1j5d Citations

The first solution structure of a paramagnetic copper(II) protein: the case of oxidized plastocyanin from the cyanobacterium Synechocystis PCC6803.

J Am Chem Soc 123 2405-13 (2001)
Cited: 28 times
EuropePMC logo PMID: 11456890

Abstract

The NMR solution structure of oxidized plastocyanin from the cyanobacterium Synechocystis PCC6803 is here reported. The protein contains paramagnetic copper(II), whose electronic relaxation times are quite unfavorable for NMR solution studies. The structure has been solved on the basis of 1041 meaningful NOESY cross-peaks, 18 1D NOEs, 26 T(1) values, 96 dihedral angle constraints, and 18 H-bonds. The detection of broad hyperfine-shifted signals and their full assignment allowed the identification of the copper(II) ligands and the determination of the Cu-S-C-H dihedral angle for the coordinated cysteine. The global root-mean-square deviation from the mean structure for the solution structure family is 0.72 +/- 0.14 and 1.16 +/- 0.17 A for backbone and heavy atoms, respectively. The structure is overall quite satisfactory and represents a breakthrough, in that it includes paramagnetic copper proteins among the metalloproteins for which solution structures can be afforded. The comparison with the available X-ray structure of a triple mutant is also performed.

Articles - 1j5d mentioned but not cited (4)

  1. A consensus view of protein dynamics. Rueda M, Ferrer-Costa C, Meyer T, Pérez A, Camps J, Hospital A, Gelpí JL, Orozco M. Proc Natl Acad Sci U S A 104 796-801 (2007)
  2. A Brownian dynamics study of the interaction of Phormidium cytochrome f with various cyanobacterial plastocyanins. Gross EL, Rosenberg I. Biophys J 90 366-380 (2006)
  3. Exploring early stages of the chemical unfolding of proteins at the proteome scale. Candotti M, Pérez A, Ferrer-Costa C, Rueda M, Meyer T, Gelpí JL, Orozco M. PLoS Comput Biol 9 e1003393 (2013)
  4. TRIFORCE: Tessellated Semianalytical Solvent Exposed Surface Areas and Derivatives. Drechsel NJ, Fennell CJ, Dill KA, Villà-Freixa J. J Chem Theory Comput 10 4121-4132 (2014)


Reviews citing this publication (5)

  1. Paramagnetic resonance of biological metal centers. Ubbink M, Worrall JA, Canters GW, Groenen EJ, Huber M. Annu Rev Biophys Biomol Struct 31 393-422 (2002)
  2. Cupredoxins--a study of how proteins may evolve to use metals for bioenergetic processes. Choi M, Davidson VL. Metallomics 3 140-151 (2011)
  3. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. Emwas AH, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Magn Reson Chem 51 255-268 (2013)
  4. Heme-copper oxidases and their electron donors in cyanobacterial respiratory electron transport. Bernroitner M, Zamocky M, Pairer M, Furtmüller PG, Peschek GA, Obinger C. Chem Biodivers 5 1927-1961 (2008)
  5. Studying Peptide-Metal Ion Complex Structures by Solution-State NMR. Shalev DE. Int J Mol Sci 23 15957 (2022)

Articles citing this publication (19)

  1. Perspectives in paramagnetic NMR of metalloproteins. Bertini I, Luchinat C, Parigi G, Pierattelli R. Dalton Trans 3782-3790 (2008)
  2. Electronic structure of the ground and excited states of the Cu(A) site by NMR spectroscopy. Abriata LA, Ledesma GN, Pierattelli R, Vila AJ. J Am Chem Soc 131 1939-1946 (2009)
  3. Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. Butterfoss GL, DeRose EF, Gabel SA, Perera L, Krahn JM, Mueller GA, Zheng X, London RE. J Biomol NMR 48 31-47 (2010)
  4. Paramagnetic lanthanide tagging for NMR conformational analyses of N-linked oligosaccharides. Yamamoto S, Yamaguchi T, Erdélyi M, Griesinger C, Kato K. Chemistry 17 9280-9282 (2011)
  5. Determination of the geometric structure of the metal site in a blue copper protein by paramagnetic NMR. Hansen DF, Led JJ. Proc Natl Acad Sci U S A 103 1738-1743 (2006)
  6. On the use of pseudocontact shifts in the structure determination of metalloproteins. Jensen MR, Hansen DF, Ayna U, Dagil R, Hass MA, Christensen HE, Led JJ. Magn Reson Chem 44 294-301 (2006)
  7. Towards a protocol for solution structure determination of copper(II) proteins: the case of Cu(II)Zn(II) superoxide dismutase. Bertini I, Felli IC, Luchinat C, Parigi G, Pierattelli R. Chembiochem 8 1422-1429 (2007)
  8. 1H NMR of native and azide-inhibited laccase from Rhus vernicifera. Battistuzzi G, Di Rocco G, Leonardi A, Sola M. J Inorg Biochem 96 503-506 (2003)
  9. Active site comparison of CoII blue and green nitrite reductases. Sato K, Dennison C. Chemistry 12 6647-6659 (2006)
  10. A simple protocol to study blue copper proteins by NMR. Gelis I, Katsaros N, Luchinat C, Piccioli M, Poggi L. Eur J Biochem 270 600-609 (2003)
  11. Accurate structure and dynamics of the metal-site of paramagnetic metalloproteins from NMR parameters using natural bond orbitals. Hansen DF, Westler WM, Kunze MB, Markley JL, Weinhold F, Led JJ. J Am Chem Soc 134 4670-4682 (2012)
  12. Determining the structure and binding mechanism of oxytocin-Cu2+ complex using paramagnetic relaxation enhancement NMR analysis. Alshanski I, Shalev DE, Yitzchaik S, Hurevich M. J Biol Inorg Chem 26 809-815 (2021)
  13. Changes in non-core regions stabilise plastocyanin from the thermophilic cyanobacterium Phormidium laminosum. Muñoz-López FJ, Raugei S, De la Rosa MA, Díaz-Quintana AJ, Carloni P. J Biol Inorg Chem 15 329-338 (2010)
  14. Cobalt(II) and copper(II) binding of Bacillus cereus trinuclear phospholipase C: a novel 1H NMR spectrum of a 'Tri-Cu(II)' center in protein. Epperson JD, Ming LJ. J Inorg Biochem 87 149-156 (2001)
  15. Study of electrostatic potential surface distribution of wild-type plastocyanin Synechocystis solution structure determined by homonuclear NMR. Monleón D, Celda B. Biopolymers 70 212-220 (2003)
  16. Tailored HCCH-TOCSY experiment for resonance assignment in the proximity of a paramagnetic center. Piccioli M, Poggi L. J Magn Reson 155 236-243 (2002)
  17. Cu(II)-Based Paramagnetic Probe to Study RNA-Protein Interactions by NMR. Seebald LM, DeMott CM, Ranganathan S, Asare Okai PN, Glazunova A, Chen A, Shekhtman A, Royzen M. Inorg Chem 56 3773-3780 (2017)
  18. Long lived intermediate metal site structure upon binding of cadmium to plastocyanin. Sas KN, Hemmingsen L, Danielsen E. FEBS Lett 580 6861-6864 (2006)
  19. Proximity Labeling Facilitates Defining the Proteome Neighborhood of Photosystem II Oxygen Evolution Complex in a Model Cyanobacterium. Xiao Z, Huang C, Ge H, Wang Y, Duan X, Wang G, Zheng L, Dong J, Huang X, Zhang Y, An H, Xu W, Wang Y. Mol Cell Proteomics 21 100440 (2022)