1hpn Citations

N.m.r. and molecular-modelling studies of the solution conformation of heparin.

Biochem. J. 293 ( Pt 3) 849-58 (1993)
Cited: 231 times
EuropePMC logo PMID: 8352752

Abstract

The solution conformations of heparin and de-N-sulphated, re-N-acetylated heparin have been determined by a combination of n.m.r. spectroscopic and molecular-modelling techniques. The 1H- and 13C-n.m.r. spectra of these polysaccharides have been assigned. Observed 1H-1H nuclear Overhauser enhancements (n.O.e.s) have been simulated using the program NOEMOL [Forster, Jones and Mulloy (1989) J. Mol. Graph. 7, 196-201] for molecular models derived from conformational-energy calculations; correlation times for the simulations were chosen to fit experimentally determined 13C spin-lattice relaxation times. In order to achieve good agreement between calculated and observed 1H-1H n.O.e.s it was necessary to assume that the reorientational motion of the polysaccharide molecules was not isotropic, but was that of a symmetric top. The resulting model of heparin in solution is similar to that determined in the fibrous state by X-ray-diffraction techniques [Nieduszynski, Gardner and Atkins (1977) Am. Chem. Soc. Symp. Ser. 48, 73-80].

Reviews - 1hpn mentioned but not cited (7)

  1. Synthetic Oligosaccharide Libraries and Microarray Technology: A Powerful Combination for the Success of Current Glycosaminoglycan Interactomics. Pomin VH, Wang X. ChemMedChem 13 648-661 (2018)
  2. The Sea as a Rich Source of Structurally Unique Glycosaminoglycans and Mimetics. Vasconcelos AA, Pomin VH. Microorganisms 5 (2017)
  3. Extracellular regulation of type IIa receptor protein tyrosine phosphatases: mechanistic insights from structural analyses. Coles CH, Jones EY, Aricescu AR. Semin. Cell Dev. Biol. 37 98-107 (2015)
  4. Heparan sulfate-protein binding specificity. Nugent MA, Zaia J, Spencer JL. Biochemistry Mosc. 78 726-735 (2013)
  5. Laminin 332 processing impacts cellular behavior. Rousselle P, Beck K. Cell Adh Migr 7 122-134 (2013)
  6. Subversion of cytokine networks by virally encoded decoy receptors. Epperson ML, Lee CA, Fremont DH. Immunol. Rev. 250 199-215 (2012)
  7. Specific sides to multifaceted glycosaminoglycans are observed in embryonic development. Kramer KL. Semin. Cell Dev. Biol. 21 631-637 (2010)

Articles - 1hpn mentioned but not cited (53)

  1. Identification of a heparin-binding motif on adeno-associated virus type 2 capsids. Kern A, Schmidt K, Leder C, Müller OJ, Wobus CE, Bettinger K, Von der Lieth CW, King JA, Kleinschmidt JA. J. Virol. 77 11072-11081 (2003)
  2. Proteoglycan-specific molecular switch for RPTPσ clustering and neuronal extension. Coles CH, Shen Y, Tenney AP, Siebold C, Sutton GC, Lu W, Gallagher JT, Jones EY, Flanagan JG, Aricescu AR. Science 332 484-488 (2011)
  3. Structural diversity of heparan sulfate binding domains in chemokines. Lortat-Jacob H, Grosdidier A, Imberty A. Proc. Natl. Acad. Sci. U.S.A. 99 1229-1234 (2002)
  4. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, Muzylak M, Greenslade K, Moore A, Zhang L, Gong J, Qian X, Paszty C, Taylor RJ, Robinson MK, Carr MD. J. Biol. Chem. 284 10890-10900 (2009)
  5. Structural basis for complement factor H linked age-related macular degeneration. Prosser BE, Johnson S, Roversi P, Herbert AP, Blaum BS, Tyrrell J, Jowitt TA, Clark SJ, Clark SJ, Tarelli E, Uhrín D, Barlow PN, Sim RB, Day AJ, Lea SM. J. Exp. Med. 204 2277-2283 (2007)
  6. Solution structures of chemoenzymatically synthesized heparin and its precursors. Zhang Z, McCallum SA, Xie J, Nieto L, Corzana F, Jiménez-Barbero J, Chen M, Liu J, Linhardt RJ. J. Am. Chem. Soc. 130 12998-13007 (2008)
