1ihg Citations

Two structures of cyclophilin 40: folding and fidelity in the TPR domains.

Abstract

Background

The "large immunophilin" family consists of domains of cyclophilin or FK506 binding protein linked to a tetratricopeptide (TPR) domain. They are intimately associated with steroid receptor complexes and bind to the C-terminal domain of Hsp90 via the TPR domain. The competitive binding of specific large immunophilins and other TPR-Hsp90 proteins provides a regulatory mechanism for Hsp90 chaperone activity.

Results

We have solved the X-ray structures of monoclinic and tetragonal forms of Cyp40. In the monoclinic form, the TPR domain consists of seven helices of variable length incorporating three TPR motifs, which provide a convincing binding surface for the Hsp90 C-terminal MEEVD sequence. The C-terminal residues of Cyp40 protrude out beyond the body of the TPR domain to form a charged helix-the putative calmodulin binding site. However, in the tetragonal form, two of the TPR helices have straightened out to form one extended helix, providing a dramatically different conformation of the molecule.

Conclusion

The X-ray structures are consistent with the role of Cyclophilin 40 as a multifunctional signaling protein involved in a variety of protein-protein interactions. The intermolecular helix-helix interactions in the tetragonal form mimic the intramolecular interactions found in the fully folded monoclinic form. These conserved intra- and intermolecular TPR-TPR interactions are illustrative of a high-fidelity recognition mechanism. The two structures also open up the possibility that partially folded forms of TPR may be important in domain swapping and protein recognition.

Reviews - 1ihg mentioned but not cited (4)

  1. Steroid Receptor-Associated Immunophilins: A Gateway to Steroid Signalling. Ratajczak T, Cluning C, Ward BK. Clin Biochem Rev 36 31-52 (2015)
  2. Molecular mechanisms of amyloid disaggregation. Low KJY, Venkatraman A, Mehta JS, Pervushin K. J Adv Res 36 113-132 (2022)
  3. Amyloid Disassembly: What Can We Learn from Chaperones? Almeida ZL, Brito RMM. Biomedicines 10 3276 (2022)
  4. Current update on theranostic roles of cyclophilin A in kidney diseases. Hadpech S, Thongboonkerd V. Theranostics 12 4067-4080 (2022)

Articles - 1ihg mentioned but not cited (17)

