1in5 Citations

Structure and mechanism of the RuvB Holliday junction branch migration motor.

J Mol Biol 311 297-310 (2001)
Related entries: 1in4, 1in6, 1in7, 1in8, 1j7k

Cited: 114 times
EuropePMC logo PMID: 11478862

Abstract

The RuvB hexamer is the chemomechanical motor of the RuvAB complex that migrates Holliday junction branch-points in DNA recombination and the rescue of stalled DNA replication forks. The 1.6 A crystal structure of Thermotoga maritima RuvB together with five mutant structures reveal that RuvB is an ATPase-associated with diverse cellular activities (AAA+-class ATPase) with a winged-helix DNA-binding domain. The RuvB-ADP complex structure and mutagenesis suggest how AAA+-class ATPases couple nucleotide binding and hydrolysis to interdomain conformational changes and asymmetry within the RuvB hexamer implied by the crystallographic packing and small-angle X-ray scattering in solution. ATP-driven domain motion is positioned to move double-stranded DNA through the hexamer and drive conformational changes between subunits by altering the complementary hydrophilic protein- protein interfaces. Structural and biochemical analysis of five motifs in the protein suggest that ATP binding is a strained conformation recognized both by sensors and the Walker motifs and that intersubunit activation occurs by an arginine finger motif reminiscent of the GTPase-activating proteins. Taken together, these results provide insights into how RuvB functions as a motor for branch migration of Holliday junctions.

Articles - 1in5 mentioned but not cited (1)

  1. Crystal structure of a novel archaeal AAA+ ATPase SSO1545 from Sulfolobus solfataricus. Xu Q, Rife CL, Carlton D, Miller MD, Krishna SS, Elsliger MA, Abdubek P, Astakhova T, Chiu HJ, Clayton T, Duan L, Feuerhelm J, Grzechnik SK, Hale J, Han GW, Jaroszewski L, Jin KK, Klock HE, Knuth MW, Kumar A, McMullan D, Morse AT, Nigoghossian E, Okach L, Oommachen S, Paulsen J, Reyes R, van den Bedem H, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. Proteins 74 1041-1049 (2009)


Reviews citing this publication (28)

  1. Structure and mechanism of helicases and nucleic acid translocases. Singleton MR, Dillingham MS, Wigley DB. Annu Rev Biochem 76 23-50 (2007)
  2. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Putnam CD, Hammel M, Hura GL, Tainer JA. Q Rev Biophys 40 191-285 (2007)
  3. Evolutionary relationships and structural mechanisms of AAA+ proteins. Erzberger JP, Berger JM. Annu Rev Biophys Biomol Struct 35 93-114 (2006)
  4. Helicase structure and mechanism. Caruthers JM, McKay DB. Curr Opin Struct Biol 12 123-133 (2002)
  5. STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. Leipe DD, Koonin EV, Aravind L. J Mol Biol 343 1-28 (2004)
  6. Conserved arginine residues implicated in ATP hydrolysis, nucleotide-sensing, and inter-subunit interactions in AAA and AAA+ ATPases. Ogura T, Whiteheart SW, Wilkinson AJ. J Struct Biol 146 106-112 (2004)
  7. Motors and switches: AAA+ machines within the replisome. Davey MJ, Jeruzalmi D, Kuriyan J, O'Donnell M. Nat Rev Mol Cell Biol 3 826-835 (2002)
  8. Mechanisms and regulation of DNA replication initiation in eukaryotes. Parker MW, Botchan MR, Berger JM. Crit Rev Biochem Mol Biol 52 107-144 (2017)
  9. ATPases as drug targets: learning from their structure. Chène P. Nat Rev Drug Discov 1 665-673 (2002)