  7. Binding and clustering of glycosaminoglycans: a common property of mono- and multivalent cell-penetrating compounds. Ziegler A, Seelig J. Biophys. J. 94 2142-2149 (2008)
  8. The novel CXCL12gamma isoform encodes an unstructured cationic domain which regulates bioactivity and interaction with both glycosaminoglycans and CXCR4. Laguri C, Sadir R, Rueda P, Baleux F, Gans P, Arenzana-Seisdedos F, Lortat-Jacob H. PLoS ONE 2 e1110 (2007)
  9. Characterization of the interaction of interleukin-8 with hyaluronan, chondroitin sulfate, dermatan sulfate and their sulfated derivatives by spectroscopy and molecular modeling. Pichert A, Samsonov SA, Theisgen S, Thomas L, Baumann L, Schiller J, Beck-Sickinger AG, Huster D, Pisabarro MT. Glycobiology 22 134-145 (2012)
  10. The layered fold of the TSR domain of P. falciparum TRAP contains a heparin binding site. Tossavainen H, Pihlajamaa T, Huttunen TK, Raulo E, Rauvala H, Permi P, Kilpeläinen I. Protein Sci. 15 1760-1768 (2006)
  11. Characterization of heparin-binding site of tissue transglutaminase: its importance in cell surface targeting, matrix deposition, and cell signaling. Wang Z, Collighan RJ, Pytel K, Rathbone DL, Li X, Griffin M. J. Biol. Chem. 287 13063-13083 (2012)
  12. Structural basis for the growth factor activity of human adenosine deaminase ADA2. Zavialov AV, Yu X, Spillmann D, Lauvau G, Zavialov AV. J. Biol. Chem. 285 12367-12377 (2010)
  13. Mechanism of amylin fibrillization enhancement by heparin. Jha S, Patil SM, Gibson J, Nelson CE, Alder NN, Alexandrescu AT. J. Biol. Chem. 286 22894-22904 (2011)
  14. Two distinct sites in sonic Hedgehog combine for heparan sulfate interactions and cell signaling functions. Chang SC, Mulloy B, Magee AI, Couchman JR. J. Biol. Chem. 286 44391-44402 (2011)
  15. Characterization of the chemokine CXCL11-heparin interaction suggests two different affinities for glycosaminoglycans. Severin IC, Gaudry JP, Johnson Z, Kungl A, Jansma A, Gesslbauer B, Mulloy B, Power C, Proudfoot AE, Handel T. J. Biol. Chem. 285 17713-17724 (2010)
  16. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions. Joseph PR, Mosier PD, Desai UR, Rajarathnam K. Biochem. J. 472 121-133 (2015)
  17. Structure of a Plasmodium falciparum PfEMP1 rosetting domain reveals a role for the N-terminal segment in heparin-mediated rosette inhibition. Juillerat A, Lewit-Bentley A, Guillotte M, Gangnard S, Hessel A, Baron B, Vigan-Womas I, England P, Mercereau-Puijalon O, Bentley GA. Proc. Natl. Acad. Sci. U.S.A. 108 5243-5248 (2011)
  18. Transglutaminase-2 interaction with heparin: identification of a heparin binding site that regulates cell adhesion to fibronectin-transglutaminase-2 matrix. Lortat-Jacob H, Burhan I, Scarpellini A, Thomas A, Imberty A, Vivès RR, Johnson T, Gutierrez A, Verderio EA. J. Biol. Chem. 287 18005-18017 (2012)
  19. Heparan sulfate dissociates serum amyloid A (SAA) from acute-phase high-density lipoprotein, promoting SAA aggregation. Noborn F, Ancsin JB, Ubhayasekera W, Kisilevsky R, Li JP. J. Biol. Chem. 287 25669-25677 (2012)
  20. Molecular basis of glycosaminoglycan heparin binding to the chemokine CXCL1 dimer. Poluri KM, Joseph PR, Sawant KV, Rajarathnam K. J. Biol. Chem. 288 25143-25153 (2013)
  21. Docking glycosaminoglycans to proteins: analysis of solvent inclusion. Samsonov SA, Teyra J, Pisabarro MT. J. Comput. Aided Mol. Des. 25 477-489 (2011)