  1. TPRpred: a tool for prediction of TPR-, PPR- and SEL1-like repeats from protein sequences. Karpenahalli MR, Lupas AN, Söding J. BMC Bioinformatics 8 2 (2007)
  2. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis. Ramanathan A, Agarwal PK. PLoS Biol 9 e1001193 (2011)
  3. Human cyclophilin 40 unravels neurotoxic amyloids. Baker JD, Shelton LB, Zheng D, Favretto F, Nordhues BA, Darling A, Sullivan LE, Sun Z, Solanki PK, Martin MD, Suntharalingam A, Sabbagh JJ, Becker S, Mandelkow E, Uversky VN, Zweckstetter M, Dickey CA, Koren J, Blair LJ. PLoS Biol 15 e2001336 (2017)
  4. Influence of sequence changes and environment on intrinsically disordered proteins. Mohan A, Uversky VN, Radivojac P. PLoS Comput Biol 5 e1000497 (2009)
  5. Structure-based classification of 45 FK506-binding proteins. Somarelli JA, Lee SY, Skolnick J, Herrera RJ. Proteins 72 197-208 (2008)
  6. Insights into the domain and repeat architecture of target of rapamycin. Knutson BA. J Struct Biol 170 354-363 (2010)
  7. A common substrate recognition mode conserved between katanin p60 and VPS4 governs microtubule severing and membrane skeleton reorganization. Iwaya N, Kuwahara Y, Fujiwara Y, Goda N, Tenno T, Akiyama K, Mase S, Tochio H, Ikegami T, Shirakawa M, Hiroaki H. J Biol Chem 285 16822-16829 (2010)
  8. Cyclosporin A treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability. Yau WL, Blisnick T, Taly JF, Helmer-Citterich M, Schiene-Fischer C, Leclercq O, Li J, Schmidt-Arras D, Morales MA, Notredame C, Romo D, Bastin P, Späth GF. PLoS Negl Trop Dis 4 e729 (2010)
  9. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains. Vishwanath S, de Brevern AG, Srinivasan N. PLoS Comput Biol 14 e1006008 (2018)
  10. Mapping the distribution of packing topologies within protein interiors shows predominant preference for specific packing motifs. Basu S, Bhattacharyya D, Banerjee R. BMC Bioinformatics 12 195 (2011)
  11. Dynamic scaffolds for neuronal signaling: in silico analysis of the TANC protein family. Gasparini A, Tosatto SCE, Murgia A, Leonardi E. Sci Rep 7 6829 (2017)
  12. The Dengue Virus Nonstructural Protein 1 (NS1) Is Secreted from Mosquito Cells in Association with the Intracellular Cholesterol Transporter Chaperone Caveolin Complex. Rosales Ramirez R, Ludert JE. J Virol 93 e01985-18 (2019)
  13. Cyclophilin40 isomerase activity is regulated by a temperature-dependent allosteric interaction with Hsp90. Blackburn EA, Wear MA, Landré V, Narayan V, Ning J, Erman B, Ball KL, Walkinshaw MD. Biosci Rep 35 e00258 (2015)
  14. Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties. Gur M, Blackburn EA, Ning J, Narayan V, Ball KL, Walkinshaw MD, Erman B. J Chem Phys 148 145101 (2018)
  15. Removal of a consensus proline is not sufficient to allow tetratricopeptide repeat oligomerization. Bakkum AL, Hill RB. Protein Sci 26 1974-1983 (2017)
  16. Protein Tetratricopeptide Repeat and the Companion Non-tetratricopeptide Repeat Helices: Bioinformatic Analysis of Interhelical Interactions. Barik S. Bioinform Biol Insights 13 1177932219863363 (2019)
  17. Protein structure validation and identification from unassigned residual dipolar coupling data using 2D-PDPA. Fahim A, Mukhopadhyay R, Yandle R, Prestegard JH, Valafar H. Molecules 18 10162-10188 (2013)


Reviews citing this publication (14)

  1. The cyclophilins. Wang P, Heitman J. Genome Biol 6 226 (2005)
  2. Versatile TPR domains accommodate different modes of target protein recognition and function. Allan RK, Ratajczak T. Cell Stress Chaperones 16 353-367 (2011)
  3. Deposition diseases and 3D domain swapping. Bennett MJ, Sawaya MR, Eisenberg D. Structure 14 811-824 (2006)
  4. Tetratricopeptide repeat cochaperones in steroid receptor complexes. Smith DF. Cell Stress Chaperones 9 109-121 (2004)
  5. AIP and its interacting partners. Trivellin G, Korbonits M. J Endocrinol 210 137-155 (2011)
  6. Functional specificity of co-chaperone interactions with Hsp90 client proteins. Riggs DL, Cox MB, Cheung-Flynn J, Prapapanich V, Carrigan PE, Smith DF. Crit Rev Biochem Mol Biol 39 279-295 (2004)
  7. Protein folding and three-dimensional domain swapping: a strained relationship? Newcomer ME. Curr Opin Struct Biol 12 48-53 (2002)
  8. Cyclophilins: proteins in search of function. Kumari S, Roy S, Singh P, Singla-Pareek SL, Pareek A. Plant Signal Behav 8 e22734 (2013)
  9. Functional diversity and pharmacological profiles of the FKBPs and their complexes with small natural ligands. Galat A. Cell Mol Life Sci 70 3243-3275 (2013)
  10. SGTA: a new player in the molecular co-chaperone game. Philp LK, Butler MS, Hickey TE, Butler LM, Tilley WD, Day TK. Horm Cancer 4 343-357 (2013)
  11. Cyclophilins: Less Studied Proteins with Critical Roles in Pathogenesis. Singh K, Winter M, Zouhar M, Ryšánek P. Phytopathology 108 6-14 (2018)
  12. The cyclophilin repertoire of the fission yeast Schizosaccharomyces pombe. Pemberton TJ, Kay JE. Yeast 22 927-945 (2005)
  13. A Family of Novel Cyclophilins, Conserved in the Mimivirus Genus of the Giant DNA Viruses. Barik S. Comput Struct Biotechnol J 16 231-236 (2018)
  14. An Analytical Review of the Structural Features of Pentatricopeptide Repeats: Strategic Amino Acids, Repeat Arrangements and Superhelical Architecture. Barik S. Int J Mol Sci 22 5407 (2021)