  10. Structures and organisation of AAA+ enhancer binding proteins in transcriptional activation. Schumacher J, Joly N, Rappas M, Zhang X, Buck M. J Struct Biol 156 190-199 (2006)
  11. Microbial biochemistry, physiology, and biotechnology of hyperthermophilic Thermotoga species. Conners SB, Mongodin EF, Johnson MR, Montero CI, Nelson KE, Kelly RM. FEMS Microbiol Rev 30 872-905 (2006)
  12. Common domains in the initiators of DNA replication in Bacteria, Archaea and Eukarya: combined structural, functional and phylogenetic perspectives. Giraldo R. FEMS Microbiol Rev 26 533-554 (2003)
  13. Crystal structure of the AAA+ alpha domain of E. coli Lon protease at 1.9A resolution. Botos I, Melnikov EE, Cherry S, Khalatova AG, Rasulova FS, Tropea JE, Maurizi MR, Rotanova TV, Gustchina A, Wlodawer A. J Struct Biol 146 113-122 (2004)
  14. Requirements for the catalytic cycle of the N-ethylmaleimide-Sensitive Factor (NSF). Zhao C, Smith EC, Whiteheart SW. Biochim Biophys Acta 1823 159-171 (2012)
  15. Chaperone-like activity of the AAA+ proteins Rvb1 and Rvb2 in the assembly of various complexes. Nano N, Houry WA. Philos Trans R Soc Lond B Biol Sci 368 20110399 (2013)
  16. Structure and function of the double-strand break repair machinery. Shin DS, Chahwan C, Huffman JL, Tainer JA. DNA Repair (Amst) 3 863-873 (2004)
  17. Structural dynamics in DNA damage signaling and repair. Perry JJ, Cotner-Gohara E, Ellenberger T, Tainer JA. Curr Opin Struct Biol 20 283-294 (2010)
  18. Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. Yamada K, Ariyoshi M, Morikawa K. Curr Opin Struct Biol 14 130-137 (2004)
  19. Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics. Hopfner KP, Michaelis J. Curr Opin Struct Biol 17 87-95 (2007)
  20. Comparison of the multiple oligomeric structures observed for the Rvb1 and Rvb2 proteins. Cheung KL, Huen J, Houry WA, Ortega J. Biochem Cell Biol 88 77-88 (2010)
  21. RecQ helicases; at the crossroad of genome replication, repair, and recombination. Rezazadeh S. Mol Biol Rep 39 4527-4543 (2012)
  22. Archaeal genome guardians give insights into eukaryotic DNA replication and damage response proteins. Shin DS, Pratt AJ, Tainer JA. Archaea 2014 206735 (2014)
  23. Controlling the Revolving and Rotating Motion Direction of Asymmetric Hexameric Nanomotor by Arginine Finger and Channel Chirality. Guo P, Driver D, Zhao Z, Zheng Z, Chan C, Cheng X. ACS Nano 13 6207-6223 (2019)
  24. Assessing heterogeneity in oligomeric AAA+ machines. Sysoeva TA. Cell Mol Life Sci 74 1001-1018 (2017)
  25. Domain structures and inter-domain interactions defining the holoenzyme architecture of archaeal d-family DNA polymerase. Matsui I, Matsui E, Yamasaki K, Yokoyama H. Life (Basel) 3 375-385 (2013)
  26. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Bianco PR. Front Mol Biosci 9 784451 (2022)
  27. TTT (Tel2-Tti1-Tti2) Complex, the Co-Chaperone of PIKKs and a Potential Target for Cancer Chemotherapy. Bhadra S, Xu YJ. Int J Mol Sci 24 8268 (2023)
  28. The multi-faceted roles of R2TP complex span across regulation of gene expression, translation, and protein functional assembly. Luthuli SD, Shonhai A. Biophys Rev 15 1951-1965 (2023)

Articles citing this publication (85)

  1. Evolutionary history and higher order classification of AAA+ ATPases. Iyer LM, Leipe DD, Koonin EV, Aravind L. J Struct Biol 146 11-31 (2004)