  22. CXCL1/MGSA Is a Novel Glycosaminoglycan (GAG)-binding Chemokine: STRUCTURAL EVIDENCE FOR TWO DISTINCT NON-OVERLAPPING BINDING DOMAINS. Sepuru KM, Rajarathnam K. J. Biol. Chem. 291 4247-4255 (2016)
  23. Influence of heparin mimetics on assembly of the FGF.FGFR4 signaling complex. Saxena K, Schieborr U, Anderka O, Duchardt-Ferner E, Elshorst B, Gande SL, Janzon J, Kudlinzki D, Sreeramulu S, Dreyer MK, Wendt KU, Herbert C, Duchaussoy P, Bianciotto M, Driguez PA, Lassalle G, Savi P, Mohammadi M, Bono F, Schwalbe H. J. Biol. Chem. 285 26628-26640 (2010)
  24. The "CPC clip motif": a conserved structural signature for heparin-binding proteins. Torrent M, Nogués MV, Andreu D, Boix E. PLoS ONE 7 e42692 (2012)
  25. Heparin/heparan sulfate 6-O-sulfatase from Flavobacterium heparinum: integrated structural and biochemical investigation of enzyme active site and substrate specificity. Myette JR, Soundararajan V, Shriver Z, Raman R, Sasisekharan R. J. Biol. Chem. 284 35177-35188 (2009)
  26. Preclinical Validation of the Heparin-Reactive Peptide p5+14 as a Molecular Imaging Agent for Visceral Amyloidosis. Wall JS, Martin EB, Richey T, Stuckey AC, Macy S, Wooliver C, Williams A, Foster JS, McWilliams-Koeppen P, Uberbacher E, Cheng X, Kennel SJ. Molecules 20 7657-7682 (2015)
  27. Heparin activates PKR by inducing dimerization. Anderson E, Pierre-Louis WS, Wong CJ, Lary JW, Cole JL. J. Mol. Biol. 413 973-984 (2011)
  28. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions. Sepuru KM, Nagarajan B, Desai UR, Rajarathnam K. J. Biol. Chem. 291 20539-20550 (2016)
  29. Molecular interaction studies of HIV-1 matrix protein p17 and heparin: identification of the heparin-binding motif of p17 as a target for the development of multitarget antagonists. Bugatti A, Giagulli C, Urbinati C, Caccuri F, Chiodelli P, Oreste P, Fiorentini S, Orro A, Milanesi L, D'Ursi P, Caruso A, Rusnati M. J. Biol. Chem. 288 1150-1161 (2013)
  30. The heparin-binding activity of secreted modular calcium-binding protein 1 (SMOC-1) modulates its cell adhesion properties. Klemenčič M, Novinec M, Maier S, Hartmann U, Lenarčič B. PLoS ONE 8 e56839 (2013)
  31. Designing "high-affinity, high-specificity" glycosaminoglycan sequences through computerized modeling. Sankaranarayanan NV, Sarkar A, Desai UR, Mosier PD. Methods Mol. Biol. 1229 289-314 (2015)
  32. Mechanism of heparin acceleration of tissue inhibitor of metalloproteases-1 (TIMP-1) degradation by the human neutrophil elastase. Nunes GL, Simões A, Dyszy FH, Shida CS, Juliano MA, Juliano L, Gesteira TF, Nader HB, Murphy G, Chaffotte AF, Goldberg ME, Tersariol IL, Almeida PC. PLoS ONE 6 e21525 (2011)
  33. Platelet-Derived Chemokine CXCL7 Dimer Preferentially Exists in the Glycosaminoglycan-Bound Form: Implications for Neutrophil-Platelet Crosstalk. Brown AJ, Sepuru KM, Sawant KV, Rajarathnam K. Front Immunol 8 1248 (2017)
  34. Editorial Glycosaminoglycans and Proteoglycans. Pomin VH, Mulloy B. Pharmaceuticals (Basel) 11 (2018)
  35. How does heparin prevent the pH inactivation of cathepsin B? Allosteric mechanism elucidated by docking and molecular dynamics. Costa MG, Batista PR, Shida CS, Robert CH, Bisch PM, Pascutti PG. BMC Genomics 11 Suppl 5 S5 (2010)
  36. Structural Basis of Native CXCL7 Monomer Binding to CXCR2 Receptor N-Domain and Glycosaminoglycan Heparin. Brown AJ, Sepuru KM, Rajarathnam K. Int J Mol Sci 18 (2017)
  37. A bifurcated proteoglycan binding small molecule carrier for siRNA delivery. Gooding M, Adigbli D, Edith Chan AW, Melander RJ, MacRobert AJ, Selwood DL. Chem Biol Drug Des 84 24-35 (2014)