Articles citing this publication (72)

  1. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha. Jínek M, Rehwinkel J, Lazarus BD, Izaurralde E, Hanover JA, Conti E. Nat Struct Mol Biol 11 1001-1007 (2004)
  2. Design of stable alpha-helical arrays from an idealized TPR motif. Main ER, Xiong Y, Cocco MJ, D'Andrea L, Regan L. Structure 11 497-508 (2003)
  3. Structure of the large FK506-binding protein FKBP51, an Hsp90-binding protein and a component of steroid receptor complexes. Sinars CR, Cheung-Flynn J, Rimerman RA, Scammell JG, Smith DF, Clardy J. Proc Natl Acad Sci U S A 100 868-873 (2003)
  4. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5. Yang J, Roe SM, Cliff MJ, Williams MA, Ladbury JE, Cohen PT, Barford D. EMBO J 24 1-10 (2005)
  5. 3D structure of human FK506-binding protein 52: implications for the assembly of the glucocorticoid receptor/Hsp90/immunophilin heterocomplex. Wu B, Li P, Liu Y, Lou Z, Ding Y, Shu C, Ye S, Bartlam M, Shen B, Rao Z. Proc Natl Acad Sci U S A 101 8348-8353 (2004)
  6. Attenuation of the activity of the cAMP-specific phosphodiesterase PDE4A5 by interaction with the immunophilin XAP2. Bolger GB, Peden AH, Steele MR, MacKenzie C, McEwan DG, Wallace DA, Huston E, Baillie GS, Houslay MD. J Biol Chem 278 33351-33363 (2003)
  7. A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. Forrer P, Stumpp MT, Binz HK, Plückthun A. FEBS Lett 539 2-6 (2003)
  8. PilF is an outer membrane lipoprotein required for multimerization and localization of the Pseudomonas aeruginosa Type IV pilus secretin. Koo J, Tammam S, Ku SY, Sampaleanu LM, Burrows LL, Howell PL. J Bacteriol 190 6961-6969 (2008)
  9. The limit of accuracy of protein modeling: influence of crystal packing on protein structure. Eyal E, Gerzon S, Potapov V, Edelman M, Sobolev V. J Mol Biol 351 431-442 (2005)
  10. Structural studies on the co-chaperone Hop and its complexes with Hsp90. Onuoha SC, Coulstock ET, Grossmann JG, Jackson SE. J Mol Biol 379 732-744 (2008)
  11. Characterization of Arabidopsis thaliana AtFKBP42 that is membrane-bound and interacts with Hsp90. Kamphausen T, Fanghänel J, Neumann D, Schulz B, Rahfeld JU. Plant J 32 263-276 (2002)
  12. Hsp90 functions in the targeting and outer membrane translocation steps of Tom70-mediated mitochondrial import. Fan AC, Bhangoo MK, Young JC. J Biol Chem 281 33313-33324 (2006)
  13. Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90. Cliff MJ, Harris R, Barford D, Ladbury JE, Williams MA. Structure 14 415-426 (2006)
  14. Molecular recognition via coupled folding and binding in a TPR domain. Cliff MJ, Williams MA, Brooke-Smith J, Barford D, Ladbury JE. J Mol Biol 346 717-732 (2005)
  15. A bipartite interaction between Hsp70 and CHIP regulates ubiquitination of chaperoned client proteins. Zhang H, Amick J, Chakravarti R, Santarriaga S, Schlanger S, McGlone C, Dare M, Nix JC, Scaglione KM, Stuehr DJ, Misra S, Page RC. Structure 23 472-482 (2015)
