1ij0 Citations

Buried polar residues in coiled-coil interfaces.

Biochemistry 40 6352-60 (2001)
Related entries: 1ij1, 1ij2, 1ij3

Cited: 71 times
EuropePMC logo PMID: 11371197


Coiled coils, estimated to constitute 3-5% of the encoded residues in most genomes, are characterized by a heptad repeat, (abcdefg)(n), where the buried a and d positions form the interface between multiple alpha-helices. Although generally hydrophobic, a substantial fraction ( approximately 20%) of these a- and d-position residues are polar or charged. We constructed variants of the well-characterized coiled coil GCN4-p1 with a single polar residue (Asn, Gln, Ser, or Thr) at either an a or a d position. The stability and oligomeric specificity of each variant were measured, and crystal structures of coiled-coil trimers with threonine or serine at either an a or a d position were determined. The structures show how single polar residues in the interface affect not only local packing, but also overall coiled-coil geometry as seen by changes in the Crick supercoil parameters and core cavity volumes.

Reviews citing this publication (6)

  1. De Novo Designed α-Helical Coiled-Coil Peptides as Scaffolds for Chemical Reactions. Rink WM, Thomas F. Chemistry 25 1665-1677 (2019)
  2. Coiled coil protein origami: from modular design principles towards biotechnological applications. Lapenta F, Aupič J, Strmšek Ž, Jerala R. Chem Soc Rev 47 3530-3542 (2018)
  3. The Structure and Topology of α-Helical Coiled Coils. Lupas AN, Bassler J, Dunin-Horkawicz S. Subcell Biochem 82 95-129 (2017)
  4. Protein oligomerization: how and why. Ali MH, Imperiali B. Bioorg. Med. Chem. 13 5013-5020 (2005)
  5. How do helix-helix interactions help determine the folds of membrane proteins? Perspectives from the study of homo-oligomeric helical bundles. DeGrado WF, Gratkowski H, Lear JD. Protein Sci. 12 647-665 (2003)
  6. Coiled-coils: stability, specificity, and drug delivery potential. Yu YB. Adv. Drug Deliv. Rev. 54 1113-1129 (2002)

Articles citing this publication (65)