  38. A triad of lys12, lys41, arg78 spatial domain, a novel identified heparin binding site on tat protein, facilitates tat-driven cell adhesion. Ai J, Xin X, Zheng M, Wang S, Peng S, Li J, Wang L, Jiang H, Geng M. PLoS ONE 3 e2662 (2008)
  39. Chemokine CXCL7 Heterodimers: Structural Insights, CXCR2 Receptor Function, and Glycosaminoglycan Interactions. Brown AJ, Joseph PR, Sawant KV, Rajarathnam K. Int J Mol Sci 18 (2017)
  40. Identification of the Glycosaminoglycan Binding Site of Interleukin-10 by NMR Spectroscopy. Künze G, Köhling S, Vogel A, Rademann J, Huster D. J. Biol. Chem. 291 3100-3113 (2016)
  41. Antiangiogenic platinum through glycan targeting. Peterson EJ, Daniel AG, Katner SJ, Bohlmann L, Chang CW, Bezos A, Parish CR, von Itzstein M, Berners-Price SJ, Farrell NP. Chem Sci 8 241-252 (2017)
  42. Inhibition of Mammalian Glycoprotein YKL-40: IDENTIFICATION OF THE PHYSIOLOGICAL LIGAND. Kognole AA, Payne CM. J. Biol. Chem. 292 2624-2636 (2017)
  43. A haplotype in CFH family genes confers high risk of rare glomerular nephropathies. Ding Y, Zhao W, Zhang T, Qiang H, Lu J, Su X, Wen S, Xu F, Zhang M, Zhang H, Zeng C, Liu Z, Chen H. Sci Rep 7 6004 (2017)
  44. A molecular dynamics-based algorithm for evaluating the glycosaminoglycan mimicking potential of synthetic, homogenous, sulfated small molecules. Nagarajan B, Sankaranarayanan NV, Patel BB, Desai UR. PLoS ONE 12 e0171619 (2017)
  45. Endocytotic routes of cobra cardiotoxins depend on spatial distribution of positively charged and hydrophobic domains to target distinct types of sulfated glycoconjugates on cell surface. Lee SC, Lin CC, Wang CH, Wu PL, Huang HW, Chang CI, Wu WG. J. Biol. Chem. 289 20170-20181 (2014)
  46. Heparan Sulfate Organizes Neuronal Synapses through Neurexin Partnerships. Zhang P, Lu H, Peixoto RT, Pines MK, Ge Y, Oku S, Siddiqui TJ, Xie Y, Wu W, Archer-Hartmann S, Yoshida K, Tanaka KF, Aricescu AR, Azadi P, Gordon MD, Sabatini BL, Wong ROL, Craig AM. Cell 174 1450-1464.e23 (2018)
  47. Facile saccharide-free mimetics that recapitulate key features of glycosaminoglycan sulfation patterns. Lim TC, Cai S, Huber RG, Bond PJ, Siew Chia PX, Khou SL, Gao S, Lee SS, Lee SG. Chem Sci 9 7940-7947 (2018)
  48. Design and synthesis of biphenyl and biphenyl ether inhibitors of sulfatases. Reuillon T, Alhasan SF, Beale GS, Bertoli A, Brennan A, Cano C, Reeves HL, Newell DR, Golding BT, Miller DC, Griffin RJ. Chem Sci 7 2821-2826 (2016)
  49. Glycosaminoglycan monosaccharide blocks analysis by quantum mechanics, molecular dynamics, and nuclear magnetic resonance. Samsonov SA, Theisgen S, Riemer T, Huster D, Pisabarro MT. Biomed Res Int 2014 808071 (2014)
  50. Structural basis, stoichiometry, and thermodynamics of binding of the chemokines KC and MIP2 to the glycosaminoglycan heparin. Sepuru KM, Nagarajan B, Desai UR, Rajarathnam K. J. Biol. Chem. 293 17817-17828 (2018)
  51. The localisation of the heparin binding sites of human and murine interleukin-12 within the carboxyterminal domain of the P40 subunit. Garnier P, Mummery R, Forster MJ, Mulloy B, Gibbs RV, Rider CC. Cytokine 110 159-168 (2018)
  52. TriplatinNC and Biomolecules: Building Models Based on Non-covalent Interactions. Rosa NMP, Ferreira FHDC, Farrell NP, Costa LAS. Front Chem 7 307 (2019)
  53. Unraveling Heparan Sulfate Proteoglycan Binding Motif for Cancer Cell Selectivity. Brunetti J, Riolo G, Depau L, Mandarini E, Bernini A, Karousou E, Passi A, Pini A, Bracci L, Falciani C. Front Oncol 9 843 (2019)


Reviews citing this publication (30)

  1. Glycosaminoglycan-Protein Interactions by Nuclear Magnetic Resonance (NMR) Spectroscopy. Pomin VH, Wang X. Molecules 23 (2018)