  16. Ligand binding by TPR domains. Cortajarena AL, Regan L. Protein Sci 15 1193-1198 (2006)
  17. Multiple cyclophilins involved in different cellular pathways mediate HCV replication. Gaither LA, Borawski J, Anderson LJ, Balabanis KA, Devay P, Joberty G, Rau C, Schirle M, Bouwmeester T, Mickanin C, Zhao S, Vickers C, Lee L, Deng G, Baryza J, Fujimoto RA, Lin K, Compton T, Wiedmann B. Virology 397 43-55 (2010)
  18. Small glutamine-rich tetratricopeptide repeat-containing protein is composed of three structural units with distinct functions. Liou ST, Wang C. Arch Biochem Biophys 435 253-263 (2005)
  19. AIPL1, a protein implicated in Leber's congenital amaurosis, interacts with and aids in processing of farnesylated proteins. Ramamurthy V, Roberts M, van den Akker F, Niemi G, Reh TA, Hurley JB. Proc Natl Acad Sci U S A 100 12630-12635 (2003)
  20. The Leber congenital amaurosis protein AIPL1 functions as part of a chaperone heterocomplex. Hidalgo-de-Quintana J, Evans RJ, Cheetham ME, van der Spuy J. Invest Ophthalmol Vis Sci 49 2878-2887 (2008)
  21. Binding of the cyclophilin 40 ortholog SQUINT to Hsp90 protein is required for SQUINT function in Arabidopsis. Earley KW, Poethig RS. J Biol Chem 286 38184-38189 (2011)
  22. Crystal structure of PilF: functional implication in the type 4 pilus biogenesis in Pseudomonas aeruginosa. Kim K, Oh J, Han D, Kim EE, Lee B, Kim Y. Biochem Biophys Res Commun 340 1028-1038 (2006)
  23. Interaction of the Hsp90 cochaperone cyclophilin 40 with Hsc70. Carrello A, Allan RK, Morgan SL, Owen BA, Mok D, Ward BK, Minchin RF, Toft DO, Ratajczak T. Cell Stress Chaperones 9 167-181 (2004)
  24. Structure of a SusD homologue, BT1043, involved in mucin O-glycan utilization in a prominent human gut symbiont. Koropatkin N, Martens EC, Gordon JI, Smith TJ. Biochemistry 48 1532-1542 (2009)
  25. Structural insights into the recognition of peroxisomal targeting signal 1 by Trypanosoma brucei peroxin 5. Sampathkumar P, Roach C, Michels PA, Hol WG. J Mol Biol 381 867-880 (2008)
  26. Chaperone ligand-discrimination by the TPR-domain protein Tah1. Millson SH, Vaughan CK, Zhai C, Ali MM, Panaretou B, Piper PW, Pearl LH, Prodromou C. Biochem J 413 261-268 (2008)
  27. A thermodynamic definition of protein domains. Porter LL, Rose GD. Proc Natl Acad Sci U S A 109 9420-9425 (2012)
  28. Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions. Bunney TD, Cole AR, Broncel M, Esposito D, Tate EW, Katan M. Structure 22 1831-1843 (2014)
  29. Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins. Ernst K, Langer S, Kaiser E, Osseforth C, Michaelis J, Popoff MR, Schwan C, Aktories K, Kahlert V, Malesevic M, Schiene-Fischer C, Barth H. J Mol Biol 427 1224-1238 (2015)
  30. The crystal structure of NlpI. A prokaryotic tetratricopeptide repeat protein with a globular fold. Wilson CG, Kajander T, Regan L. FEBS J 272 166-179 (2005)
