoreanu AM, Pasternack SM, Thiele H, Fritz G, Wenzel J, Größer L, Wehner M, Wolf S, Fagerberg C, Bygum A, Altmüller J, Rütten A, Parmentier L, El Shabrawi-Caelen L, Hafner C, Nürnberg P, Kruse R, Schoch S, Hanneken S, Betz RC. Am J Hum Genet 94 135-143 (2014)
  8. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. Wrabl JO, Grishin NV. J Mol Biol 314 365-374 (2001)
  9. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose. Grizot S, Salem M, Vongsouthi V, Durand L, Moreau F, Dohi H, Vincent S, Escaich S, Ducruix A. J Mol Biol 363 383-394 (2006)
  10. Structure of human POFUT2: insights into thrombospondin type 1 repeat fold and O-fucosylation. Chen CI, Keusch JJ, Klein D, Hess D, Hofsteenge J, Gut H. EMBO J 31 3183-3197 (2012)
  11. Determination of catalytic key amino acids and UDP sugar donor specificity of the cyanohydrin glycosyltransferase UGT85B1 from Sorghum bicolor. Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses. Thorsøe KS, Bak S, Olsen CE, Imberty A, Breton C, Lindberg Møller B. Plant Physiol 139 664-673 (2005)
  12. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Zhang H, Zhu F, Yang T, Ding L, Zhou M, Li J, Haslam SM, Dell A, Erlandsen H, Wu H. Nat Commun 5 4339 (2014)
  13. Crystal structures of the T4 phage beta-glucosyltransferase and the D100A mutant in complex with UDP-glucose: glucose binding and identification of the catalytic base for a direct displacement mechanism. Larivière L, Gueguen-Chaignon V, Moréra S. J Mol Biol 330 1077-1086 (2003)
  14. Biochemical characterization of recombinant β-glucosyltransferase and analysis of global 5-hydroxymethylcytosine in unique genomes. Terragni J, Bitinaite J, Zheng Y, Pradhan S. Biochemistry 51 1009-1019 (2012)
  15. Substrate-induced conformational changes in the essential peripheral membrane-associated mannosyltransferase PimA from mycobacteria: implications for catalysis. Guerin ME, Schaeffer F, Chaffotte A, Gest P, Giganti D, Korduláková J, van der Woerd M, Jackson M, Alzari PM. J Biol Chem 284 21613-21625 (2009)
  16. Introductory Journal Article Preface. Radominska-Pandya A. Drug Metab Rev 42 1-2 (2010)
  17. Biochemical Characterization of a Recombinant UDP-glucosyltransferase from Rice and Enzymatic Production of Deoxynivalenol-3-O-β-D-glucoside. Michlmayr H, Malachová A, Varga E, Kleinová J, Lemmens M, Newmister S, Rayment I, Berthiller F, Adam G. Toxins (Basel) 7 2685-2700 (2015)
  18. Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. Barreras M, Salinas SR, Abdian PL, Kampel MA, Ielpi L. J Biol Chem 283 25027-25035 (2008)
  19. Modulation of amylose content by structure-based modification of OsGBSS1 activity in rice (Oryza sativa L.). Liu D, Wang W, Cai X. Plant Biotechnol J 12 1297-1307 (2014)
  20. The role of tryptophan 314 in the conformational changes of beta1,4-galactosyltransferase-I. Ramasamy V, Ramakrishnan B, Boeggeman E, Qasba PK. J Mol Biol 331 1065-1076 (2003)
  21. A base-flipping mechanism for the T4 phage beta-glucosyltransferase and identification of a transition-state analog. Larivière L, Moréra S. J Mol Biol 324 483-490 (2002)
  22. Thermodynamics of binding of divalent magnesium and manganese to uridine phosphates: implications for diabetes-related hypomagnesaemia and carbohydrate biocatalysis. Zea CJ, Camci-Unal G, Pohl NL. Chem Cent J 2 15 (2008)
  23. Inhibition of fucosyltransferase VII by gallic acid and its derivatives. Niu X, Fan X, Sun J, Ting P, Narula S, Lundell D. Arch Biochem Biophys 425 51-57 (2004)
  24. Functional and evolutionary analysis of viral proteins containing a Rossmann-like fold. Medvedev KE, Kinch LN, Grishin NV. Protein Sci 27 1450-1463 (2018)
  25. Possible structure and active site residues of starch, glycogen, and sucrose synthases. MacGregor EA. J Protein Chem 21 297-306 (2002)
  26. Structural characterization of O- and C-glycosylating variants of the landomycin glycosyltransferase LanGT2. Tam HK, Härle J, Gerhardt S, Rohr J, Wang G, Thorson JS, Bigot A, Lutterbeck M, Seiche W, Breit B, Bechthold A, Einsle O. Angew Chem Int Ed Engl 54 2811-2815 (2015)
  27. Fluorescent analogs of UDP-glucose and their use in characterizing substrate binding by toxin A from Clostridium difficile. Bhattacharyya S, Kerzmann A, Feig AL. Eur J Biochem 269 3425-3432 (2002)
  28. Structural and functional analysis of validoxylamine A 7'-phosphate synthase ValL involved in validamycin A biosynthesis. Zheng L, Zhou X, Zhang H, Ji X, Li L, Huang L, Bai L, Zhang H. PLoS One 7 e32033 (2012)
  29. 3PFDB--a database of best representative PSSM profiles (BRPs) of protein families generated using a novel data mining approach. Shameer K, Nagarajan P, Gaurav K, Sowdhamini R. BioData Min 2 8 (2009)
  30. Two Novel Fungal Phenolic UDP Glycosyltransferases from Absidia coerulea and Rhizopus japonicus. Xie K, Dou X, Chen R, Chen D, Fang C, Xiao Z, Dai J. Appl Environ Microbiol 83 e03103-16 (2017)
  31. Unusual sugar nucleotide recognition elements of mesophilic vs. thermophilic glycogen synthases. Zea CJ, Pohl NL. Biopolymers 79 106-113 (2005)
  32. Facile enzymatic synthesis of base J-containing oligodeoxyribonucleotides and an analysis of the impact of base J on DNA replication in cells. Ji D, Wang Y. PLoS One 9 e103335 (2014)