  1. Automated protein crystal structure determination using ELVES. Holton J, Alber T. Proc. Natl. Acad. Sci. U.S.A. 101 1537-1542 (2004)
  2. Analysis of alpha-helical coiled coils with the program TWISTER reveals a structural mechanism for stutter compensation. Strelkov SV, Burkhard P. J. Struct. Biol. 137 54-64 (2002)
  3. Predicting specificity in bZIP coiled-coil protein interactions. Fong JH, Keating AE, Singh M. Genome Biol. 5 R11 (2004)
  4. Sequence analysis of L RNA of Lassa virus. Vieth S, Torda AE, Asper M, Schmitz H, Günther S. Virology 318 153-168 (2004)
  5. A conserved trimerization motif controls the topology of short coiled coils. Kammerer RA, Kostrewa D, Progias P, Honnappa S, Avila D, Lustig A, Winkler FK, Pieters J, Steinmetz MO. Proc. Natl. Acad. Sci. U.S.A. 102 13891-13896 (2005)
  6. Molecular architecture of the transport channel of the nuclear pore complex. Solmaz SR, Chauhan R, Blobel G, Melčák I. Cell 147 590-602 (2011)
  7. Myosin VI dimerization triggers an unfolding of a three-helix bundle in order to extend its reach. Mukherjea M, Llinas P, Kim H, Travaglia M, Safer D, Ménétrey J, Franzini-Armstrong C, Selvin PR, Houdusse A, Sweeney HL. Mol. Cell 35 305-315 (2009)
  8. The cytoplasmic coiled-coil mediates cooperative gating temperature sensitivity in the voltage-gated H(+) channel Hv1. Fujiwara Y, Kurokawa T, Takeshita K, Kobayashi M, Okochi Y, Nakagawa A, Okamura Y. Nat Commun 3 816 (2012)
  9. A dimerized coiled-coil domain and an adjoining part of geminin interact with two sites on Cdt1 for replication inhibition. Saxena S, Yuan P, Dhar SK, Senga T, Takeda D, Robinson H, Kornbluth S, Swaminathan K, Dutta A. Mol. Cell 15 245-258 (2004)
  10. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Boyken SE, Chen Z, Groves B, Langan RA, Oberdorfer G, Ford A, Gilmore JM, Xu C, DiMaio F, Pereira JH, Sankaran B, Seelig G, Zwart PH, Baker D. Science 352 680-687 (2016)
  11. Hantavirus nucleocapsid protein coiled-coil domains. Alfadhli A, Steel E, Finlay L, Bächinger HP, Barklis E. J. Biol. Chem. 277 27103-27108 (2002)
  12. A coiled-coil motif that sequesters ions to the hydrophobic core. Hartmann MD, Ridderbusch O, Zeth K, Albrecht R, Testa O, Woolfson DN, Sauer G, Dunin-Horkawicz S, Lupas AN, Alvarez BH. Proc. Natl. Acad. Sci. U.S.A. 106 16950-16955 (2009)
  13. Coiled coils at the edge of configurational heterogeneity. Structural analyses of parallel and antiparallel homotetrameric coiled coils reveal configurational sensitivity to a single solvent-exposed amino acid substitution. Yadav MK, Leman LJ, Price DJ, Brooks CL, Stout CD, Ghadiri MR. Biochemistry 45 4463-4473 (2006)
  14. Structure of the tropomyosin overlap complex from chicken smooth muscle: insight into the diversity of N-terminal recognition. Frye J, Klenchin VA, Rayment I. Biochemistry 49 4908-4920 (2010)
  15. Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3. Chang JF, Hall BE, Tanny JC, Moazed D, Filman D, Ellenberger T. Structure 11 637-649 (2003)
  16. Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein. Duquerroy S, Vigouroux A, Rottier PJ, Rey FA, Bosch BJ. Virology 335 276-285 (2005)
  17. Toward the development of peptide nanofilaments and nanoropes as smart materials. Wagner DE, Phillips CL, Ali WM, Nybakken GE, Crawford ED, Schwab AD, Smith WF, Fairman R. Proc. Natl. Acad. Sci. U.S.A. 102 12656-12661 (2005)
  18. LOGICOIL--multi-state prediction of coiled-coil oligomeric state. Vincent TL, Green PJ, Woolfson DN. Bioinformatics 29 69-76 (2013)
  19. Side-chain repacking calculations for predicting structures and stabilities of heterodimeric coiled coils. Keating AE, Malashkevich VN, Tidor B, Kim PS. Proc. Natl. Acad. Sci. U.S.A. 98 14825-14830 (2001)
  20. Characterization of cross-reactive and serotype-specific epitopes on the nucleocapsid proteins of hantaviruses. Tischler ND, Rosemblatt M, Valenzuela PD. Virus Res. 135 1-9 (2008)
  21. Molecular basis of tropomyosin binding to tropomodulin, an actin-capping protein. Kostyukova AS, Hitchcock-Degregori SE, Greenfield NJ. J. Mol. Biol. 372 608-618 (2007)
  22. Stabilization of bzip peptides through incorporation of fluorinated aliphatic residues. Son S, Tanrikulu IC, Tirrell DA. Chembiochem 7 1251-1257 (2006)
  23. Structure of the tetramerization domain of measles virus phosphoprotein. Communie G, Crépin T, Maurin D, Jensen MR, Blackledge M, Ruigrok RW. J. Virol. 87 7166-7169 (2013)