  31. Genome wide analysis of Cyclophilin gene family from rice and Arabidopsis and its comparison with yeast. Trivedi DK, Yadav S, Vaid N, Tuteja N. Plant Signal Behav 7 1653-1666 (2012)
  32. Domain organization of the monomeric form of the Tom70 mitochondrial import receptor. Mills RD, Trewhella J, Qiu TW, Welte T, Ryan TM, Hanley T, Knott RB, Lithgow T, Mulhern TD. J Mol Biol 388 1043-1058 (2009)
  33. The chaperone function of cyclophilin 40 maps to a cleft between the prolyl isomerase and tetratricopeptide repeat domains. Mok D, Allan RK, Carrello A, Wangoo K, Walkinshaw MD, Ratajczak T. FEBS Lett 580 2761-2768 (2006)
  34. The Bcl-2 regulator FKBP38-calmodulin-Ca2+ is inhibited by Hsp90. Edlich F, Erdmann F, Jarczowski F, Moutty MC, Weiwad M, Fischer G. J Biol Chem 282 15341-15348 (2007)
  35. Structural, biochemical, and in vivo characterization of the first virally encoded cyclophilin from the Mimivirus. Thai V, Renesto P, Fowler CA, Brown DJ, Davis T, Gu W, Pollock DD, Kern D, Raoult D, Eisenmesser EZ. J Mol Biol 378 71-86 (2008)
  36. Combined x-ray crystallography and computational modeling approach to investigate the Hsp90 C-terminal peptide binding to FKBP51. Kumar R, Moche M, Winblad B, Pavlov PF. Sci Rep 7 14288 (2017)
  37. The crystal structure of Aspergillus fumigatus cyclophilin reveals 3D domain swapping of a central element. Limacher A, Kloer DP, Flückiger S, Folkers G, Crameri R, Scapozza L. Structure 14 185-195 (2006)
  38. The Hsp90 machinery facilitates the transport of diphtheria toxin into human cells. Schuster M, Schnell L, Feigl P, Birkhofer C, Mohr K, Roeder M, Carle S, Langer S, Tippel F, Buchner J, Fischer G, Hausch F, Frick M, Schwan C, Aktories K, Schiene-Fischer C, Barth H. Sci Rep 7 613 (2017)
  39. Heat-induced chaperone activity of serine/threonine protein phosphatase 5 enhances thermotolerance in Arabidopsis thaliana. Park JH, Lee SY, Kim WY, Jung YJ, Chae HB, Jung HS, Kang CH, Shin MR, Kim SY, Su'udi M, Yun DJ, Lee KO, Kim MG, Lee SY. New Phytol 191 692-705 (2011)
  40. Multiple abiotic stress responsive rice cyclophilin: (OsCYP-25) mediates a wide range of cellular responses. Trivedi DK, Ansari MW, Tuteja N. Commun Integr Biol 6 e25260 (2013)
  41. The conserved N-terminal region of the mitotic checkpoint protein BUBR1: a putative TPR motif of high surface activity. Bolanos-Garcia VM, Beaufils S, Renault A, Grossmann JG, Brewerton S, Lee M, Venkitaraman A, Blundell TL. Biophys J 89 2640-2649 (2005)
  42. A novel binding protein for a member of CyP40-type Cyclophilins: N.crassa CyPBP37, a growth and thiamine regulated protein homolog to yeast Thi4p. Faou P, Tropschug M. J Mol Biol 333 831-844 (2003)
  43. A redox 2-Cys mechanism regulates the catalytic activity of divergent cyclophilins. Campos BM, Sforça ML, Ambrosio AL, Domingues MN, Brasil de Souza Tde A, Barbosa JA, Paes Leme AF, Perez CA, Whittaker SB, Murakami MT, Zeri AC, Benedetti CE. Plant Physiol 162 1311-1323 (2013)