  2. The clinical continuum of cryopyrinopathies: novel CIAS1 mutations in North American patients and a new cryopyrin model. Aksentijevich I, Putnam CD, Remmers EF, Mueller JL, Le J, Kolodner RD, Moak Z, Chuang M, Austin F, Goldbach-Mansky R, Hoffman HM, Kastner DL. Arthritis Rheum 56 1273-1285 (2007)
  3. Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. Iyer LM, Makarova KS, Koonin EV, Aravind L. Nucleic Acids Res 32 5260-5279 (2004)
  4. Structure of the replicative helicase of the oncoprotein SV40 large tumour antigen. Li D, Zhao R, Lilyestrom W, Gai D, Zhang R, DeCaprio JA, Fanning E, Jochimiak A, Szakonyi G, Chen XS. Nature 423 512-518 (2003)
  5. Structural analysis of DNA replication fork reversal by RecG. Singleton MR, Scaife S, Wigley DB. Cell 107 79-89 (2001)
  6. The structure of bacterial DnaA: implications for general mechanisms underlying DNA replication initiation. Erzberger JP, Pirruccello MM, Berger JM. EMBO J 21 4763-4773 (2002)
  7. Reptin and pontin antagonistically regulate heart growth in zebrafish embryos. Rottbauer W, Saurin AJ, Lickert H, Shen X, Burns CG, Wo ZG, Kemler R, Kingston R, Wu C, Fishman M. Cell 111 661-672 (2002)
  8. Cooperative kinetics of both Hsp104 ATPase domains and interdomain communication revealed by AAA sensor-1 mutants. Hattendorf DA, Lindquist SL. EMBO J 21 12-21 (2002)
  9. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. Davey MJ, Indiani C, O'Donnell M. J Biol Chem 278 4491-4499 (2003)
  10. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Hersch GL, Burton RE, Bolon DN, Baker TA, Sauer RT. Cell 121 1017-1027 (2005)
  11. The X-ray structure of the papillomavirus helicase in complex with its molecular matchmaker E2. Abbate EA, Berger JM, Botchan MR. Genes Dev 18 1981-1996 (2004)
  12. Crystal structure of the human AAA+ protein RuvBL1. Matias PM, Gorynia S, Donner P, Carrondo MA. J Biol Chem 281 38918-38929 (2006)
  13. Hexameric ring structure of the full-length archaeal MCM protein complex. Pape T, Meka H, Chen S, Vicentini G, van Heel M, Onesti S. EMBO Rep 4 1079-1083 (2003)
  14. The crystal structure of the AAA domain of the ATP-dependent protease FtsH of Escherichia coli at 1.5 A resolution. Krzywda S, Brzozowski AM, Verma C, Karata K, Ogura T, Wilkinson AJ. Structure 10 1073-1083 (2002)
  15. A bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Constantinesco F, Forterre P, Koonin EV, Aravind L, Elie C. Nucleic Acids Res 32 1439-1447 (2004)
  16. Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex. Su'etsugu M, Shimuta TR, Ishida T, Kawakami H, Katayama T. J Biol Chem 280 6528-6536 (2005)
  17. Recruitment of replication protein A by the papillomavirus E1 protein and modulation by single-stranded DNA. Loo YM, Melendy T. J Virol 78 1605-1615 (2004)
  18. Hexameric structures of the archaeal secretion ATPase GspE and implications for a universal secretion mechanism. Yamagata A, Tainer JA. EMBO J 26 878-890 (2007)
  19. Crystal structure of the RuvA-RuvB complex: a structural basis for the Holliday junction migrating motor machinery. Yamada K, Miyata T, Tsuchiya D, Oyama T, Fujiwara Y, Ohnishi T, Iwasaki H, Shinagawa H, Ariyoshi M, Mayanagi K, Morikawa K. Mol Cell 10 671-681 (2002)
