1i96 Citations

Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3.

Abstract

The small ribosomal subunit is responsible for the decoding of genetic information and plays a key role in the initiation of protein synthesis. We analyzed by X-ray crystallography the structures of three different complexes of the small ribosomal subunit of Thermus thermophilus with the A-site inhibitor tetracycline, the universal initiation inhibitor edeine and the C-terminal domain of the translation initiation factor IF3. The crystal structure analysis of the complex with tetracycline revealed the functionally important site responsible for the blockage of the A-site. Five additional tetracycline sites resolve most of the controversial biochemical data on the location of tetracycline. The interaction of edeine with the small subunit indicates its role in inhibiting initiation and shows its involvement with P-site tRNA. The location of the C-terminal domain of IF3, at the solvent side of the platform, sheds light on the formation of the initiation complex, and implies that the anti-association activity of IF3 is due to its influence on the conformational dynamics of the small ribosomal subunit.

Articles - 1i96 mentioned but not cited (6)

  1. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. Pioletti M, Schlünzen F, Harms J, Zarivach R, Glühmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F. EMBO J 20 1829-1839 (2001)
  2. A structural basis for streptomycin-induced misreading of the genetic code. Demirci H, Murphy F, Murphy E, Gregory ST, Dahlberg AE, Jogl G. Nat Commun 4 1355 (2013)
  3. Polyoxometalates: more than a phasing tool in protein crystallography. Bijelic A, Rompel A. ChemTexts 4 10 (2018)
  4. Ribosomal dynamics inferred from variations in experimental measurements. Gabashvili IS, Whirl-Carrillo M, Bada M, Banatao DR, Altman RB. RNA 9 1301-1307 (2003)
  5. Noise-Transfer2Clean: denoising cryo-EM images based on noise modeling and transfer. Li H, Zhang H, Wan X, Yang Z, Li C, Li J, Han R, Zhu P, Zhang F. Bioinformatics 38 2022-2029 (2022)
  6. Exploring Wells-Dawson Clusters Associated With the Small Ribosomal Subunit. Crans DC, Sánchez-Lombardo I, McLauchlan CC. Front Chem 7 462 (2019)


Reviews citing this publication (77)

  1. Ribosome structure and the mechanism of translation. Ramakrishnan V. Cell 108 557-572 (2002)
  2. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Wilson DN. Nat Rev Microbiol 12 35-48 (2014)
  3. Structural insights into translational fidelity. Ogle JM, Ramakrishnan V. Annu Rev Biochem 74 129-177 (2005)
  4. Where will new antibiotics come from? Walsh C. Nat Rev Microbiol 1 65-70 (2003)
  5. Initiation of protein synthesis in bacteria. Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. Microbiol Mol Biol Rev 69 101-123 (2005)
  6. The bacterial ribosome as a target for antibiotics. Poehlsgaard J, Douthwaite S. Nat Rev Microbiol 3 870-881 (2005)
  7. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Brown-Elliott BA, Nash KA, Wallace RJ. Clin Microbiol Rev 25 545-582 (2012)
  8. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. Nat Prod Rep 24 162-190 (2007)
  9. The A-Z of bacterial translation inhibitors. Wilson DN. Crit Rev Biochem Mol Biol 44 393-433 (2009)
  10. Ribosomal protection proteins and their mechanism of tetracycline resistance. Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Antimicrob Agents Chemother 47 3675-3681 (2003)
  11. Tetracycline Antibiotics and Resistance. Grossman TH. Cold Spring Harb Perspect Med 6 a025387 (2016)
  12. The tetracycline resistome. Thaker M, Spanogiannopoulos P, Wright GD. Cell Mol Life Sci 67 419-431 (2010)
  13. Mechanisms of action of newer antibiotics for Gram-positive pathogens. Hancock RE. Lancet Infect Dis 5 209-218 (2005)
  14. Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. Yonath A. Annu Rev Biochem 74 649-679 (2005)
  15. The function and synthesis of ribosomes. Lafontaine DL, Tollervey D. Nat Rev Mol Cell Biol 2 514-520 (2001)
  16. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Annu Rev Biochem 87 451-478 (2018)
  17. Mechanism of protein biosynthesis in mammalian mitochondria. Christian BE, Spremulli LL. Biochim Biophys Acta 1819 1035-1054 (2012)
  18. The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. Plant EP, Jacobs KL, Harger JW, Meskauskas A, Jacobs JL, Baxter JL, Petrov AN, Dinman JD. RNA 9 168-174 (2003)
  19. The bacterial translation stress response. Starosta AL, Lassak J, Jung K, Wilson DN. FEMS Microbiol Rev 38 1172-1201 (2014)
  20. RNA as a drug target: the case of aminoglycosides. Vicens Q, Westhof E. Chembiochem 4 1018-1023 (2003)
  21. Drugs targeting the ribosome. Hermann T. Curr Opin Struct Biol 15 355-366 (2005)
  22. The involvement of RNA in ribosome function. Moore PB, Steitz TA. Nature 418 229-235 (2002)
  23. Mycoplasma pneumoniae: susceptibility and resistance to antibiotics. Bébéar C, Pereyre S, Peuchant O. Future Microbiol 6 423-431 (2011)
  24. Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. Chow CS, Lamichhane TN, Mahto SK. ACS Chem Biol 2 610-619 (2007)
  25. The structural basis of large ribosomal subunit function. Moore PB, Steitz TA. Annu Rev Biochem 72 813-850 (2003)
  26. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Gualerzi CO, Pon CL. Cell Mol Life Sci 72 4341-4367 (2015)
  27. The use of polyoxometalates in protein crystallography - An attempt to widen a well-known bottleneck. Bijelic A, Rompel A. Coord Chem Rev 299 22-38 (2015)
  28. Antibiotics that target protein synthesis. McCoy LS, Xie Y, Tor Y. Wiley Interdiscip Rev RNA 2 209-232 (2011)
  29. Structure and function of "metalloantibiotics". Ming LJ. Med Res Rev 23 697-762 (2003)
  30. Antibiotic Resistance in Plant-Pathogenic Bacteria. Sundin GW, Wang N. Annu Rev Phytopathol 56 161-180 (2018)
  31. Structure-based discovery of antibacterial drugs. Simmons KJ, Chopra I, Fishwick CW. Nat Rev Microbiol 8 501-510 (2010)
  32. Ribosomal translocation: one step closer to the molecular mechanism. Shoji S, Walker SE, Fredrick K. ACS Chem Biol 4 93-107 (2009)
  33. Species-specific antibiotic-ribosome interactions: implications for drug development. Wilson DN, Harms JM, Nierhaus KH, Schlünzen F, Fucini P. Biol Chem 386 1239-1252 (2005)
  34. rRNA Binding Sites and the Molecular Mechanism of Action of the Tetracyclines. Chukwudi CU. Antimicrob Agents Chemother 60 4433-4441 (2016)
  35. 5 S rRNA: structure and interactions. Szymański M, Barciszewska MZ, Erdmann VA, Barciszewski J. Biochem J 371 641-651 (2003)
  36. Macrolide antibiotics in the ribosome exit tunnel: species-specific binding and action. Kannan K, Mankin AS. Ann N Y Acad Sci 1241 33-47 (2011)