  44. Crystallographic structure of the tetratricopeptide repeat domain of Plasmodium falciparum FKBP35 and its molecular interaction with Hsp90 C-terminal pentapeptide. Alag R, Bharatham N, Dong A, Hills T, Harikishore A, Widjaja AA, Shochat SG, Hui R, Yoon HS. Protein Sci 18 2115-2124 (2009)
  45. Identification and Analysis of Natural Building Blocks for Evolution-Guided Fragment-Based Protein Design. Ferruz N, Lobos F, Lemm D, Toledo-Patino S, Farías-Rico JA, Schmidt S, Höcker B. J Mol Biol 432 3898-3914 (2020)
  46. C-terminal sequences of hsp70 and hsp90 as non-specific anchors for tetratricopeptide repeat (TPR) proteins. Ramsey AJ, Russell LC, Chinkers M. Biochem J 423 411-419 (2009)
  47. Crystal structure of a multi-domain immunophilin from Arabidopsis thaliana: a paradigm for regulation of plant ABC transporters. Granzin J, Eckhoff A, Weiergräber OH. J Mol Biol 364 799-809 (2006)
  48. Crystal structure of c5321: a protective antigen present in uropathogenic Escherichia coli strains displaying an SLR fold. Urosev D, Ferrer-Navarro M, Pastorello I, Cartocci E, Costenaro L, Zhulenkovs D, Maréchal JD, Leonchiks A, Reverter D, Serino L, Soriani M, Daura X. BMC Struct Biol 13 19 (2013)
  49. Genome wide identification of the immunophilin gene family in Leptosphaeria maculans: a causal agent of Blackleg disease in Oilseed Rape (Brassica napus). Singh K, Zouhar M, Mazakova J, Rysanek P. OMICS 18 645-657 (2014)
  50. Structural and biochemical characterization of the cytosolic wheat cyclophilin TaCypA-1. Sekhon SS, Kaur H, Dutta T, Singh K, Kumari S, Kang S, Park SG, Park BC, Jeong DG, Pareek A, Woo EJ, Singh P, Yoon TS. Acta Crystallogr D Biol Crystallogr 69 555-563 (2013)
  51. Cloning, expression and characterisation of FKB-6, the sole large TPR-containing immunophilin from C. elegans. Richardson JM, Dornan J, Opamawutthikul M, Bruce S, Page AP, Walkinshaw MD. Biochem Biophys Res Commun 360 566-572 (2007)
  52. Interaction of heat shock protein 90 and the co-chaperone Cpr6 with Ura2, a bifunctional enzyme required for pyrimidine biosynthesis. Zuehlke AD, Wren N, Tenge V, Johnson JL. J Biol Chem 288 27406-27414 (2013)
  53. Investigating the structural stability of the Tup1-interaction domain of Ssn6: evidence for a conformational change on the complex. Palaiomylitou M, Tartas A, Vlachakis D, Tzamarias D, Vlassi M. Proteins 70 72-82 (2008)
  54. Letter Structure and inhibition of N-acetylneuraminate lyase from methicillin-resistant Staphylococcus aureus. North RA, Watson AJ, Pearce FG, Muscroft-Taylor AC, Friemann R, Fairbanks AJ, Dobson RC. FEBS Lett 590 4414-4428 (2016)
  55. A designed point mutant in Fis1 disrupts dimerization and mitochondrial fission. Lees JP, Manlandro CM, Picton LK, Tan AZ, Casares S, Flanagan JM, Fleming KG, Hill RB. J Mol Biol 423 143-158 (2012)
  56. E. coli trp repressor forms a domain-swapped array in aqueous alcohol. Lawson CL, Benoff B, Berger T, Berman HM, Carey J. Structure 12 1099-1108 (2004)