  24. Characterization of the human type XVIII collagen gene and proteolytic processing and tissue location of the variant containing a frizzled motif. Elamaa H, Snellman A, Rehn M, Autio-Harmainen H, Pihlajaniemi T. Matrix Biol. 22 427-442 (2003)
  25. Structure of an activated Dictyostelium STAT in its DNA-unbound form. Soler-Lopez M, Petosa C, Fukuzawa M, Ravelli R, Williams JG, Müller CW. Mol. Cell 13 791-804 (2004)
  26. Crystal structure of the Marburg virus GP2 core domain in its postfusion conformation. Koellhoffer JF, Malashkevich VN, Harrison JS, Toro R, Bhosle RC, Chandran K, Almo SC, Lai JR. Biochemistry 51 7665-7675 (2012)
  27. Defining the minimum size of a hydrophobic cluster in two-stranded alpha-helical coiled-coils: effects on protein stability. Lu SM, Hodges RS. Protein Sci. 13 714-726 (2004)
  28. Crystal structure of the coiled-coil dimerization motif of geminin: structural and functional insights on DNA replication regulation. Thépaut M, Maiorano D, Guichou JF, Augé MT, Dumas C, Méchali M, Padilla A. J. Mol. Biol. 342 275-287 (2004)
  29. Roles of structure and structural dynamics in the antibody recognition of the allergen proteins: an NMR study on Blomia tropicalis major allergen. Naik MT, Chang CF, Kuo IC, Kung CC, Yi FC, Chua KY, Huang TH. Structure 16 125-136 (2008)
  30. Structure-based engineering of internal cavities in coiled-coil peptides. Yadav MK, Redman JE, Leman LJ, Alvarez-Gutiérrez JM, Zhang Y, Stout CD, Ghadiri MR. Biochemistry 44 9723-9732 (2005)
  31. Orientation and oligomerization specificity of the Bcr coiled-coil oligomerization domain. Taylor CM, Keating AE. Biochemistry 44 16246-16256 (2005)
  32. Unique stabilizing interactions identified in the two-stranded alpha-helical coiled-coil: crystal structure of a cortexillin I/GCN4 hybrid coiled-coil peptide. Lee DL, Ivaninskii S, Burkhard P, Hodges RS. Protein Sci. 12 1395-1405 (2003)
  33. Importance of potential interhelical salt-bridges involving interior residues for coiled-coil stability and quaternary structure. McClain DL, Gurnon DG, Oakley MG. J. Mol. Biol. 324 257-270 (2002)
  34. Oligomerization of hantavirus nucleocapsid protein: analysis of the N-terminal coiled-coil domain. Alminaite A, Halttunen V, Kumar V, Vaheri A, Holm L, Plyusnin A. J. Virol. 80 9073-9081 (2006)
  35. A model for the Escherichia coli FtsB/FtsL/FtsQ cell division complex. Villanelo F, Ordenes A, Brunet J, Lagos R, Monasterio O. BMC Struct. Biol. 11 28 (2011)
  36. Kinking the coiled coil--negatively charged residues at the coiled-coil interface. Straussman R, Ben-Ya'acov A, Woolfson DN, Ravid S. J. Mol. Biol. 366 1232-1242 (2007)
  37. The oligomeric structure of vaccinia viral envelope protein A27L is essential for binding to heparin and heparan sulfates on cell surfaces: a structural and functional approach using site-specific mutagenesis. Ho Y, Hsiao JC, Yang MH, Chung CS, Peng YC, Lin TH, Chang W, Tzou DL. J. Mol. Biol. 349 1060-1071 (2005)
  38. A buried polar residue in the hydrophobic interface of the coiled-coil peptide, GCN4-p1, plays a thermodynamic, not a kinetic role in folding. Knappenberger JA, Smith JE, Thorpe SH, Zitzewitz JA, Matthews CR. J. Mol. Biol. 321 1-6 (2002)
  39. Gating of the designed trimeric/tetrameric voltage-gated H+ channel. Fujiwara Y, Kurokawa T, Takeshita K, Nakagawa A, Larsson HP, Okamura Y. J. Physiol. (Lond.) 591 627-640 (2013)
  40. Protein-Protein Interactions Mediated by Helical Tertiary Structure Motifs. Watkins AM, Wuo MG, Arora PS. J. Am. Chem. Soc. 137 11622-11630 (2015)
  41. An Effective Strategy for Stabilizing Minimal Coiled Coil Mimetics. Wuo MG, Mahon AB, Arora PS. J. Am. Chem. Soc. 137 11618-11621 (2015)
  42. Quantification of helix-helix binding affinities in micelles and lipid bilayers. Lomize AL, Pogozheva ID, Mosberg HI. Protein Sci. 13 2600-2612 (2004)
  43. The native GCN4 leucine-zipper domain does not uniquely specify a dimeric oligomerization state. Oshaben KM, Salari R, McCaslin DR, Chong LT, Horne WS. Biochemistry 51 9581-9591 (2012)
  44. The C-terminal domain of Plasmodium falciparum merozoite surface protein 3 self-assembles into alpha-helical coiled coil tetramer. Gondeau C, Corradin G, Heitz F, Le Peuch C, Balbo A, Schuck P, Kajava AV. Mol. Biochem. Parasitol. 165 153-161 (2009)