  37. Target protection as a key antibiotic resistance mechanism. Wilson DN, Hauryliuk V, Atkinson GC, O'Neill AJ. Nat Rev Microbiol 18 637-648 (2020)
  38. Structure-function insights into prokaryotic and eukaryotic translation initiation. Myasnikov AG, Simonetti A, Marzi S, Klaholz BP. Curr Opin Struct Biol 19 300-309 (2009)
  39. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Arenz S, Wilson DN. Cold Spring Harb Perspect Med 6 a025361 (2016)
  40. Chemical biology of tetracycline antibiotics. Zakeri B, Wright GD. Biochem Cell Biol 86 124-136 (2008)
  41. Structure-based drug design meets the ribosome. Franceschi F, Duffy EM. Biochem Pharmacol 71 1016-1025 (2006)
  42. Tigecycline: a novel glycylcycline. Rubinstein E, Vaughan D. Drugs 65 1317-1336 (2005)
  43. Chemical and functional diversity of small molecule ligands for RNA. Hermann T. Biopolymers 70 4-18 (2003)
  44. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. Front Mol Biosci 5 48 (2018)
  45. The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. Yonath A. Annu Rev Biophys Biomol Struct 31 257-273 (2002)
  46. The roles of RNA in the synthesis of protein. Moore PB, Steitz TA. Cold Spring Harb Perspect Biol 3 a003780 (2011)
  47. Ribosomal antibiotics: structural basis for resistance, synergism and selectivity. Auerbach T, Bashan A, Yonath A. Trends Biotechnol 22 570-576 (2004)
  48. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development. Arenz S, Wilson DN. Mol Cell 61 3-14 (2016)
  49. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Yonath A, Bashan A. Annu Rev Microbiol 58 233-251 (2004)
  50. Traffic jam at the bacterial sec translocase: targeting the SecA nanomotor by small-molecule inhibitors. Segers K, Anné J. Chem Biol 18 685-698 (2011)
  51. Ribosomal crystallography: peptide bond formation and its inhibition. Bashan A, Zarivach R, Schluenzen F, Agmon I, Harms J, Auerbach T, Baram D, Berisio R, Bartels H, Hansen HA, Fucini P, Wilson D, Peretz M, Kessler M, Yonath A. Biopolymers 70 19-41 (2003)
  52. Structural dynamics of ribosomal RNA during decoding on the ribosome. Rodnina MV, Daviter T, Gromadski K, Wintermeyer W. Biochimie 84 745-754 (2002)
  53. Tetracyclines metal complexation: Significance and fate of mutual existence in the environment. Pulicharla R, Hegde K, Brar SK, Surampalli RY. Environ Pollut 221 1-14 (2017)
  54. Antibiotics: Conventional Therapy and Natural Compounds with Antibacterial Activity-A Pharmaco-Toxicological Screening. Pancu DF, Scurtu A, Macasoi IG, Marti D, Mioc M, Soica C, Coricovac D, Horhat D, Poenaru M, Dehelean C. Antibiotics (Basel) 10 401 (2021)
  55. The Impact of the Stringent Response on TRAFAC GTPases and Prokaryotic Ribosome Assembly. Bennison DJ, Irving SE, Corrigan RM. Cells 8 E1313 (2019)
  56. Synthetic biology of antimicrobial discovery. Zakeri B, Lu TK. ACS Synth Biol 2 358-372 (2013)
  57. Ribosomal tolerance and peptide bond formation. Yonath A. Biol Chem 384 1411-1419 (2003)
  58. Meanderings of the mRNA through the ribosome. Culver GM. Structure 9 751-758 (2001)
  59. Non-coding RNAs as antibiotic targets. Colameco S, Elliot MA. Biochem Pharmacol 133 29-42 (2017)
  60. A Bright Future for Antibiotics? Matzov D, Bashan A, Yonath A. Annu Rev Biochem 86 567-583 (2017)
  61. Antibiotics and chemoprophylaxis. Seymour RA, Hogg SD. Periodontol 2000 46 80-108 (2008)
  62. Biological implications of the ribosome's stunning stereochemistry. Zimmerman E, Yonath A. Chembiochem 10 63-72 (2009)
  63. From Worms to Drug Candidate: The Story of Odilorhabdins, a New Class of Antimicrobial Agents. Racine E, Gualtieri M. Front Microbiol 10 2893 (2019)
  64. The Case against Antibiotics and for Anti-Virulence Therapeutics. Hotinger JA, Morris ST, May AE. Microorganisms 9 2049 (2021)
  65. Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. Yonath A. J R Soc Interface 6 Suppl 5 S575-85 (2009)
  66. Ribosome's mode of function: myths, facts and recent results. Wekselman I, Davidovich C, Agmon I, Zimmerman E, Rozenberg H, Bashan A, Berisio R, Yonath A. J Pept Sci 15 122-130 (2009)
  67. How Streptococcus suis escapes antibiotic treatments. Uruén C, García C, Fraile L, Tommassen J, Arenas J. Vet Res 53 91 (2022)
  68. Initiation of protein synthesis: a target for antimicrobials. Brandi L, Fabbretti A, Pon CL, Dahlberg AE, Gualerzi CO. Expert Opin Ther Targets 12 519-534 (2008)
  69. Molecular biology methods for the characterization of Helicobacter pylori infections and their diagnosis. Simala-Grant JL, Taylor DE. APMIS 112 886-897 (2004)
  70. Case studies in current drug development: 'glycylcyclines'. Sum PE. Curr Opin Chem Biol 10 374-379 (2006)
  71. Chelation in Antibacterial Drugs: From Nitroxoline to Cefiderocol and Beyond. Repac Antić D, Parčina M, Gobin I, Petković Didović M. Antibiotics (Basel) 11 1105 (2022)
  72. Drug Repurposing: A Review of Old and New Antibiotics for the Treatment of Malaria: Identifying Antibiotics with a Fast Onset of Antiplasmodial Action. Pessanha de Carvalho L, Kreidenweiss A, Held J. Molecules 26 2304 (2021)
  73. Aminoglycoside interactions with RNAs and nucleases. Kirsebom LA, Virtanen A, Mikkelsen NE. Handb Exp Pharmacol 73-96 (2006)
  74. Human Drug Pollution in the Aquatic System: The Biochemical Responses of Danio rerio Adults. Mauro M, Lazzara V, Arizza V, Luparello C, Ferrantelli V, Cammilleri G, Inguglia L, Vazzana M. Biology (Basel) 10 1064 (2021)
  75. Inhibition of the Eukaryotic 80S Ribosome as a Potential Anticancer Therapy: A Structural Perspective. Pellegrino S, Terrosu S, Yusupova G, Yusupov M. Cancers (Basel) 13 4392 (2021)
  76. The role of adjuvants in overcoming antibacterial resistance due to enzymatic drug modification. El-Khoury C, Mansour E, Yuliandra Y, Lai F, Hawkins BA, Du JJ, Sundberg EJ, Sluis-Cremer N, Hibbs DE, Groundwater PW. RSC Med Chem 13 1276-1299 (2022)
  77. Trypanosome Mitochondrial Translation and Tetracycline: No Sweat about Tet. Hashimi H, Kaltenbrunner S, Zíková A, Lukeš J. PLoS Pathog 12 e1005492 (2016)

Articles citing this publication (200)

  1. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Lu XJ, Olson WK. Nucleic Acids Res 31 5108-5121 (2003)
  2. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F. Nature 413 814-821 (2001)
  3. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A. Cell 107 679-688 (2001)
  4. Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA-ribosome and subunit-subunit interactions. Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J. Cell 107 373-386 (2001)