  2. Heparin: role in protein purification and substitution with animal-component free material. Bolten SN, Rinas U, Scheper T. Appl. Microbiol. Biotechnol. 102 8647-8660 (2018)
  3. The Use of NMR to Study Transient Carbohydrate-Protein Interactions. Nieto PM. Front Mol Biosci 5 33 (2018)
  4. Re-visiting the structure of heparin. Casu B, Naggi A, Torri G. Carbohydr. Res. 403 60-68 (2015)
  5. NMR-based dynamics of free glycosaminoglycans in solution. Pomin VH. Analyst 139 3656-3665 (2014)
  6. Solution NMR conformation of glycosaminoglycans. Pomin VH. Prog. Biophys. Mol. Biol. 114 61-68 (2014)
  7. Advances in glycosaminoglycanomics by 15N-NMR spectroscopy. Pomin VH. Anal Bioanal Chem 405 3035-3048 (2013)
  8. Protein tyrosine phosphatase σ in proteoglycan-mediated neural regeneration regulation. Chien PN, Ryu SE. Mol. Neurobiol. 47 220-227 (2013)
  9. Carbohydrate-protein interactions: a 3D view by NMR. Roldós V, Cañada FJ, Jiménez-Barbero J. Chembiochem 12 990-1005 (2011)
  10. Glycosaminoglycans as polyelectrolytes. Seyrek E, Dubin P. Adv Colloid Interface Sci 158 119-129 (2010)
  11. Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interaction in inflammation and cancer. Casu B, Naggi A, Torri G. Matrix Biol. 29 442-452 (2010)
  12. Heparin dependent coiled-coil formation. Nitz M, Rullo A, Ding MX. Chembiochem 9 1545-1548 (2008)
  13. Immobilization of heparin: approaches and applications. Murugesan S, Xie J, Linhardt RJ. Curr Top Med Chem 8 80-100 (2008)
  14. Relationships between glycosaminoglycan and receptor binding sites in chemokines-the CXCL12 example. Laguri C, Arenzana-Seisdedos F, Lortat-Jacob H. Carbohydr. Res. 343 2018-2023 (2008)
  15. The activities of heparan sulfate and its analogue heparin are dictated by biosynthesis, sequence, and conformation. Skidmore MA, Guimond SE, Rudd TR, Fernig DG, Turnbull JE, Yates EA. Connect. Tissue Res. 49 140-144 (2008)
  16. The structure of glycosaminoglycans and their interactions with proteins. Gandhi NS, Mancera RL. Chem Biol Drug Des 72 455-482 (2008)
  17. Chemical approaches to define the structure-activity relationship of heparin-like glycosaminoglycans. Noti C, Seeberger PH. Chem. Biol. 12 731-756 (2005)
  18. Structural basis for fibroblast growth factor receptor activation. Mohammadi M, Olsen SK, Ibrahimi OA. Cytokine Growth Factor Rev. 16 107-137 (2005)
  19. Structural insights into biological roles of protein-glycosaminoglycan interactions. Raman R, Sasisekharan V, Sasisekharan R. Chem. Biol. 12 267-277 (2005)
  20. The specificity of interactions between proteins and sulfated polysaccharides. Mulloy B. An. Acad. Bras. Cienc. 77 651-664 (2005)
  21. Web resources for the carbohydrate chemist. Berteau O, Stenutz R. Carbohydr. Res. 339 929-936 (2004)
  22. Building a better heparin. Caughey GH. Am. J. Respir. Cell Mol. Biol. 28 129-132 (2003)
  23. Heparin-protein interactions. Capila I, Linhardt RJ. Angew. Chem. Int. Ed. Engl. 41 391-412 (2002)
  24. Molecular modelling in structural biology. Forster MJ. Micron 33 365-384 (2002)
  25. Heparan sulfate: growth control with a restricted sequence menu. Gallagher JT. J. Clin. Invest. 108 357-361 (2001)
  26. Heparin and heparan sulfate: biosynthesis, structure and function. Sasisekharan R, Venkataraman G. Curr Opin Chem Biol 4 626-631 (2000)
  27. Diversity does make a difference: fibroblast growth factor-heparin interactions. Faham S, Linhardt RJ, Rees DC. Curr. Opin. Struct. Biol. 8 578-586 (1998)