  45. Conformational transition between four and five-stranded phenylalanine zippers determined by a local packing interaction. Liu J, Zheng Q, Deng Y, Kallenbach NR, Lu M. J. Mol. Biol. 361 168-179 (2006)
  46. Self-sorting heterodimeric coiled coil peptides with defined and tuneable self-assembly properties. Aronsson C, Dånmark S, Zhou F, Öberg P, Enander K, Su H, Aili D. Sci Rep 5 14063 (2015)
  47. Structural and biophysical characterization of the cytoplasmic domains of human BAP29 and BAP31. Quistgaard EM, Löw C, Moberg P, Guettou F, Maddi K, Nordlund P. PLoS ONE 8 e71111 (2013)
  48. X-ray structure of a water-soluble analog of the membrane protein phospholamban: sequence determinants defining the topology of tetrameric and pentameric coiled coils. Slovic AM, Stayrook SE, North B, Degrado WF. J. Mol. Biol. 348 777-787 (2005)
  49. Improved expression of secretory and trimeric proteins in mammalian cells via the introduction of a new trimer motif and a mutant of the tPA signal sequence. Wang JY, Song WT, Li Y, Chen WJ, Yang D, Zhong GC, Zhou HZ, Ren CY, Yu HT, Ling H. Appl. Microbiol. Biotechnol. 91 731-740 (2011)
  50. Mode of action of two inhibitory peptides from heptad repeat domains of the fusion protein of Newcastle disease virus. San Román K, Villar E, Muñoz-Barroso I. Int. J. Biochem. Cell Biol. 34 1207-1220 (2002)
  51. The effects of pK(a) tuning on the thermodynamics and kinetics of folding: design of a solvent-shielded carboxylate pair at the a-position of a coiled-coil. Lau WL, Degrado WF, Roder H. Biophys. J. 99 2299-2308 (2010)
  52. A network of coiled-coil associations derived from synthetic GCN4 leucine-zipper arrays. Portwich M, Keller S, Strauss HM, Mahrenholz CC, Kretzschmar I, Kramer A, Volkmer R. Angew. Chem. Int. Ed. Engl. 46 1654-1657 (2007)
  53. De novo design of a pentameric coiled-coil: decoding the motif for tetramer versus pentamer formation in water-soluble phospholamban. Slovic AM, Lear JD, DeGrado WF. J. Pept. Res. 65 312-321 (2005)
  54. Critical interactions in the stability control region of tropomyosin. Kirwan JP, Hodges RS. J. Struct. Biol. 170 294-306 (2010)
  55. Disorder and structure in the Rab11 binding domain of Rab11 family interacting protein 2. Wei J, Liu Y, Bose K, Henry GD, Baleja JD. Biochemistry 48 549-557 (2009)
  56. Structural plasticity of the coiled-coil domain of rotavirus NSP4. Sastri NP, Viskovska M, Hyser JM, Tanner MR, Horton LB, Sankaran B, Prasad BV, Estes MK. J. Virol. 88 13602-13612 (2014)
  57. Transmission of stability information through the N-domain of tropomyosin is interrupted by a stabilizing mutation (A109L) in the hydrophobic core of the stability control region (residues 97-118). Kirwan JP, Hodges RS. J. Biol. Chem. 289 4356-4366 (2014)
  58. Vaccinia viral protein A27 is anchored to the viral membrane via a cooperative interaction with viral membrane protein A17. Wang DR, Hsiao JC, Wong CH, Li GC, Lin SC, Yu SS, Chen W, Chang W, Tzou DL. J. Biol. Chem. 289 6639-6655 (2014)
  59. Cell-cell and virus-cell fusion assay-based analyses of alanine insertion mutants in the distal α9 portion of the JRFL gp41 subunit from HIV-1. Yamamoto M, Du Q, Song J, Wang H, Watanabe A, Tanaka Y, Kawaguchi Y, Inoue JI, Matsuda Z. J Biol Chem 294 5677-5687 (2019)
  60. Genetic Analysis of the Lambda Spanins Rz and Rz1: Identification of Functional Domains. Cahill J, Rajaure M, O'Leary C, Sloan J, Marrufo A, Holt A, Kulkarni A, Hernandez O, Young R. G3 (Bethesda) 7 741-753 (2017)
  61. Rotational orientation of monomers within a designed homo-oligomer transmembrane helical bundle. Howard KP, Liu W, Crocker E, Nanda V, Lear J, Degrado WF, Smith SO. Protein Sci. 14 1019-1024 (2005)
  62. Complementary interhelical interactions between three buried Glu-Lys pairs within three heptad repeats are essential for Hec1-Nuf2 heterodimerization and mitotic progression. Ngo B, Hu CM, Guo XE, Ngo B, Wei R, Zhu J, Lee WH. J. Biol. Chem. 288 34403-34413 (2013)
  63. Conformational Dynamics of Asparagine at Coiled-Coil Interfaces. Thomas F, Niitsu A, Oregioni A, Bartlett GJ, Woolfson DN. Biochemistry 56 6544-6554 (2017)
  64. Atomistic simulations indicate the functional loop-to-coiled-coil transition in influenza hemagglutinin is not downhill. Lin X, Noel JK, Wang Q, Ma J, Onuchic JN. Proc. Natl. Acad. Sci. U.S.A. 115 E7905-E7913 (2018)
  65. Crystal structure of a super leucine zipper, an extended two-stranded super long coiled coil. Diao J. Protein Sci. 19 319-326 (2010)