  5. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Korostelev A, Trakhanov S, Laurberg M, Noller HF. Cell 126 1065-1077 (2006)
  6. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. Mol Cell 10 117-128 (2002)
  7. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. Klein DJ, Moore PB, Steitz TA. J Mol Biol 340 141-177 (2004)
  8. Structural basis for the inhibition of the eukaryotic ribosome. Garreau de Loubresse N, Prokhorova I, Holtkamp W, Rodnina MV, Yusupova G, Yusupov M. Nature 513 517-522 (2014)
  9. Crystal structure of the 30 S ribosomal subunit from Thermus thermophilus: structure of the proteins and their interactions with 16 S RNA. Brodersen DE, Clemons WM, Carter AP, Wimberly BT, Ramakrishnan V. J Mol Biol 316 725-768 (2002)
  10. Letter Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Nature 441 1167-1171 (2006)
  11. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. Hansen JL, Moore PB, Steitz TA. J Mol Biol 330 1061-1075 (2003)
  12. Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Espah Borujeni A, Channarasappa AS, Salis HM. Nucleic Acids Res 42 2646-2659 (2014)
  13. The cryo-EM structure of a translation initiation complex from Escherichia coli. Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J. Cell 121 703-712 (2005)
  14. The process of mRNA-tRNA translocation. Frank J, Gao H, Sengupta J, Gao N, Taylor DJ. Proc Natl Acad Sci U S A 104 19671-19678 (2007)
  15. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Schlünzen F, Pyetan E, Fucini P, Yonath A, Harms JM. Mol Microbiol 54 1287-1294 (2004)
  16. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. Peske F, Savelsbergh A, Katunin VI, Rodnina MV, Wintermeyer W. J Mol Biol 343 1183-1194 (2004)
  17. Interaction of translation initiation factor 3 with the 30S ribosomal subunit. Dallas A, Noller HF. Mol Cell 8 855-864 (2001)
  18. Functional, biophysical, and structural bases for antibacterial activity of tigecycline. Olson MW, Ruzin A, Feyfant E, Rush TS, O'Connell J, Bradford PA. Antimicrob Agents Chemother 50 2156-2166 (2006)
  19. Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Studer SM, Joseph S. Mol Cell 22 105-115 (2006)
  20. Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. Dinos G, Wilson DN, Teraoka Y, Szaflarski W, Fucini P, Kalpaxis D, Nierhaus KH. Mol Cell 13 113-124 (2004)
  21. Structure of the mammalian 80S ribosome at 8.7 A resolution. Chandramouli P, Topf M, Ménétret JF, Eswar N, Cannone JJ, Gutell RR, Sali A, Akey CW. Structure 16 535-548 (2008)
  22. Structural basis for potent inhibitory activity of the antibiotic tigecycline during protein synthesis. Jenner L, Starosta AL, Terry DS, Mikolajka A, Filonava L, Yusupov M, Blanchard SC, Wilson DN, Yusupova G. Proc Natl Acad Sci U S A 110 3812-3816 (2013)
  23. Inhibitors of protein synthesis identified by a high throughput multiplexed translation screen. Novac O, Guenier AS, Pelletier J. Nucleic Acids Res 32 902-915 (2004)
  24. Crystal structure of geneticin bound to a bacterial 16S ribosomal RNA A site oligonucleotide. Vicens Q, Westhof E. J Mol Biol 326 1175-1188 (2003)
  25. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. Ng WL, Kazmierczak KM, Robertson GT, Gilmour R, Winkler ME. J Bacteriol 185 359-370 (2003)
  26. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. Harms JM, Schlünzen F, Fucini P, Bartels H, Yonath A. BMC Biol 2 4 (2004)
  27. Nucleotide modifications in three functionally important regions of the Saccharomyces cerevisiae ribosome affect translation accuracy. Baudin-Baillieu A, Fabret C, Liang XH, Piekna-Przybylska D, Fournier MJ, Rousset JP. Nucleic Acids Res 37 7665-7677 (2009)
  28. Structural basis for TetM-mediated tetracycline resistance. Dönhöfer A, Franckenberg S, Wickles S, Berninghausen O, Beckmann R, Wilson DN. Proc Natl Acad Sci U S A 109 16900-16905 (2012)
  29. The fidelity of translation initiation: reciprocal activities of eIF1, IF3 and YciH. Lomakin IB, Shirokikh NE, Yusupov MM, Hellen CU, Pestova TV. EMBO J 25 196-210 (2006)
  30. Assembly of the 30S ribosomal subunit. Culver GM. Biopolymers 68 234-249 (2003)
  31. Target- and resistance-based mechanistic studies with TP-434, a novel fluorocycline antibiotic. Grossman TH, Starosta AL, Fyfe C, O'Brien W, Rothstein DM, Mikolajka A, Wilson DN, Sutcliffe JA. Antimicrob Agents Chemother 56 2559-2564 (2012)
  32. Thermodynamic characterization of an engineered tetracycline-binding riboswitch. Müller M, Weigand JE, Weichenrieder O, Suess B. Nucleic Acids Res 34 2607-2617 (2006)
  33. Mutations in the 16S rRNA genes of Helicobacter pylori mediate resistance to tetracycline. Trieber CA, Taylor DE. J Bacteriol 184 2131-2140 (2002)
  34. Mechanism of action of the novel aminomethylcycline antibiotic omadacycline. Draper MP, Weir S, Macone A, Donatelli J, Trieber CA, Tanaka SK, Levy SB. Antimicrob Agents Chemother 58 1279-1283 (2014)
  35. Translation initiation factor IF3: two domains, five functions, one mechanism? Petrelli D, LaTeana A, Garofalo C, Spurio R, Pon CL, Gualerzi CO. EMBO J 20 4560-4569 (2001)
  36. A novel GTPase activated by the small subunit of ribosome. Himeno H, Hanawa-Suetsugu K, Kimura T, Takagi K, Sugiyama W, Shirata S, Mikami T, Odagiri F, Osanai Y, Watanabe D, Goto S, Kalachnyuk L, Ushida C, Muto A. Nucleic Acids Res 32 5303-5309 (2004)
  37. The antibiotic kasugamycin mimics mRNA nucleotides to destabilize tRNA binding and inhibit canonical translation initiation. Schluenzen F, Takemoto C, Wilson DN, Kaminishi T, Harms JM, Hanawa-Suetsugu K, Szaflarski W, Kawazoe M, Shirouzu M, Nierhaus KH, Yokoyama S, Fucini P. Nat Struct Mol Biol 13 871-878 (2006)
  38. Position of eukaryotic translation initiation factor eIF1A on the 40S ribosomal subunit mapped by directed hydroxyl radical probing. Yu Y, Marintchev A, Kolupaeva VG, Unbehaun A, Veryasova T, Lai SC, Hong P, Wagner G, Hellen CU, Pestova TV. Nucleic Acids Res 37 5167-5182 (2009)
  39. Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs. Koc EC, Spremulli LL. J Biol Chem 277 35541-35549 (2002)
  40. Structural basis for specific, high-affinity tetracycline binding by an in vitro evolved aptamer and artificial riboswitch. Xiao H, Edwards TE, Ferré-D'Amaré AR. Chem Biol 15 1125-1137 (2008)
  41. 16S rRNA mutation-mediated tetracycline resistance in Helicobacter pylori. Gerrits MM, de Zoete MR, Arents NL, Kuipers EJ, Kusters JG. Antimicrob Agents Chemother 46 2996-3000 (2002)
  42. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Marshall RA, Aitken CE, Puglisi JD. Mol Cell 35 37-47 (2009)
  43. The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. Correll CC, Beneken J, Plantinga MJ, Lubbers M, Chan YL. Nucleic Acids Res 31 6806-6818 (2003)