  20. Crystal structure and functional implications of Pyrococcus furiosus hef helicase domain involved in branched DNA processing. Nishino T, Komori K, Tsuchiya D, Ishino Y, Morikawa K. Structure 13 143-153 (2005)
  21. Crystal structure of the SF3 helicase from adeno-associated virus type 2. James JA, Escalante CR, Yoon-Robarts M, Edwards TA, Linden RM, Aggarwal AK. Structure 11 1025-1035 (2003)
  22. Structural and functional insights into a dodecameric molecular machine - the RuvBL1/RuvBL2 complex. Gorynia S, Bandeiras TM, Pinho FG, McVey CE, Vonrhein C, Round A, Svergun DI, Donner P, Matias PM, Carrondo MA. J Struct Biol 176 279-291 (2011)
  23. Dodecameric structure and ATPase activity of the human TIP48/TIP49 complex. Puri T, Wendler P, Sigala B, Saibil H, Tsaneva IR. J Mol Biol 366 179-192 (2007)
  24. Analysis of nucleotide binding to P97 reveals the properties of a tandem AAA hexameric ATPase. Briggs LC, Baldwin GS, Miyata N, Kondo H, Zhang X, Freemont PS. J Biol Chem 283 13745-13752 (2008)
  25. Molecular determinants for ATP-binding in proteins: a data mining and quantum chemical analysis. Mao L, Wang Y, Liu Y, Hu X. J Mol Biol 336 787-807 (2004)
  26. Ordered ATP hydrolysis in the gamma complex clamp loader AAA+ machine. Johnson A, O'Donnell M. J Biol Chem 278 14406-14413 (2003)
  27. ATP-dependent transcriptional activation by bacterial PspF AAA+protein. Schumacher J, Zhang X, Jones S, Bordes P, Buck M. J Mol Biol 338 863-875 (2004)
  28. Analysis of the AAA sensor-2 motif in the C-terminal ATPase domain of Hsp104 with a site-specific fluorescent probe of nucleotide binding. Hattendorf DA, Lindquist SL. Proc Natl Acad Sci U S A 99 2732-2737 (2002)
  29. INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. Tsukuda T, Lo YC, Krishna S, Sterk R, Osley MA, Nickoloff JA. DNA Repair (Amst) 8 360-369 (2009)
  30. Modeling AAA+ ring complexes from monomeric structures. Diemand AV, Lupas AN. J Struct Biol 156 230-243 (2006)
  31. Processing of proteins by the molecular chaperone Hsp104. Schaupp A, Marcinowski M, Grimminger V, Bösl B, Walter S. J Mol Biol 370 674-686 (2007)
  32. Structural polymorphism of Methanothermobacter thermautotrophicus MCM. Chen YJ, Yu X, Kasiviswanathan R, Shin JH, Kelman Z, Egelman EH. J Mol Biol 346 389-394 (2005)
  33. Mechanism of one-way traffic of hexameric phi29 DNA packaging motor with four electropositive relaying layers facilitating antiparallel revolution. Zhao Z, Khisamutdinov E, Schwartz C, Guo P. ACS Nano 7 4082-4092 (2013)
  34. Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling. Schwartz C, De Donatis GM, Zhang H, Fang H, Guo P. Virology 443 28-39 (2013)
  35. Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography. Tsutakawa SE, Hura GL, Frankel KA, Cooper PK, Tainer JA. J Struct Biol 158 214-223 (2007)
  36. Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer. Hishida T, Han YW, Fujimoto S, Iwasaki H, Shinagawa H. Proc Natl Acad Sci U S A 101 9573-9577 (2004)
  37. RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. Zaarur N, Xu X, Lestienne P, Meriin AB, McComb M, Costello CE, Newnam GP, Ganti R, Romanova NV, Shanmugasundaram M, Silva ST, Bandeiras TM, Matias PM, Lobachev KS, Lednev IK, Chernoff YO, Sherman MY. EMBO J 34 2363-2382 (2015)
  38. The arginine finger of bacteriophage T7 gene 4 helicase: role in energy coupling. Crampton DJ, Guo S, Johnson DE, Richardson CC. Proc Natl Acad Sci U S A 101 4373-4378 (2004)