  28. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Hileman RE, Fromm JR, Weiler JM, Linhardt RJ. Bioessays 20 156-167 (1998)
  29. High-field NMR as a technique for the determination of polysaccharide structures. Mulloy B. Mol. Biotechnol. 6 241-265 (1996)
  30. Enzymatic degradation of glycosaminoglycans. Ernst S, Langer R, Cooney CL, Sasisekharan R. Crit. Rev. Biochem. Mol. Biol. 30 387-444 (1995)

Articles citing this publication (141)

  1. Crystal structure of a ternary FGF-FGFR-heparin complex reveals a dual role for heparin in FGFR binding and dimerization. Schlessinger J, Plotnikov AN, Ibrahimi OA, Eliseenkova AV, Yeh BK, Yayon A, Linhardt RJ, Mohammadi M. Mol. Cell 6 743-750 (2000)
  2. Crystal structure of fibroblast growth factor receptor ectodomain bound to ligand and heparin. Pellegrini L, Burke DF, von Delft F, Mulloy B, Blundell TL. Nature 407 1029-1034 (2000)
  3. Structure of a heparin-linked biologically active dimer of fibroblast growth factor. DiGabriele AD, Lax I, Chen DI, Svahn CM, Jaye M, Schlessinger J, Hendrickson WA. Nature 393 812-817 (1998)
  4. Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication. Tan K, Duquette M, Liu JH, Dong Y, Zhang R, Joachimiak A, Lawler J, Wang JH. J. Cell Biol. 159 373-382 (2002)
  5. Structural interactions of fibroblast growth factor receptor with its ligands. Stauber DJ, DiGabriele AD, Hendrickson WA. Proc. Natl. Acad. Sci. U.S.A. 97 49-54 (2000)
  6. Crystal structure of a heparin- and integrin-binding segment of human fibronectin. Sharma A, Askari JA, Humphries MJ, Jones EY, Stuart DI. EMBO J. 18 1468-1479 (1999)
  7. Characterization of the stromal cell-derived factor-1alpha-heparin complex. Sadir R, Baleux F, Grosdidier A, Imberty A, Lortat-Jacob H. J. Biol. Chem. 276 8288-8296 (2001)
  8. Antithrombin-S195A factor Xa-heparin structure reveals the allosteric mechanism of antithrombin activation. Johnson DJ, Li W, Adams TE, Huntington JA. EMBO J. 25 2029-2037 (2006)
  9. 1H and 13C NMR spectral assignments of the major sequences of twelve systematically modified heparin derivatives. Yates EA, Santini F, Guerrini M, Naggi A, Torri G, Casu B. Carbohydr. Res. 294 15-27 (1996)
  10. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Fairbrother WJ, Champe MA, Christinger HW, Keyt BA, Starovasnik MA. Structure 6 637-648 (1998)
  11. Structural specificity of heparin binding in the fibroblast growth factor family of proteins. Raman R, Venkataraman G, Ernst S, Sasisekharan V, Sasisekharan R. Proc. Natl. Acad. Sci. U.S.A. 100 2357-2362 (2003)
  12. Structural basis for sialic acid-mediated self-recognition by complement factor H. Blaum BS, Hannan JP, Herbert AP, Kavanagh D, Uhrín D, Stehle T. Nat. Chem. Biol. 11 77-82 (2015)
  13. Solution structure of midkine, a new heparin-binding growth factor. Iwasaki W, Nagata K, Hatanaka H, Inui T, Kimura T, Muramatsu T, Yoshida K, Tasumi M, Inagaki F. EMBO J. 16 6936-6946 (1997)
  14. Mutations of factor H impair regulation of surface-bound C3b by three mechanisms in atypical hemolytic uremic syndrome. Lehtinen MJ, Rops AL, Isenman DE, van der Vlag J, Jokiranta TS. J. Biol. Chem. 284 15650-15658 (2009)
  15. Fibroblast growth factor-2 binds to small heparin-derived oligosaccharides and stimulates a sustained phosphorylation of p42/44 mitogen-activated protein kinase and proliferation of rat mammary fibroblasts. Delehedde M, Lyon M, Gallagher JT, Rudland PS, Fernig DG. Biochem. J. 366 235-244 (2002)
  16. Annexin V--heparin oligosaccharide complex suggests heparan sulfate--mediated assembly on cell surfaces. Capila I, Hernáiz MJ, Mo YD, Mealy TR, Campos B, Dedman JR, Linhardt RJ, Seaton BA. Structure 9 57-64 (2001)