  44. Mechanism of Tet(O)-mediated tetracycline resistance. Connell SR, Trieber CA, Dinos GP, Einfeldt E, Taylor DE, Nierhaus KH. EMBO J 22 945-953 (2003)
  45. 70S-scanning initiation is a novel and frequent initiation mode of ribosomal translation in bacteria. Yamamoto H, Wittek D, Gupta R, Qin B, Ueda T, Krause R, Yamamoto K, Albrecht R, Pech M, Nierhaus KH. Proc Natl Acad Sci U S A 113 E1180-9 (2016)
  46. Emergence of tetracycline resistance in Helicobacter pylori: multiple mutational changes in 16S ribosomal DNA and other genetic loci. Dailidiene D, Bertoli MT, Miciuleviciene J, Mukhopadhyay AK, Dailide G, Pascasio MA, Kupcinskas L, Berg DE. Antimicrob Agents Chemother 46 3940-3946 (2002)
  47. Deleterious mutations in small subunit ribosomal RNA identify functional sites and potential targets for antibiotics. Yassin A, Fredrick K, Mankin AS. Proc Natl Acad Sci U S A 102 16620-16625 (2005)
  48. Antibiotic susceptibility of mammalian mitochondrial translation. Zhang L, Ging NC, Komoda T, Hanada T, Suzuki T, Watanabe K. FEBS Lett 579 6423-6427 (2005)
  49. Diversity of base-pair conformations and their occurrence in rRNA structure and RNA structural motifs. Lee JC, Gutell RR. J Mol Biol 344 1225-1249 (2004)
  50. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. Abdi NM, Fredrick K. RNA 11 1624-1632 (2005)
  51. Amicoumacin a inhibits translation by stabilizing mRNA interaction with the ribosome. Polikanov YS, Osterman IA, Szal T, Tashlitsky VN, Serebryakova MV, Kusochek P, Bulkley D, Malanicheva IA, Efimenko TA, Efremenkova OV, Konevega AL, Shaw KJ, Bogdanov AA, Rodnina MV, Dontsova OA, Mankin AS, Steitz TA, Sergiev PV. Mol Cell 56 531-540 (2014)
  52. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. Volkers G, Palm GJ, Weiss MS, Wright GD, Hinrichs W. FEBS Lett 585 1061-1066 (2011)
  53. Multiple effects of S13 in modulating the strength of intersubunit interactions in the ribosome during translation. Cukras AR, Green R. J Mol Biol 349 47-59 (2005)
  54. The real-time path of translation factor IF3 onto and off the ribosome. Fabbretti A, Pon CL, Hennelly SP, Hill WE, Lodmell JS, Gualerzi CO. Mol Cell 25 285-296 (2007)
  55. Key Intermediates in Ribosome Recycling Visualized by Time-Resolved Cryoelectron Microscopy. Fu Z, Kaledhonkar S, Borg A, Sun M, Chen B, Grassucci RA, Ehrenberg M, Frank J. Structure 24 2092-2101 (2016)
  56. Specific, efficient, and selective inhibition of prokaryotic translation initiation by a novel peptide antibiotic. Brandi L, Fabbretti A, La Teana A, Abbondi M, Losi D, Donadio S, Gualerzi CO. Proc Natl Acad Sci U S A 103 39-44 (2006)
  57. Structures and dynamics of hibernating ribosomes from Staphylococcus aureus mediated by intermolecular interactions of HPF. Khusainov I, Vicens Q, Ayupov R, Usachev K, Myasnikov A, Simonetti A, Validov S, Kieffer B, Yusupova G, Yusupova G, Yusupov M, Hashem Y. EMBO J 36 2073-2087 (2017)
  58. Plasmodium falciparum proteome changes in response to doxycycline treatment. Briolant S, Almeras L, Belghazi M, Boucomont-Chapeaublanc E, Wurtz N, Fontaine A, Granjeaud S, Fusaï T, Rogier C, Pradines B. Malar J 9 141 (2010)
  59. Historical Article Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture). Yonath A. Angew Chem Int Ed Engl 49 4341-4354 (2010)
  60. Ribosomal localization of translation initiation factor IF2. Marzi S, Knight W, Brandi L, Caserta E, Soboleva N, Hill WE, Gualerzi CO, Lodmell JS. RNA 9 958-969 (2003)
  61. Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Zhu T, Cheng X, Liu Y, Deng Z, You D. Metab Eng 19 69-78 (2013)
  62. Polyene antibiotic that inhibits membrane transport proteins. te Welscher YM, van Leeuwen MR, de Kruijff B, Dijksterhuis J, Breukink E. Proc Natl Acad Sci U S A 109 11156-11159 (2012)
  63. Classic reaction kinetics can explain complex patterns of antibiotic action. Abel Zur Wiesch P, Abel S, Gkotzis S, Ocampo P, Engelstädter J, Hinkley T, Magnus C, Waldor MK, Udekwu K, Cohen T. Sci Transl Med 7 287ra73 (2015)
  64. A distinct translation initiation mechanism generates cryptic peptides for immune surveillance. Starck SR, Ow Y, Jiang V, Tokuyama M, Rivera M, Qi X, Roberts RW, Shastri N. PLoS One 3 e3460 (2008)
  65. Cryo-EM structure of the tetracycline resistance protein TetM in complex with a translating ribosome at 3.9-Å resolution. Arenz S, Nguyen F, Beckmann R, Wilson DN. Proc Natl Acad Sci U S A 112 5401-5406 (2015)
  66. Guanosine tetra- and pentaphosphate synthase activity in chloroplasts of a higher plant: association with 70S ribosomes and inhibition by tetracycline. Kasai K, Kanno T, Endo Y, Wakasa K, Tozawa Y. Nucleic Acids Res 32 5732-5741 (2004)
  67. L11 domain rearrangement upon binding to RNA and thiostrepton studied by NMR spectroscopy. Jonker HR, Ilin S, Grimm SK, Wöhnert J, Schwalbe H. Nucleic Acids Res 35 441-454 (2007)
  68. The Era GTPase recognizes the GAUCACCUCC sequence and binds helix 45 near the 3' end of 16S rRNA. Tu C, Zhou X, Tarasov SG, Tropea JE, Austin BP, Waugh DS, Court DL, Ji X. Proc Natl Acad Sci U S A 108 10156-10161 (2011)
  69. Ca2+ and Mg2+ bind tetracycline with distinct stoichiometries and linked deprotonation. Jin L, Amaya-Mazo X, Apel ME, Sankisa SS, Johnson E, Zbyszynska MA, Han A. Biophys Chem 128 185-196 (2007)
  70. Discovery and characterization of a group of fungal polycyclic polyketide prenyltransferases. Chooi YH, Wang P, Fang J, Li Y, Wu K, Wang P, Tang Y. J Am Chem Soc 134 9428-9437 (2012)
  71. Interrupted catalysis: the EF4 (LepA) effect on back-translocation. Liu H, Pan D, Pech M, Cooperman BS. J Mol Biol 396 1043-1052 (2010)
  72. An ultra-sensitive colorimetric detection of tetracyclines using the shortest aptamer with highly enhanced affinity. Kwon YS, Ahmad Raston NH, Gu MB. Chem Commun (Camb) 50 40-42 (2014)
  73. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. Melnikov SV, Söll D, Steitz TA, Polikanov YS. Nucleic Acids Res 44 4978-4987 (2016)
  74. Activities of Escherichia coli ribosomes in IF3 and RMF change to prepare 100S ribosome formation on entering the stationary growth phase. Yoshida H, Ueta M, Maki Y, Sakai A, Wada A. Genes Cells 14 271-280 (2009)
  75. Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae. Atkinson GC, Kuzmenko A, Kamenski P, Vysokikh MY, Lakunina V, Tankov S, Smirnova E, Soosaar A, Tenson T, Hauryliuk V. Nucleic Acids Res 40 6122-6134 (2012)
  76. The structures of antibiotics bound to the E site region of the 50 S ribosomal subunit of Haloarcula marismortui: 13-deoxytedanolide and girodazole. Schroeder SJ, Blaha G, Tirado-Rives J, Steitz TA, Moore PB. J Mol Biol 367 1471-1479 (2007)