  39. Dissecting the N-ethylmaleimide-sensitive factor: required elements of the N and D1 domains. Zhao C, Matveeva EA, Ren Q, Whiteheart SW. J Biol Chem 285 761-772 (2010)
  40. Mutational analysis of conserved AAA+ residues in the archaeal Lon protease from Thermoplasma acidophilum. Besche H, Tamura N, Tamura T, Zwickl P. FEBS Lett 574 161-166 (2004)
  41. Direct observation of RuvAB-catalyzed branch migration of single Holliday junctions. Amit R, Gileadi O, Stavans J. Proc Natl Acad Sci U S A 101 11605-11610 (2004)
  42. Crystal structure of the first eubacterial Mre11 nuclease reveals novel features that may discriminate substrates during DNA repair. Das D, Moiani D, Axelrod HL, Miller MD, McMullan D, Jin KK, Abdubek P, Astakhova T, Burra P, Carlton D, Chiu HJ, Clayton T, Deller MC, Duan L, Ernst D, Feuerhelm J, Grant JC, Grzechnik A, Grzechnik SK, Han GW, Jaroszewski L, Klock HE, Knuth MW, Kozbial P, Krishna SS, Kumar A, Marciano D, Morse AT, Nigoghossian E, Okach L, Paulsen J, Reyes R, Rife CL, Sefcovic N, Tien HJ, Trame CB, van den Bedem H, Weekes D, Xu Q, Hodgson KO, Wooley J, Elsliger MA, Deacon AM, Godzik A, Lesley SA, Tainer JA, Wilson IA. J Mol Biol 397 647-663 (2010)
  43. Toward the mechanism of dynamical couplings and translocation in hepatitis C virus NS3 helicase using elastic network model. Zheng W, Liao JC, Brooks BR, Doniach S. Proteins 67 886-896 (2007)
  44. Oligomeric assembly and interactions within the human RuvB-like RuvBL1 and RuvBL2 complexes. Niewiarowski A, Bradley AS, Gor J, McKay AR, Perkins SJ, Tsaneva IR. Biochem J 429 113-125 (2010)
  45. RAD51 foci formation in response to DNA damage is modulated by TIP49. Gospodinov A, Tsaneva I, Anachkova B. Int J Biochem Cell Biol 41 925-933 (2009)
  46. Staphylococcal SCCmec elements encode an active MCM-like helicase and thus may be replicative. Mir-Sanchis I, Roman CA, Misiura A, Pigli YZ, Boyle-Vavra S, Rice PA. Nat Struct Mol Biol 23 891-898 (2016)
  47. ATP-binding sites in brain p97/VCP (valosin-containing protein), a multifunctional AAA ATPase. Zalk R, Shoshan-Barmatz V. Biochem J 374 473-480 (2003)
  48. ruvA and ruvB mutants specifically impaired for replication fork reversal. Le Masson M, Baharoglu Z, Michel B. Mol Microbiol 70 537-548 (2008)
  49. ATPase site architecture is required for self-assembly and remodeling activity of a hexameric AAA+ transcriptional activator. Joly N, Zhang N, Buck M. Mol Cell 47 484-490 (2012)
  50. Direct observation of DNA rotation during branch migration of Holliday junction DNA by Escherichia coli RuvA-RuvB protein complex. Han YW, Tani T, Hayashi M, Hishida T, Iwasaki H, Shinagawa H, Harada Y. Proc Natl Acad Sci U S A 103 11544-11548 (2006)
  51. Diversification of catalytic activities and ligand interactions in the protein fold shared by the sugar isomerases, eIF2B, DeoR transcription factors, acyl-CoA transferases and methenyltetrahydrofolate synthetase. Anantharaman V, Aravind L. J Mol Biol 356 823-842 (2006)
  52. Crystal structure of the human spastin AAA domain. Taylor JL, White SR, Lauring B, Kull FJ. J Struct Biol 179 133-137 (2012)
  53. Quaternary structure of KATP channel SUR2A nucleotide binding domains resolved by synchrotron radiation X-ray scattering. Park S, Terzic A. J Struct Biol 169 243-251 (2010)