  57. Mutation of essential Hsp90 co-chaperones SGT1 or CNS1 renders yeast hypersensitive to overexpression of other co-chaperones. Johnson JL, Zuehlke AD, Tenge VR, Langworthy JC. Curr Genet 60 265-276 (2014)
  58. Cyclophilin-40 has a cellular role in the aryl hydrocarbon receptor signaling. Luu TC, Bhattacharya P, Chan WK. FEBS Lett 582 3167-3173 (2008)
  59. The Hsp90 cochaperones Cpr6, Cpr7, and Cns1 interact with the intact ribosome. Tenge VR, Zuehlke AD, Shrestha N, Johnson JL. Eukaryot Cell 14 55-63 (2015)
  60. Dynamic combinatorial libraries of artificial repeat proteins. Eisenberg M, Shumacher I, Cohen-Luria R, Ashkenasy G. Bioorg Med Chem 21 3450-3457 (2013)
  61. Facile synthesis of a fluorescent cyclosporin a analogue to study cyclophilin 40 and cyclophilin 18 ligands. Gaali S, Kozany C, Hoogeland B, Klein M, Hausch F. ACS Med Chem Lett 1 536-539 (2010)
  62. Structural and Functional Characterization of a Novel Family of Cyclophilins, the AquaCyps. Jakob RP, Schmidpeter PA, Koch JR, Schmid FX, Maier T. PLoS One 11 e0157070 (2016)
  63. Disease related single point mutations alter the global dynamics of a tetratricopeptide (TPR) α-solenoid domain. Llabrés S, Tsenkov MI, MacGowan SA, Barton GJ, Zachariae U. J Struct Biol 209 107405 (2020)
  64. Exploring new strategies for grafting binding peptides onto protein loops using a consensus-designed tetratricopeptide repeat scaffold. Madden SK, Perez-Riba A, Itzhaki LS. Protein Sci 28 738-745 (2019)
  65. Involvement of some large immunophilins and their ligands in the protection and regeneration of neurons: a hypothetical mode of action. Galat A. Comput Biol Chem 30 348-359 (2006)
  66. Cyclophilin sensitivity to sanglifehrin A can be correlated to the same specific tryptophan residue as cyclosporin A. Pemberton TJ, Kay JE. FEBS Lett 555 335-340 (2003)
  67. Functional and structural similarity of human DNA primase [4Fe4S] cluster domain constructs. Holt ME, Salay LE, O'Brien E, Barton JK, Chazin WJ. PLoS One 13 e0209345 (2018)
  68. The Nature and Arrangement of Pentatricopeptide Domains and the Linker Sequences Between Them. Barik S. Bioinform Biol Insights 14 1177932220906434 (2020)
  69. Characterization of cyclophilin D in freshwater pearl mussel (Hyriopsis schlegelii). Liu XX, Wang CY, Luo C, Sheng JQ, Wu D, Hu BJ, Wang JH, Hong YJ. Zool Res 38 103-109 (2017)
  70. Characterization and regulation of salt upregulated cyclophilin from a halotolerant strain of Penicillium oxalicum. Singh M, Singh H, Kaur K, Shubhankar S, Singh S, Kaur A, Singh P. Sci Rep 13 17433 (2023)
  71. Exploring the binding of rationally engineered tandem-repeat proteins to E3 ubiquitin ligase Keap1. Madden SK, Itzhaki LS. Protein Eng Des Sel 34 gzab027 (2021)
  72. The crystal structure of the Hsp90 co-chaperone Cpr7 from Saccharomyces cerevisiae. Qiu Y, Ge Q, Wang M, Lv H, Ebrahimi M, Niu L, Teng M, Li X. J Struct Biol 197 379-387 (2017)