  77. Negamycin interferes with decoding and translocation by simultaneous interaction with rRNA and tRNA. Polikanov YS, Szal T, Jiang F, Gupta P, Matsuda R, Shiozuka M, Steitz TA, Vázquez-Laslop N, Mankin AS. Mol Cell 56 541-550 (2014)
  78. Tetracycline accumulates in Iberis sempervirens L. through apoplastic transport inducing oxidative stress and growth inhibition. Di Marco G, Gismondi A, Canuti L, Scimeca M, Volpe A, Canini A. Plant Biol (Stuttg) 16 792-800 (2014)
  79. Construction of a new class of tetracycline lead structures with potent antibacterial activity through biosynthetic engineering. Lešnik U, Lukežič T, Podgoršek A, Horvat J, Polak T, Šala M, Jenko B, Harmrolfs K, Ocampo-Sosa A, Martínez-Martínez L, Herron PR, Fujs Š, Kosec G, Hunter IS, Müller R, Petković H. Angew Chem Int Ed Engl 54 3937-3940 (2015)
  80. Mutations Associated with Decreased Susceptibility to Seven Antimicrobial Families in Field and Laboratory-Derived Mycoplasma bovis Strains. Sulyok KM, Kreizinger Z, Wehmann E, Lysnyansky I, Bányai K, Marton S, Jerzsele Á, Rónai Z, Turcsányi I, Makrai L, Jánosi S, Nagy SÁ, Gyuranecz M. Antimicrob Agents Chemother 61 e01983-16 (2017)
  81. Specific binding of divalent metal ions to tetracycline and to the Tet repressor/tetracycline complex. Palm GJ, Lederer T, Orth P, Saenger W, Takahashi M, Hillen W, Hinrichs W. J Biol Inorg Chem 13 1097-1110 (2008)
  82. A structure-based strategy to identify new molecular scaffolds targeting the bacterial ribosomal A-site. Foloppe N, Chen IJ, Davis B, Hold A, Morley D, Howes R. Bioorg Med Chem 12 935-947 (2004)
  83. Features of 80S mammalian ribosome and its subunits. Budkevich TV, El'skaya AV, Nierhaus KH. Nucleic Acids Res 36 4736-4744 (2008)
  84. 16S rRNA mutations that confer tetracycline resistance in Helicobacter pylori decrease drug binding in Escherichia coli ribosomes. Nonaka L, Connell SR, Taylor DE. J Bacteriol 187 3708-3712 (2005)
  85. Synthesis and evaluation of hetero- and homodimers of ribosome-targeting antibiotics: antimicrobial activity, in vitro inhibition of translation, and drug resistance. Berkov-Zrihen Y, Green KD, Labby KJ, Feldman M, Garneau-Tsodikova S, Fridman M. J Med Chem 56 5613-5625 (2013)
  86. 16S rRNA gene mutations associated with decreased susceptibility to tetracycline in Mycoplasma bovis. Amram E, Mikula I, Schnee C, Ayling RD, Nicholas RA, Rosales RS, Harrus S, Lysnyansky I. Antimicrob Agents Chemother 59 796-802 (2015)
  87. Resistance mutations generate divergent antibiotic susceptibility profiles against translation inhibitors. Cocozaki AI, Altman RB, Huang J, Buurman ET, Kazmirski SL, Doig P, Prince DB, Blanchard SC, Cate JH, Ferguson AD. Proc Natl Acad Sci U S A 113 8188-8193 (2016)
  88. Historical Article Unraveling the structure of the ribosome (Nobel Lecture). Ramakrishnan V. Angew Chem Int Ed Engl 49 4355-4380 (2010)
  89. The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. Bashan A, Yonath A. J Mol Struct 890 289-294 (2008)
  90. Attenuation-based dual-fluorescent-protein reporter for screening translation inhibitors. Osterman IA, Prokhorova IV, Sysoev VO, Boykova YV, Efremenkova OV, Svetlov MS, Kolb VA, Bogdanov AA, Sergiev PV, Dontsova OA. Antimicrob Agents Chemother 56 1774-1783 (2012)
  91. Multinormal in vitro distribution model suitable for the distribution of Plasmodium falciparum chemosusceptibility to doxycycline. Briolant S, Baragatti M, Parola P, Simon F, Tall A, Sokhna C, Hovette P, Mamfoumbi MM, Koeck JL, Delmont J, Spiegel A, Castello J, Gardair JP, Trape JF, Kombila M, Minodier P, Fusai T, Rogier C, Pradines B. Antimicrob Agents Chemother 53 688-695 (2009)
  92. The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: evolution of terminal extensions in IF3mt. Haque ME, Grasso D, Spremulli LL. Nucleic Acids Res 36 589-597 (2008)
  93. Amicoumacin A induces cancer cell death by targeting the eukaryotic ribosome. Prokhorova IV, Akulich KA, Makeeva DS, Osterman IA, Skvortsov DA, Sergiev PV, Dontsova OA, Yusupova G, Yusupov MM, Dmitriev SE. Sci Rep 6 27720 (2016)
  94. Characterization of GE82832, a peptide inhibitor of translocation interacting with bacterial 30S ribosomal subunits. Brandi L, Fabbretti A, Di Stefano M, Lazzarini A, Abbondi M, Gualerzi CO. RNA 12 1262-1270 (2006)
  95. Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the Escherichia coli ribosome. Olivier NB, Altman RB, Noeske J, Basarab GS, Code E, Ferguson AD, Gao N, Huang J, Juette MF, Livchak S, Miller MD, Prince DB, Cate JH, Buurman ET, Blanchard SC. Proc Natl Acad Sci U S A 111 16274-16279 (2014)
  96. Sarecycline interferes with tRNA accommodation and tethers mRNA to the 70S ribosome. Batool Z, Lomakin IB, Polikanov YS, Bunick CG. Proc Natl Acad Sci U S A 117 20530-20537 (2020)
  97. Self resistance to the atypical cationic antimicrobial peptide edeine of Brevibacillus brevis Vm4 by the N-acetyltransferase EdeQ. Westman EL, Yan M, Waglechner N, Koteva K, Wright GD. Chem Biol 20 983-990 (2013)
  98. Structural characterization of an alternative mode of tigecycline binding to the bacterial ribosome. Schedlbauer A, Kaminishi T, Ochoa-Lizarralde B, Dhimole N, Zhou S, López-Alonso JP, Connell SR, Fucini P. Antimicrob Agents Chemother 59 2849-2854 (2015)
  99. Tetracyclines Modify Translation by Targeting Key Human rRNA Substructures. Mortison JD, Schenone M, Myers JA, Zhang Z, Chen L, Ciarlo C, Comer E, Natchiar SK, Carr SA, Klaholz BP, Myers AG. Cell Chem Biol 25 1506-1518.e13 (2018)
  100. Codon-anticodon interaction at the P site is a prerequisite for tRNA interaction with the small ribosomal subunit. Schäfer MA, Tastan AO, Patzke S, Blaha G, Spahn CM, Wilson DN, Nierhaus KH. J Biol Chem 277 19095-19105 (2002)
  101. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation. Dinos GP, Connell SR, Nierhaus KH, Kalpaxis DL. Mol Pharmacol 63 617-623 (2003)
  102. Nonantibiotic properties of tetracyclines: structural basis for inhibition of secretory phospholipase A2. Dalm D, Palm GJ, Aleksandrov A, Simonson T, Hinrichs W. J Mol Biol 398 83-96 (2010)
  103. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX. Volkers G, Damas JM, Palm GJ, Panjikar S, Soares CM, Hinrichs W. Acta Crystallogr D Biol Crystallogr 69 1758-1767 (2013)
  104. Ribosome-small-subunit-dependent GTPase interacts with tRNA-binding sites on the ribosome. Kimura T, Takagi K, Hirata Y, Hase Y, Muto A, Himeno H. J Mol Biol 381 467-477 (2008)
  105. Sulfolobus solfataricus translation initiation factor 1 stimulates translation initiation complex formation. Hasenöhrl D, Benelli D, Barbazza A, Londei P, Bläsi U. RNA 12 674-682 (2006)
