1ikm Citations

1H NMR solution structure of an active monomeric interleukin-8.

Biochemistry 34 12983-90 (1995)
Cited: 61 times
EuropePMC logo PMID: 7548056

Abstract

The solution structure of a monomeric form of interleukin-8 (IL-8) has been solved using 1H NMR spectroscopy. The chemically synthesized nonnatural analog [IL-8 (4-72) L25 NH-->NCH3] has the same activity as that of native IL-8. Thirty structures were generated using the hybrid distance geometry and simulated annealing protocol using the program X-PLOR. The structure is well-defined except for N-terminal residues 4-6 and C-terminal residues 67-72. The rms distribution about the average structure for residues 7-66 is 0.38 A for the backbone atoms and 0.87 A for all heavy atoms. The structure consists of a series of turns and loops followed by a triple-stranded beta sheet and a C-terminal alpha helix. The structure of the monomer is largely similar to the native dimeric IL-8 structures previously determined by both NMR and X-ray methods. The major difference is that, in the monomeric analog, the C-terminal residues 67-72 are disordered whereas they are helical in the two dimeric structures. The best fit superposition of the backbone atoms of residues 7-66 of the monomer structure on the dimeric IL-8 structures showed rms differences of 1.5 and 1.2 A respectively. The turn (residues 31-35), which is disulfide linked to the N-terminal region, adopts a conformation in the monomer similar to that seen in the dimeric X-ray structure (rms difference 1.4 A) and different from that seen in the dimeric NMR structure (rms difference 2.7 A).(ABSTRACT TRUNCATED AT 250 WORDS)

Articles - 1ikm mentioned but not cited (7)

  1. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions. Joseph PR, Mosier PD, Desai UR, Rajarathnam K. Biochem J 472 121-133 (2015)
  2. Structural basis for differential binding of the interleukin-8 monomer and dimer to the CXCR1 N-domain: role of coupled interactions and dynamics. Ravindran A, Joseph PR, Rajarathnam K. Biochemistry 48 8795-8805 (2009)
  3. Probing the role of CXC motif in chemokine CXCL8 for high affinity binding and activation of CXCR1 and CXCR2 receptors. Joseph PR, Sarmiento JM, Mishra AK, Das ST, Garofalo RP, Navarro J, Rajarathnam K. J Biol Chem 285 29262-29269 (2010)
  4. Dynamic conformational switching in the chemokine ligand is essential for G-protein-coupled receptor activation. Joseph PR, Sawant KV, Isley A, Pedroza M, Garofalo RP, Richardson RM, Rajarathnam K. Biochem J 456 241-251 (2013)
  5. HAAD: A quick algorithm for accurate prediction of hydrogen atoms in protein structures. Li Y, Roy A, Zhang Y. PLoS One 4 e6701 (2009)
  6. Analysis of conformational variation in macromolecular structural models. Srivastava SK, Gayathri S, Manjasetty BA, Gopal B. PLoS One 7 e39993 (2012)
  7. The effects of rigid motions on elastic network model force constants. Lezon TR. Proteins 80 1133-1142 (2012)


Reviews citing this publication (6)

  1. Chemokines and leukocyte traffic. Baggiolini M. Nature 392 565-568 (1998)
  2. Human chemokines: an update. Baggiolini M, Dewald B, Moser B. Annu Rev Immunol 15 675-705 (1997)
  3. How do chemokines navigate neutrophils to the target site: Dissecting the structural mechanisms and signaling pathways. Rajarathnam K, Schnoor M, Richardson RM, Rajagopal S. Cell Signal 54 69-80 (2019)
  4. Structural basis of chemokine receptor function--a model for binding affinity and ligand selectivity. Rajagopalan L, Rajarathnam K. Biosci Rep 26 325-339 (2006)
  5. NMR structures of membrane proteins in phospholipid bilayers. Radoicic J, Lu GJ, Opella SJ. Q Rev Biophys 47 249-283 (2014)
  6. Chemokine Heteromers and Their Impact on Cellular Function-A Conceptual Framework. Blanchet X, Weber C, von Hundelshausen P. Int J Mol Sci 24 10925 (2023)