  54. The role of RuvA octamerization for RuvAB function in vitro and in vivo. Privezentzev CV, Keeley A, Sigala B, Tsaneva IR. J Biol Chem 280 3365-3375 (2005)
  55. Formation of a stable RuvA protein double tetramer is required for efficient branch migration in vitro and for replication fork reversal in vivo. Bradley AS, Baharoglu Z, Niewiarowski A, Michel B, Tsaneva IR. J Biol Chem 286 22372-22383 (2011)
  56. Lytic water dynamics reveal evolutionarily conserved mechanisms of ATP hydrolysis by TIP49 AAA+ ATPases. Afanasyeva A, Hirtreiter A, Schreiber A, Grohmann D, Pobegalov G, McKay AR, Tsaneva I, Petukhov M, Käs E, Grigoriev M, Werner F. Structure 22 549-559 (2014)
  57. Pih1p-Tah1p Puts a Lid on Hexameric AAA+ ATPases Rvb1/2p. Tian S, Yu G, He H, Zhao Y, Liu P, Marshall AG, Demeler B, Stagg SM, Li H. Structure 25 1519-1529.e4 (2017)
  58. A structural basis for the regulatory inactivation of DnaA. Xu Q, McMullan D, Abdubek P, Astakhova T, Carlton D, Chen C, Chiu HJ, Clayton T, Das D, Deller MC, Duan L, Elsliger MA, Feuerhelm J, Hale J, Han GW, Jaroszewski L, Jin KK, Johnson HA, Klock HE, Knuth MW, Kozbial P, Sri Krishna S, Kumar A, Marciano D, Miller MD, Morse AT, Nigoghossian E, Nopakun A, Okach L, Oommachen S, Paulsen J, Puckett C, Reyes R, Rife CL, Sefcovic N, Trame C, van den Bedem H, Weekes D, Hodgson KO, Wooley J, Deacon AM, Godzik A, Lesley SA, Wilson IA. J Mol Biol 385 368-380 (2009)
  59. Functional characterization of the RuvB homologs from Mycoplasma pneumoniae and Mycoplasma genitalium. Estevão S, Sluijter M, Hartwig NG, van Rossum AM, Vink C. J Bacteriol 193 6425-6435 (2011)
  60. Genetic suppressors of Caenorhabditis elegans pha-4/FoxA identify the predicted AAA helicase ruvb-1/RuvB. Updike DL, Mango SE. Genetics 177 819-833 (2007)
  61. Structure of Arabidopsis thaliana Rubisco activase. Hasse D, Larsson AM, Andersson I. Acta Crystallogr D Biol Crystallogr 71 800-808 (2015)
  62. Electron microscopic single particle analysis of a tetrameric RuvA/RuvB/Holliday junction DNA complex. Mayanagi K, Fujiwara Y, Miyata T, Morikawa K. Biochem Biophys Res Commun 365 273-278 (2008)
  63. Solution structure of the N-terminal domain of the archaeal D-family DNA polymerase small subunit reveals evolutionary relationship to eukaryotic B-family polymerases. Yamasaki K, Urushibata Y, Yamasaki T, Arisaka F, Matsui I. FEBS Lett 584 3370-3375 (2010)
  64. Mechanism of homotropic control to coordinate hydrolysis in a hexameric AAA+ ring ATPase. Schumacher J, Joly N, Claeys-Bouuaert IL, Aziz SA, Rappas M, Zhang X, Buck M. J Mol Biol 381 1-12 (2008)
  65. Mutational analysis of the functional motifs in the ATPase domain of Caenorhabditis elegans fidgetin homologue FIGL-1: firm evidence for an intersubunit catalysis mechanism of ATP hydrolysis by AAA ATPases. Yakushiji Y, Nishikori S, Yamanaka K, Ogura T. J Struct Biol 156 93-100 (2006)
  66. Structural insights into ATP hydrolysis by the MoxR ATPase RavA and the LdcI-RavA cage-like complex. Jessop M, Arragain B, Miras R, Fraudeau A, Huard K, Bacia-Verloop M, Catty P, Felix J, Malet H, Gutsche I. Commun Biol 3 46 (2020)
  67. Actin filament labels for localizing protein components in large complexes viewed by electron microscopy. Stroupe ME, Xu C, Goode BL, Grigorieff N. RNA 15 244-248 (2009)