  106. The identification of spermine binding sites in 16S rRNA allows interpretation of the spermine effect on ribosomal 30S subunit functions. Amarantos I, Zarkadis IK, Kalpaxis DL. Nucleic Acids Res 30 2832-2843 (2002)
  107. The tetracycline resistance protein Tet(o) perturbs the conformation of the ribosomal decoding centre. Connell SR, Trieber CA, Stelzl U, Einfeldt E, Taylor DE, Nierhaus KH. Mol Microbiol 45 1463-1472 (2002)
  108. Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens. Grossman TH, Fyfe C, O'Brien W, Hackel M, Minyard MB, Waites KB, Dubois J, Murphy TM, Slee AM, Weiss WJ, Sutcliffe JA. mSphere 2 e00004-17 (2017)
  109. A single mutation in the IF3 N-terminal domain perturbs the fidelity of translation initiation at three levels. Maar D, Liveris D, Sussman JK, Ringquist S, Moll I, Heredia N, Kil A, Bläsi U, Schwartz I, Simons RW. J Mol Biol 383 937-944 (2008)
  110. Antibiotic Stimulation of a Bacillus subtilis Migratory Response. Liu Y, Kyle S, Straight PD. mSphere 3 e00586-17 (2018)
  111. The Novel Aminomethylcycline Omadacycline Has High Specificity for the Primary Tetracycline-Binding Site on the Bacterial Ribosome. Heidrich CG, Mitova S, Schedlbauer A, Connell SR, Fucini P, Steenbergen JN, Berens C. Antibiotics (Basel) 5 E32 (2016)
  112. The tumor-suppressive reagent taurolidine is an inhibitor of protein biosynthesis. Braumann C, Henke W, Jacobi CA, Dubiel W. Int J Cancer 112 225-230 (2004)
  113. Contacts between mammalian mitochondrial translational initiation factor 3 and ribosomal proteins in the small subunit. Haque ME, Koc H, Cimen H, Koc EC, Spremulli LL. Biochim Biophys Acta 1814 1779-1784 (2011)
  114. Identifying Small Open Reading Frames in Prokaryotes with Ribosome Profiling. Vazquez-Laslop N, Sharma CM, Mankin A, Buskirk AR. J Bacteriol 204 e0029421 (2022)
  115. Inhibition of antiassociation activity of translation initiation factor 3 by paromomycin. Hirokawa G, Kaji H, Kaji A. Antimicrob Agents Chemother 51 175-180 (2007)
  116. Mapping the active sites of bacterial translation initiation factor IF3. Petrelli D, Garofalo C, Lammi M, Spurio R, Pon CL, Gualerzi CO, La Teana A. J Mol Biol 331 541-556 (2003)
  117. Revealing unique properties of the ribosome using a network based analysis. David-Eden H, Mandel-Gutfreund Y. Nucleic Acids Res 36 4641-4652 (2008)
  118. Structural signatures of antibiotic binding sites on the ribosome. David-Eden H, Mankin AS, Mandel-Gutfreund Y. Nucleic Acids Res 38 5982-5994 (2010)
  119. Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways. López-Alonso JP, Fabbretti A, Kaminishi T, Iturrioz I, Brandi L, Gil-Carton D, Gualerzi CO, Fucini P, Connell SR. Nucleic Acids Res 45 2179-2187 (2017)
  120. 8-Azatetracyclines: synthesis and evaluation of a novel class of tetracycline antibacterial agents. Clark RB, He M, Fyfe C, Lofland D, O'Brien WJ, Plamondon L, Sutcliffe JA, Xiao XY. J Med Chem 54 1511-1528 (2011)
  121. Identification of OxyE as an ancillary oxygenase during tetracycline biosynthesis. Wang P, Zhang W, Zhan J, Tang Y. Chembiochem 10 1544-1550 (2009)
  122. Identification of the chelocardin biosynthetic gene cluster from Amycolatopsis sulphurea: a platform for producing novel tetracycline antibiotics. Lukežič T, Lešnik U, Podgoršek A, Horvat J, Polak T, Šala M, Jenko B, Raspor P, Herron PR, Hunter IS, Petković H. Microbiology (Reading) 159 2524-2532 (2013)
  123. Mapping of the second tetracycline binding site on the ribosomal small subunit of E.coli. Anokhina MM, Barta A, Nierhaus KH, Spiridonova VA, Kopylov AM. Nucleic Acids Res 32 2594-2597 (2004)
  124. NMR structure of a 4 x 4 nucleotide RNA internal loop from an R2 retrotransposon: identification of a three purine-purine sheared pair motif and comparison to MC-SYM predictions. Lerman YV, Kennedy SD, Shankar N, Parisien M, Major F, Turner DH. RNA 17 1664-1677 (2011)
  125. Ribosomal crystallography: from poorly diffracting microcrystals to high-resolution structures. Gluehmann M, Zarivach R, Bashan A, Harms J, Schluenzen F, Bartels H, Agmon I, Rosenblum G, Pioletti M, Auerbach T, Avila H, Hansen HA, Franceschi F, Yonath A. Methods 25 292-302 (2001)
  126. Structural diversity in bacterial ribosomes: mycobacterial 70S ribosome structure reveals novel features. Shasmal M, Sengupta J. PLoS One 7 e31742 (2012)
  127. Temporal order and precision of complex stress responses in individual bacteria. Mitosch K, Rieckh G, Bollenbach T. Mol Syst Biol 15 e8470 (2019)
  128. Testing the conservation of the translational machinery over evolution in diverse environments: assaying Thermus thermophilus ribosomes and initiation factors in a coupled transcription-translation system from Escherichia coli. Thompson J, Dahlberg AE. Nucleic Acids Res 32 5954-5961 (2004)
  129. Solution structure of the R3H domain from human Smubp-2. Liepinsh E, Leonchiks A, Sharipo A, Guignard L, Otting G. J Mol Biol 326 217-223 (2003)
  130. Effective Reduction in High Ethanol Drinking by Semisynthetic Tetracycline Derivatives. Syapin PJ, Martinez JM, Curtis DC, Marquardt PC, Allison CL, Groot JA, Baby C, Al-Hasan YM, Segura I, Scheible MJ, Nicholson KT, Redondo JL, Trotter DRM, Edwards DS, Bergeson SE. Alcohol Clin Exp Res 40 2482-2490 (2016)
  131. Presence and mechanisms of acquired antimicrobial resistance in Belgian Brachyspira hyodysenteriae isolates belonging to different clonal complexes. Mahu M, Pasmans F, Vranckx K, De Pauw N, Vande Maele L, Vyt P, Vandersmissen T, Martel A, Haesebrouck F, Boyen F. Vet Microbiol 207 125-132 (2017)
  132. Spermidine inhibits transient and stable ribosome subunit dissociation. Umekage S, Ueda T. FEBS Lett 580 1222-1226 (2006)
  133. Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies. Abel Zur Wiesch P, Clarelli F, Cohen T. PLoS Comput Biol 13 e1005321 (2017)
  134. 1,12-substituted tetracyclines as antioxidant agents. Lertvorachon J, Kim JP, Soldatov DV, Boyd J, Roman G, Cho SJ, Popek T, Jung YS, Lau PC, Konishi Y. Bioorg Med Chem 13 4627-4637 (2005)
  135. How much can we learn about the function of bacterial rRNA modification by mining large-scale experimental datasets? Sergiev PV, Golovina AY, Sergeeva OV, Osterman IA, Nesterchuk MV, Bogdanov AA, Dontsova OA. Nucleic Acids Res 40 5694-5705 (2012)
  136. Inhibition of protein synthesis by aminoglycoside-arginine conjugates. Carriere M, Vijayabaskar V, Applefield D, Harvey I, Garneau P, Lorsch J, Lapidot A, Pelletier J. RNA 8 1267-1279 (2002)
  137. On the interaction of colicin E3 with the ribosome. Zarivach R, Ben-Zeev E, Wu N, Auerbach T, Bashan A, Jakes K, Dickman K, Kosmidis A, Schluenzen F, Yonath A, Eisenstein M, Shoham M. Biochimie 84 447-454 (2002)