Articles citing this publication (48)

  1. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P, Clark-Lewis I, Borlat F, Wells TN, Kosco-Vilbois MH. Proc Natl Acad Sci U S A 100 1885-1890 (2003)
  2. Solution structure and basis for functional activity of stromal cell-derived factor-1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. Crump MP, Gong JH, Loetscher P, Rajarathnam K, Amara A, Arenzana-Seisdedos F, Virelizier JL, Baggiolini M, Sykes BD, Clark-Lewis I. EMBO J 16 6996-7007 (1997)
  3. The monomer-dimer equilibrium of stromal cell-derived factor-1 (CXCL 12) is altered by pH, phosphate, sulfate, and heparin. Veldkamp CT, Peterson FC, Pelzek AJ, Volkman BF. Protein Sci 14 1071-1081 (2005)
  4. Differential activation and regulation of CXCR1 and CXCR2 by CXCL8 monomer and dimer. Nasser MW, Raghuwanshi SK, Grant DJ, Jala VR, Rajarathnam K, Richardson RM. J Immunol 183 3425-3432 (2009)
  5. Structure-based design and study of non-amyloidogenic, double N-methylated IAPP amyloid core sequences as inhibitors of IAPP amyloid formation and cytotoxicity. Kapurniotu A, Schmauder A, Tenidis K. J Mol Biol 315 339-350 (2002)
  6. Chemokine CXCL1 mediated neutrophil recruitment: Role of glycosaminoglycan interactions. Sawant KV, Poluri KM, Dutta AK, Sepuru KM, Troshkina A, Garofalo RP, Rajarathnam K. Sci Rep 6 33123 (2016)
  7. Recognition of a CXCR4 sulfotyrosine by the chemokine stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12). Veldkamp CT, Seibert C, Peterson FC, Sakmar TP, Volkman BF. J Mol Biol 359 1400-1409 (2006)
  8. Monomeric and dimeric CXCL8 are both essential for in vivo neutrophil recruitment. Das ST, Rajagopalan L, Guerrero-Plata A, Sai J, Richmond A, Garofalo RP, Rajarathnam K. PLoS One 5 e11754 (2010)
  9. Ligand selectivity and affinity of chemokine receptor CXCR1. Role of N-terminal domain. Rajagopalan L, Rajarathnam K. J Biol Chem 279 30000-30008 (2004)
  10. The monomer-dimer equilibrium and glycosaminoglycan interactions of chemokine CXCL8 regulate tissue-specific neutrophil recruitment. Gangavarapu P, Rajagopalan L, Kolli D, Guerrero-Plata A, Garofalo RP, Rajarathnam K. J Leukoc Biol 91 259-265 (2012)
  11. Inhibition of hIAPP amyloid-fibril formation and apoptotic cell death by a designed hIAPP amyloid- core-containing hexapeptide. Tatarek-Nossol M, Yan LM, Schmauder A, Tenidis K, Westermark G, Kapurniotu A. Chem Biol 12 797-809 (2005)
  12. Monomeric variants of IL-8: effects of side chain substitutions and solution conditions upon dimer formation. Lowman HB, Fairbrother WJ, Slagle PH, Kabakoff R, Liu J, Shire S, Hébert CA. Protein Sci 6 598-608 (1997)
  13. Dimer dissociation is essential for interleukin-8 (IL-8) binding to CXCR1 receptor. Fernando H, Chin C, Rösgen J, Rajarathnam K. J Biol Chem 279 36175-36178 (2004)
  14. Crystal structures of oligomeric forms of the IP-10/CXCL10 chemokine. Swaminathan GJ, Holloway DE, Colvin RA, Campanella GK, Papageorgiou AC, Luster AD, Acharya KR. Structure 11 521-532 (2003)
  15. Cross-linking and mutational analysis of the oligomerization state of the cytokine macrophage migration inhibitory factor (MIF). Mischke R, Kleemann R, Brunner H, Bernhagen J. FEBS Lett 427 85-90 (1998)