  17. Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly. Cain SA, Baldock C, Gallagher J, Morgan A, Bax DV, Weiss AS, Shuttleworth CA, Kielty CM. J Biol Chem 280 30526-30537 (2005)
  18. Characterization of the interaction between tumor necrosis factor-stimulated gene-6 and heparin: implications for the inhibition of plasmin in extracellular matrix microenvironments. Mahoney DJ, Mulloy B, Forster MJ, Blundell CD, Fries E, Milner CM, Day AJ. J Biol Chem 280 27044-27055 (2005)
  19. New insights into the heparan sulfate proteoglycan-binding activity of apolipoprotein E. Libeu CP, Lund-Katz S, Phillips MC, Wehrli S, Hernáiz MJ, Capila I, Linhardt RJ, Raffaï RL, Newhouse YM, Zhou F, Weisgraber KH. J. Biol. Chem. 276 39138-39144 (2001)
  20. Preferential self-association of basic fibroblast growth factor is stabilized by heparin during receptor dimerization and activation. Venkataraman G, Sasisekharan V, Herr AB, Ornitz DM, Waksman G, Cooney CL, Langer R, Sasisekharan R. Proc. Natl. Acad. Sci. U.S.A. 93 845-850 (1996)
  21. Conformation of heparin pentasaccharide bound to antithrombin III. Hricovíni M, Guerrini M, Bisio A, Torri G, Petitou M, Casu B. Biochem. J. 359 265-272 (2001)
  22. Structure/function studies of anticoagulant sulphated polysaccharides using NMR. Mulloy B, Mourão PA, Gray E. J. Biotechnol. 77 123-135 (2000)
  23. Crystal structure of the OpcA integral membrane adhesin from Neisseria meningitidis. Prince SM, Achtman M, Derrick JP. Proc. Natl. Acad. Sci. U.S.A. 99 3417-3421 (2002)
  24. The structure of human extracellular copper-zinc superoxide dismutase at 1.7 A resolution: insights into heparin and collagen binding. Antonyuk SV, Strange RW, Marklund SL, Hasnain SS. J. Mol. Biol. 388 310-326 (2009)
  25. Semi-rigid solution structures of heparin by constrained X-ray scattering modelling: new insight into heparin-protein complexes. Khan S, Gor J, Mulloy B, Perkins SJ. J. Mol. Biol. 395 504-521 (2010)
  26. The effect of variation of substitution on the solution conformation of heparin: a spectroscopic and molecular modelling study. Mulloy B, Forster MJ, Jones C, Drake AF, Johnson EA, Davies DB. Carbohydr. Res. 255 1-26 (1994)
  27. Finding a needle in a haystack: development of a combinatorial virtual screening approach for identifying high specificity heparin/heparan sulfate sequence(s). Raghuraman A, Mosier PD, Desai UR. J. Med. Chem. 49 3553-3562 (2006)
  28. Modulation of Abeta42 fibrillogenesis by glycosaminoglycan structure. Valle-Delgado JJ, Alfonso-Prieto M, de Groot NS, Ventura S, Samitier J, Rovira C, Fernàndez-Busquets X. FASEB J. 24 4250-4261 (2010)
  29. Crystallographic analysis of calcium-dependent heparin binding to annexin A2. Shao C, Zhang F, Kemp MM, Linhardt RJ, Waisman DM, Head JF, Seaton BA. J. Biol. Chem. 281 31689-31695 (2006)
  30. Conformation of heparin studied with macromolecular hydrodynamic methods and X-ray scattering. Pavlov G, Finet S, Tatarenko K, Korneeva E, Ebel C. Eur. Biophys. J. 32 437-449 (2003)
  31. Structural characterization of human heparanase reveals insights into substrate recognition. Wu L, Viola CM, Brzozowski AM, Davies GJ. Nat. Struct. Mol. Biol. 22 1016-1022 (2015)
  32. Molecular dynamics simulation of a decasaccharide fragment of heparin in aqueous solution. Verli H, Guimarães JA. Carbohydr. Res. 339 281-290 (2004)
  33. Influence of substitution pattern and cation binding on conformation and activity in heparin derivatives. Rudd TR, Guimond SE, Skidmore MA, Duchesne L, Guerrini M, Torri G, Cosentino C, Brown A, Clarke DT, Turnbull JE, Fernig DG, Yates EA. Glycobiology 17 983-993 (2007)