  138. Structure activity relationship studies on the antimicrobial activity of novel edeine A and D analogues. Czajgucki Z, Andruszkiewicz R, Kamysz W. J Pept Sci 12 653-662 (2006)
  139. Structure of the 70S Ribosome from the Human Pathogen Acinetobacter baumannii in Complex with Clinically Relevant Antibiotics. Nicholson D, Edwards TA, O'Neill AJ, Ranson NA. Structure 28 1087-1100.e3 (2020)
  140. Activity of translation system and abundance of tmRNA during development of Streptomyces aureofaciens producing tetracycline. Palecková P, Bobek J, Felsberg J, Mikulík K. Folia Microbiol (Praha) 51 517-524 (2006)
  141. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins. Dedduwa-Mudalige GN, Chow CS. Int J Mol Sci 16 21392-21409 (2015)
  142. Different modes of action of naphthyridones in gram-positive and gram-negative bacteria. Buurman ET, Johnson KD, Kelly RK, MacCormack K. Antimicrob Agents Chemother 50 385-387 (2006)
  143. Identification and role of functionally important motifs in the 970 loop of Escherichia coli 16S ribosomal RNA. Saraiya AA, Lamichhane TN, Chow CS, SantaLucia J, Cunningham PR. J Mol Biol 376 645-657 (2008)
  144. Inhibition of nuclear pre-mRNA splicing by antibiotics in vitro. Hertweck M, Hiller R, Mueller MW. Eur J Biochem 269 175-183 (2002)
  145. Polyadenylation and degradation of structurally abnormal mitochondrial tRNAs in human cells. Toompuu M, Tuomela T, Laine P, Paulin L, Dufour E, Jacobs HT. Nucleic Acids Res 46 5209-5226 (2018)
  146. Reconstitution of Protein Translation of Mycobacterium Reveals Functional Conservation and Divergence with the Gram-Negative Bacterium Escherichia coli. Srivastava A, Asahara H, Zhang M, Zhang W, Liu H, Cui S, Jin Q, Chong S. PLoS One 11 e0162020 (2016)
  147. Comment Antibiotic blocks mRNA path on the ribosome. Mankin A. Nat Struct Mol Biol 13 858-860 (2006)
  148. Genomic and transcriptomic analysis of the streptomycin-dependent Mycobacterium tuberculosis strain 18b. Benjak A, Uplekar S, Zhang M, Piton J, Cole ST, Sala C. BMC Genomics 17 190 (2016)
  149. Internucleotide movements during formation of 16 S rRNA-rRNA photocrosslinks and their connection to the 30 S subunit conformational dynamics. Huggins W, Ghosh SK, Nanda K, Wollenzien P. J Mol Biol 354 358-374 (2005)
  150. Effect of iron chelation on anti-pseudomonal activity of doxycycline. Faure ME, Cilibrizzi A, Abbate V, Bruce KD, Hider RC. Int J Antimicrob Agents 58 106438 (2021)
  151. Insights into the Stress Response Triggered by Kasugamycin in Escherichia coli. Müller C, Sokol L, Vesper O, Sauert M, Moll I. Antibiotics (Basel) 5 E19 (2016)
  152. Lateral-flow immunoassay for detecting drug-induced inhibition of mitochondrial DNA replication and mtDNA-encoded protein synthesis. Nadanaciva S, Willis JH, Barker ML, Gharaibeh D, Capaldi RA, Marusich MF, Will Y. J Immunol Methods 343 1-12 (2009)
  153. Reduced in vitro doxycycline susceptibility in plasmodium falciparum field isolates from Kenya is associated with PfTetQ KYNNNN sequence polymorphism. Achieng AO, Ingasia LA, Juma DW, Cheruiyot AC, Okudo CA, Yeda RA, Cheruiyot J, Akala HM, Johnson J, Andangalu B, Eyase F, Jura WG, Kamau E. Antimicrob Agents Chemother 58 5894-5899 (2014)
  154. UPRmt activation improves pathological alterations in cellular models of mitochondrial diseases. Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Perez R, Sánchez-Alcázar JA. Orphanet J Rare Dis 17 204 (2022)
  155. 2-Guanidino-quinazolines as a novel class of translation inhibitors. Komarova Andreyanova ES, Osterman IA, Pletnev PI, Ivanenkov YA, Majouga AG, Bogdanov AA, Sergiev PV. Biochimie 133 45-55 (2017)
  156. Interaction of the tetracyclines with double-stranded RNAs of random base sequence: new perspectives on the target and mechanism of action. Chukwudi CU, Good L. J Antibiot (Tokyo) 69 622-630 (2016)
  157. Multifaceted Mechanism of Amicoumacin A Inhibition of Bacterial Translation. Maksimova EM, Vinogradova DS, Osterman IA, Kasatsky PS, Nikonov OS, Milón P, Dontsova OA, Sergiev PV, Paleskava A, Konevega AL. Front Microbiol 12 618857 (2021)
  158. Omadacycline Efficacy against Enterococcus faecalis Isolated in China: In Vitro Activity, Heteroresistance, and Resistance Mechanisms. Lin Z, Pu Z, Xu G, Bai B, Chen Z, Sun X, Zheng J, Li P, Qu D, Deng Q, Yu Z. Antimicrob Agents Chemother 64 e02097-19 (2020)
  159. Letter Protein structure: experimental and theoretical aspects. Harms J, Schluenzen F, Zarivach R, Bashan A, Bartels H, Agmon I, Yonath A. FEBS Lett 525 176-178 (2002)
  160. Recognition of single-stranded nucleic acids by small-molecule splicing modulators. Tang Z, Akhter S, Ramprasad A, Wang X, Reibarkh M, Wang J, Aryal S, Thota SS, Zhao J, Douglas JT, Gao P, Holmstrom ED, Miao Y, Wang J. Nucleic Acids Res 49 7870-7883 (2021)
  161. Inhibition of septation in Bacillus subtilis by a peptide antibiotic, edeine B(1). Shimotohno KW, Kawamura F, Natori Y, Nanamiya H, Magae J, Ogata H, Endo T, Suzuki T, Yamaki H. Biol Pharm Bull 33 568-571 (2010)
  162. Similarity search for local protein structures at atomic resolution by exploiting a database management system. Kinjo AR, Nakamura H. Biophysics (Nagoya-shi) 3 75-84 (2007)
  163. Structural motifs of the bacterial ribosomal proteins S20, S18 and S16 that contact rRNA present in the eukaryotic ribosomal proteins S25, S26 and S27A, respectively. Malygin AA, Karpova GG. Nucleic Acids Res 38 2089-2098 (2010)
  164. The Chemically-Modified Tetracycline COL-3 and Its Parent Compound Doxycycline Prevent Microglial Inflammatory Responses by Reducing Glucose-Mediated Oxidative Stress. Ferreira Junior NC, Dos Santos Pereira M, Francis N, Ramirez P, Martorell P, González-Lizarraga F, Figadère B, Chehin R, Del Bel E, Raisman-Vozari R, Michel PP. Cells 10 2163 (2021)
  165. Degradation of insulin amyloid by antibiotic minocycline and formation of toxic intermediates. Mori W, Yuzu K, Lobsiger N, Nishioka H, Sato H, Nagase T, Iwaya K, Lindgren M, Zako T. Sci Rep 11 6857 (2021)
  166. Enhancement of edeine production in Brevibacillus brevis X23 via in situ promoter engineering. Liu Q, Zhang L, Wang Y, Zhang C, Liu T, Duan C, Bian X, Guo Z, Long Q, Tang Y, Du J, Liu A, Dai L, Li D, Chen W. Microb Biotechnol 15 577-589 (2022)
  167. Monitoring tetracycline through a solid-state nanopore sensor. Zhang Y, Chen Y, Fu Y, Ying C, Feng Y, Huang Q, Wang C, Pei DS, Wang D. Sci Rep 6 27959 (2016)
  168. A Complementary Mechanism of Bacterial mRNA Translation Inhibition by Tetracyclines. Barrenechea V, Vargas-Reyes M, Quiliano M, Milón P. Front Microbiol 12 682682 (2021)