  16. A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: support from isothermal fluorescence titrations. Krieger E, Geretti E, Brandner B, Goger B, Wells TN, Kungl AJ. Proteins 54 768-775 (2004)
  17. Interactions of interleukin-8 with the human chemokine receptor CXCR1 in phospholipid bilayers by NMR spectroscopy. Park SH, Casagrande F, Cho L, Albrecht L, Opella SJ. J Mol Biol 414 194-203 (2011)
  18. Thermodynamic characterization of interleukin-8 monomer binding to CXCR1 receptor N-terminal domain. Fernando H, Nagle GT, Rajarathnam K. FEBS J 274 241-251 (2007)
  19. IL-8 single-chain homodimers and heterodimers: interactions with chemokine receptors CXCR1, CXCR2, and DARC. Leong SR, Lowman HB, Liu J, Shire S, Deforge LE, Gillece-Castro BL, McDowell R, Hébert CA. Protein Sci 6 609-617 (1997)
  20. CAMRA: chemical shift based computer aided protein NMR assignments. Gronwald W, Willard L, Jellard T, Boyko RF, Rajarathnam K, Wishart DS, Sönnichsen FD, Sykes BD. J Biomol NMR 12 395-405 (1998)
  21. Mesoporous carbide-derived carbon with porosity tuned for efficient adsorption of cytokines. Yushin G, Hoffman EN, Barsoum MW, Gogotsi Y, Howell CA, Sandeman SR, Phillips GJ, Lloyd AW, Mikhalovsky SV. Biomaterials 27 5755-5762 (2006)
  22. NMR structure of CXCR3 binding chemokine CXCL11 (ITAC). Booth V, Clark-Lewis I, Sykes BD. Protein Sci 13 2022-2028 (2004)
  23. Solution NMR characterization of WT CXCL8 monomer and dimer binding to CXCR1 N-terminal domain. Joseph PR, Rajarathnam K. Protein Sci 24 81-92 (2015)
  24. Elucidating the structural mechanisms for biological activity of the chemokine family. Baysal C, Atilgan AR. Proteins 43 150-160 (2001)
  25. Nuclear magnetic resonance solution structure of truncated human GRObeta [5-73] and its structural comparison with CXC chemokine family members GROalpha and IL-8. Qian YQ, Johanson KO, McDevitt P. J Mol Biol 294 1065-1072 (1999)
  26. Structure-function studies of chemokine-derived carboxy-terminal antimicrobial peptides. Nguyen LT, Chan DI, Boszhard L, Zaat SA, Vogel HJ. Biochim Biophys Acta 1798 1062-1072 (2010)
  27. Conserved spatially interacting motifs of protein superfamilies: application to fold recognition and function annotation of genome data. Bhaduri A, Ravishankar R, Sowdhamini R. Proteins 54 657-670 (2004)
  28. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity. Sepuru KM, Poluri KM, Rajarathnam K. PLoS One 9 e93228 (2014)
  29. Cloning and bioactivity analysis of a CXC ligand in black seabream Acanthopagrus schlegeli: the evolutionary clues of ELR+CXC chemokines. Zhonghua C, Chunpin G, Yong Z, Kezhi X, Yaou Z. BMC Immunol 9 66 (2008)
  30. Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins. Joseph PR, Poluri KM, Gangavarapu P, Rajagopalan L, Raghuwanshi S, Richardson RM, Garofalo RP, Rajarathnam K. Biophys J 105 1491-1501 (2013)
  31. Synergistic interactions between chemokine receptor elements in recognition of interleukin-8 by soluble receptor mimics. Barter EF, Stone MJ. Biochemistry 51 1322-1331 (2012)
  32. Structural Basis of Native CXCL7 Monomer Binding to CXCR2 Receptor N-Domain and Glycosaminoglycan Heparin. Brown AJ, Sepuru KM, Rajarathnam K. Int J Mol Sci 18 (2017)
  33. The dynamics of interleukin-8 and its interaction with human CXC receptor I peptide. Kendrick AA, Holliday MJ, Isern NG, Zhang F, Camilloni C, Huynh C, Vendruscolo M, Armstrong G, Eisenmesser EZ. Protein Sci 23 464-480 (2014)