  68. NMR structure and functional characterization of a human cancer-related nucleoside triphosphatase. Placzek WJ, Almeida MS, Wüthrich K. J Mol Biol 367 788-801 (2007)
  69. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation. Iwasa T, Han YW, Hiramatsu R, Yokota H, Nakao K, Yokokawa R, Ono T, Harada Y. Sci Rep 5 18177 (2015)
  70. Nucleotide-dependent conformational changes in the sigma54-dependent activator DctD. Wang YK, Park S, Nixon BT, Hoover TR. J Bacteriol 185 6215-6219 (2003)
  71. Mechanism of AAA+ ATPase-mediated RuvAB-Holliday junction branch migration. Wald J, Fahrenkamp D, Goessweiner-Mohr N, Lugmayr W, Ciccarelli L, Vesper O, Marlovits TC. Nature 609 630-639 (2022)
  72. RuvA is a sliding collar that protects Holliday junctions from unwinding while promoting branch migration. Kaplan DL, O'Donnell M. J Mol Biol 355 473-490 (2006)
  73. Structure and Function of a Novel ATPase that Interacts with Holliday Junction Resolvase Hjc and Promotes Branch Migration. Zhai B, DuPrez K, Doukov TI, Li H, Huang M, Shang G, Ni J, Gu L, Shen Y, Fan L. J Mol Biol 429 1009-1029 (2017)
  74. Uncoupling of the ATPase activity from the branch migration activity of RuvAB protein complexes containing both wild-type and ATPase-defective RuvB proteins. Hishida T, Iwasaki H, Han YW, Ohnishi T, Shinagawa H. Genes Cells 8 721-730 (2003)
  75. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the human RuvBL1-RuvBL2 complex. Gorynia S, Matias PM, Bandeiras TM, Donner P, Carrondo MA. Acta Crystallogr Sect F Struct Biol Cryst Commun 64 840-846 (2008)
  76. Model for RuvAB-mediated branch migration of Holliday junctions. Xie P. J Theor Biol 249 566-573 (2007)
  77. Study of SV40 large T antigen nucleotide specificity for DNA unwinding. Wang D, Álvarez-Cabrera AL, Chen XS. Virol J 14 79 (2017)
  78. Novel Mutant AAV2 Rep Proteins Support AAV2 Replication without Blocking HSV-1 Helpervirus Replication. Seyffert M, Glauser DL, Schraner EM, de Oliveira AP, Mansilla-Soto J, Vogt B, Büning H, Linden RM, Ackermann M, Fraefel C. PLoS One 12 e0170908 (2017)
  79. DNA Helicases. Bianco PR. EcoSal Plus 4 (2010)
  80. Congress Exploring prokaryotic diversity: there are other molecular worlds. Fernández LA. Mol Microbiol 55 5-15 (2005)
  81. Understanding and exploiting interactions between cellular proteostasis pathways and infectious prion proteins for therapeutic benefit. Yakubu UM, Catumbela CSG, Morales R, Morano KA. Open Biol 10 200282 (2020)
  82. An AAA+ ATPase Clamshell Targets Transposition. Tsai CL, Williams GJ, Perry JJ, Tainer JA. Cell 162 701-703 (2015)
  83. Identification and characterization of RuvBL DNA helicase genes for tolerance against abiotic stresses in bread wheat (Triticum aestivum L.) and related species. Chaudhary J, Gautam T, Gahlaut V, Singh K, Kumar S, Batra R, Gupta PK. Funct Integr Genomics 23 255 (2023)
  84. Molecular mechanisms of Holliday junction branch migration catalyzed by an asymmetric RuvB hexamer. Rish AD, Shen Z, Chen Z, Zhang N, Zheng Q, Fu TM. Nat Commun 14 3549 (2023)
  85. Solution NMR structures provide first structural coverage of the large protein domain family PF08369 and complementary structural coverage of dark operative protochlorophyllide oxidoreductase complexes. Pulavarti SV, He Y, Feldmann EA, Eletsky A, Acton TB, Xiao R, Everett JK, Montelione GT, Kennedy MA, Szyperski T. J Struct Funct Genomics 14 119-126 (2013)