  169. Absence of Helicobacter pylori high tetracycline resistant 16S rDNA AGA926-928TTC genotype in gastric biopsy specimens from dyspeptic patients of a city in the interior of São Paulo, Brazil. Suzuki RB, Almeida CM, Sperança MA. BMC Gastroenterol 12 49 (2012)
  170. Antibiotic Resistance Risk with Oral Tetracycline Treatment of Acne Vulgaris. Swallow MA, Fan R, Cohen JM, Bunick CG. Antibiotics (Basel) 11 1032 (2022)
  171. Interaction between the antibiotic tetracycline and the elongation factor 1α from the archaeon sulfolobus solfataricus. Lamberti A, Martucci NM, Ruggiero I, Arcari P, Masullo M. Chem Biol Drug Des 78 260-268 (2011)
  172. Mechanism of action of a novel series of naphthyridine-type ribosome inhibitors: enhancement of tRNA footprinting at the decoding site of 16S rRNA. Shen LL, Black-Schaefer C, Cai Y, Dandliker PJ, Beutel BA. Antimicrob Agents Chemother 49 1890-1897 (2005)
  173. Prediction of the structure of the complex between the 30S ribosomal subunit and colicin E3 via weighted-geometric docking. Ben-Zeev E, Zarivach R, Shoham M, Yonath A, Eisenstein M. J Biomol Struct Dyn 20 669-676 (2003)
  174. Comment Translation, interrupted. Pestova TV, Hellen CU. Nat Struct Mol Biol 13 98-99 (2006)
  175. Absence of association between Plasmodium falciparum small sub-unit ribosomal RNA gene mutations and in vitro decreased susceptibility to doxycycline. Gaillard T, Wurtz N, Houzé S, Sriprawat K, Wangsing C, Hubert V, Lebras J, Nosten F, Briolant S, Pradines B, French National Reference Centre for Imported Malaria Study Group. Malar J 14 348 (2015)
  176. Cell biology. Lethal traffic jam. Breukink E. Science 325 684-685 (2009)
  177. Direct monitoring of initiation factor dynamics through formation of 30S and 70S translation-initiation complexes on a quartz crystal microbalance. Takahashi S, Isobe H, Ueda T, Okahata Y. Chemistry 19 6807-6816 (2013)
  178. Discovery of a novel small molecular peptide that disrupts helix 34 of bacterial ribosomal RNA. Gc K, To D, Jayalath K, Abeysirigunawardena S. RSC Adv 9 40268-40276 (2019)
  179. Improved efficacy of doxycycline in liposomes against Plasmodium falciparum in culture and Plasmodium berghei infection in mice. Rajendran V, Singh C, Ghosh PC. Can J Physiol Pharmacol 96 1145-1152 (2018)
  180. Photolabile anticodon stem-loop analogs of tRNAPhe as probes of ribosomal structure and structural fluctuation at the decoding center. Druzina Z, Cooperman BS. RNA 10 1550-1562 (2004)
  181. Tetracycline does not directly inhibit the function of bacterial elongation factor Tu. Gzyl KE, Wieden HJ. PLoS One 12 e0178523 (2017)
  182. The immunoregulatory effects of edeine analogues in mice. Czajgucki Z, Zimecki M, Andruszkiewicz R. Cell Mol Biol Lett 12 149-161 (2007)
  183. 60S dynamic state of bacterial ribosome is fixed by yeast mitochondrial initiation factor 3. Levitskii S, Derbikova K, Baleva MV, Kuzmenko A, Golovin AV, Chicherin I, Krasheninnikov IA, Kamenski P. PeerJ 6 e5620 (2018)
  184. Editorial Back to the future: the ribosome as an antibiotic target. Franceschi F. Future Microbiol 2 571-574 (2007)
  185. Chimeras of bacterial translation factors Tet(O) and EF-G. Thakor NS, Nechifor R, Scott PG, Keelan M, Taylor DE, Wilson KS. FEBS Lett 582 1386-1390 (2008)
  186. Identification and Characterization of a Novel Major Facilitator Superfamily Efflux Pump, SA09310, Mediating Tetracycline Resistance in Staphylococcus aureus. Li D, Ge Y, Wang N, Shi Y, Guo G, Zou Q, Liu Q. Antimicrob Agents Chemother 67 e0169622 (2023)
  187. One-bead coarse-grained model for RNA dynamics. Villada-Balbuena M, Carbajal-Tinoco MD. J Chem Phys 146 045101 (2017)
  188. Absence of correlation between ex vivo susceptibility to doxycycline and pfteQ-pfmdt gene polymorphism in French Guiana. Mura M, Briolant S, Donato D, Volney B, Pelleau S, Musset L, Legrand E. Malar J 14 286 (2015)
  189. Crystal structure determination of the halogenase CtcP from Streptomyces aureofaciens. Yin L. Acta Crystallogr F Struct Biol Commun 78 270-275 (2022)
  190. Impact of 16S rRNA Single Nucleotide Polymorphisms on Mycoplasma genitalium Organism Load with Doxycycline Treatment. Chua TP, Danielewski J, Bodiyabadu K, Bradshaw CS, Machalek DA, Garland SM, Plummer EL, Vodstrcil LA, Murray GL. Antimicrob Agents Chemother 66 e0024322 (2022)
  191. NMR assignments of the N-terminal domain of Staphylococcus aureus hibernation promoting factor (SaHPF). Usachev KS, Ayupov RK, Validov SZ, Khusainov IS, Yusupov MM. Biomol NMR Assign 12 85-89 (2018)
  192. Streptothricin F is a bactericidal antibiotic effective against highly drug-resistant gram-negative bacteria that interacts with the 30S subunit of the 70S ribosome. Morgan CE, Kang YS, Green AB, Smith KP, Dowgiallo MG, Miller BC, Chiaraviglio L, Truelson KA, Zulauf KE, Rodriguez S, Kang AD, Manetsch R, Yu EW, Kirby JE. PLoS Biol 21 e3002091 (2023)
  193. Structural features of apramycin bound at the bacterial ribosome a site as detected by NMR and CD spectroscopy. Balenci D, D'Amelio N, Gaggelli E, Gaggelli N, Cellai L, Molteni E, Valensin G. Chembiochem 11 166-169 (2010)
  194. The contribution of the zinc-finger motif to the function of Thermus thermophilus ribosomal protein S14. Xaplanteri MA, Papadopoulos G, Leontiadou F, Choli-Papadopoulou T, Kalpaxis DL. J Mol Biol 369 489-497 (2007)
  195. The dynamic cycle of bacterial translation initiation factor IF3. Nakamoto JA, Evangelista W, Vinogradova DS, Konevega AL, Spurio R, Fabbretti A, Milón P. Nucleic Acids Res 49 6958-6970 (2021)
  196. A polypeptide model for toxic aberrant proteins induced by aminoglycoside antibiotics. Tawde M, Bior A, Feiss M, Teng F, Freimuth P. PLoS One 17 e0258794 (2022)
  197. Antibiotics: Precious Goods in Changing Times. Sass P. Methods Mol Biol 2601 3-26 (2023)
  198. Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts. Hespanhol JT, Karman L, Sanchez-Limache DE, Bayer-Santos E. Genet Mol Biol 46 e20220266 (2023)
  199. Potential additional effects of iron chelators on antimicrobial- impregnated central venous catheters. Itoh K, Tsutani H, Mitsuke Y, Iwasaki H. Front Microbiol 14 1210747 (2023)
  200. Structural conservation of antibiotic interaction with ribosomes. Paternoga H, Crowe-McAuliffe C, Bock LV, Koller TO, Morici M, Beckert B, Myasnikov AG, Grubmüller H, Nováček J, Wilson DN. Nat Struct Mol Biol 30 1380-1392 (2023)


Related citations provided by authors (1)

  1. Structure of Functionally Activated Small Ribosomal Subunit at 3.3 A Resolution. Schluenzen F, Tocilj A, Zarivach R, Harms J, Gluehmann M, Janell D, Bashan A, Bartels H, Agmon I, Franceschi F, Yonath A Cell 102 615-623 (2000)