  34. Structure of chemokine-derived antimicrobial Peptide interleukin-8alpha and interaction with detergent micelles and oriented lipid bilayers. Bourbigot S, Fardy L, Waring AJ, Yeaman MR, Booth V. Biochemistry 48 10509-10521 (2009)
  35. Structure of monomeric Interleukin-8 and its interactions with the N-terminal Binding Site-I of CXCR1 by solution NMR spectroscopy. Berkamp S, Park SH, De Angelis AA, Marassi FM, Opella SJ. J Biomol NMR 69 111-121 (2017)
  36. 1H NMR evidence that Glu-38 interacts with the N-terminal functional domain in interleukin-8. Rajarathnam K, Clark-Lewis I, Dewald B, Baggiolini M, Sykes BD. FEBS Lett 399 43-46 (1996)
  37. A folding pathway for betapep-4 peptide 33mer: from unfolded monomers and beta-sheet sandwich dimers to well-structured tetramers. Mayo KH, Ilyina E. Protein Sci 7 358-368 (1998)
  38. Tick saliva protein Evasin-3 modulates chemotaxis by disrupting CXCL8 interactions with glycosaminoglycans and CXCR2. Denisov SS, Ippel JH, Heinzmann ACA, Koenen RR, Ortega-Gomez A, Soehnlein O, Hackeng TM, Dijkgraaf I. J Biol Chem 294 12370-12379 (2019)
  39. Role of intramolecular disulfides in stability and structure of a noncovalent homodimer. Rajagopalan L, Chin CC, Rajarathnam K. Biophys J 93 2129-2134 (2007)
  40. Interaction of Monomeric Interleukin-8 with CXCR1 Mapped by Proton-Detected Fast MAS Solid-State NMR. Park SH, Berkamp S, Radoicic J, De Angelis AA, Opella SJ. Biophys J 113 2695-2705 (2017)
  41. IL-8/CXC ligand 8 survives neonatal gastric digestion as a result of intrinsic aspartyl proteinase resistance. Maheshwari A, Lu W, Guida WC, Christensen RD, Calhoun DA. Pediatr Res 57 438-444 (2005)
  42. Adsorption properties of an activated carbon for 18 cytokines and HMGB1 from inflammatory model plasma. Inoue S, Kiriyama K, Hatanaka Y, Kanoh H. Colloids Surf B Biointerfaces 126 58-62 (2015)
  43. Long-Range Coupled Motions Underlie Ligand Recognition by a Chemokine Receptor. Sepuru KM, Nair V, Prakash P, Gorfe AA, Rajarathnam K. iScience 23 101858 (2020)
  44. Conformational plasticity and dynamic interactions of the N-terminal domain of the chemokine receptor CXCR1. Kharche S, Joshi M, Chattopadhyay A, Sengupta D. PLoS Comput Biol 17 e1008593 (2021)
  45. Distinct Differences in Structural States of Conserved Histidines in Two Related Proteins: NMR Studies of the Chemokines CXCL1 and CXCL8 in the Free Form and Macromolecular Complexes. Sepuru KM, Rajarathnam K. Biochemistry 57 5969-5977 (2018)
  46. Dynamics-Derived Insights into Complex Formation between the CXCL8 Monomer and CXCR1 N-Terminal Domain: An NMR Study. Joseph PRB, Spyracopoulos L, Rajarathnam K. Molecules 23 (2018)
  47. A highly efficient method for the production and purification of recombinant human CXCL8. McKenna S, Giblin SP, Bunn RA, Xu Y, Matthews SJ, Pease JE. PLoS One 16 e0258270 (2021)
  48. Revealing Unknown Protein Structures Using Computational Conformational Sampling Guided by Experimental Hydrogen-Exchange Data. Devaurs D, Antunes DA, Kavraki LE. Int J Mol Sci 19 (2018)


Related citations provided by authors (1)

  1. Neutrophil Activation by Monomeric Interleukin-8. Rajarathnam K, Sykes BD, Kay CM, Dewald B, Geiser T, Baggiolini M, Clark-Lewis I Science 264 90- (1994)