  34. Interaction of heparin with annexin V. Capila I, VanderNoot VA, Mealy TR, Seaton BA, Linhardt RJ. FEBS Lett. 446 327-330 (1999)
  35. NMR solution conformation of heparin-derived hexasaccharide. Mikhailov D, Linhardt RJ, Mayo KH. Biochem. J. 328 ( Pt 1) 51-61 (1997)
  36. A structural and dynamic model for the interaction of interleukin-8 and glycosaminoglycans: support from isothermal fluorescence titrations. Krieger E, Geretti E, Brandner B, Goger B, Wells TN, Kungl AJ. Proteins 54 768-775 (2004)
  37. Associative and structural properties of the region of complement factor H encompassing the Tyr402His disease-related polymorphism and its interactions with heparin. Fernando AN, Furtado PB, Clark SJ, Gilbert HE, Day AJ, Sim RB, Perkins SJ. J. Mol. Biol. 368 564-581 (2007)
  38. Dynamics in aqueous solutions of the pentasaccharide corresponding to the binding site of heparin for antithrombin III studied by NMR relaxation measurements. Hricovíni M, Torri G. Carbohydr. Res. 268 159-175 (1995)
  39. Heparin-mimetic sulfated peptides with modulated affinities for heparin-binding peptides and growth factors. Kim SH, Kiick KL. Peptides 28 2125-2136 (2007)
  40. The Kaposi's sarcoma-associated herpesvirus complement control protein (KCP) binds to heparin and cell surfaces via positively charged amino acids in CCP1-2. Mark L, Lee WH, Spiller OB, Villoutreix BO, Blom AM. Mol. Immunol. 43 1665-1675 (2006)
  41. Glycosaminoglycans and WNTs: just a spoonful of sugar helps the signal go down. Cumberledge S, Reichsman F. Trends Genet. 13 421-423 (1997)
  42. Heparan sulfate separation, sequencing, and isomeric differentiation: ion mobility spectrometry reveals specific iduronic and glucuronic acid-containing hexasaccharides. Schenauer MR, Meissen JK, Seo Y, Ames JB, Leary JA. Anal. Chem. 81 10179-10185 (2009)
  43. News New insights into heparin-induced FGF oligomerization. Waksman G, Herr AB. Nat. Struct. Biol. 5 527-530 (1998)
  44. Solution structure and heparin interaction of human hepatoma-derived growth factor. Sue SC, Chen JY, Lee SC, Wu WG, Huang TH. J. Mol. Biol. 343 1365-1377 (2004)
  45. Structure, dynamics and heparin binding of the C-terminal domain of insulin-like growth factor-binding protein-2 (IGFBP-2). Kuang Z, Yao S, Keizer DW, Wang CC, Bach LA, Forbes BE, Wallace JC, Norton RS. J. Mol. Biol. 364 690-704 (2006)
  46. Conformation of glycosaminoglycans by ion mobility mass spectrometry and molecular modelling. Jin L, Barran PE, Deakin JA, Lyon M, Uhrín D. Phys Chem Chem Phys 7 3464-3471 (2005)
  47. Cooperative heparin-mediated oligomerization of fibroblast growth factor-1 (FGF1) precedes recruitment of FGFR2 to ternary complexes. Brown A, Robinson CJ, Gallagher JT, Blundell TL. Biophys. J. 104 1720-1730 (2013)
  48. Depiction of the forces participating in the 2-O-sulfo-alpha-L-iduronic acid conformational preference in heparin sequences in aqueous solutions. Pol-Fachin L, Verli H. Carbohydr. Res. 343 1435-1445 (2008)
  49. Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-β-D-glucuronidase (heparanase). Gandhi NS, Freeman C, Parish CR, Mancera RL. Glycobiology 22 35-55 (2012)
  50. Insights into the induced fit mechanism in antithrombin-heparin interaction using molecular dynamics simulations. Verli H, Guimarães JA. J. Mol. Graph. Model. 24 203-212 (2005)
  51. Molecular dynamics and atomic charge calculations in the study of heparin conformation in aqueous solution. Becker CF, Guimarães JA, Verli H. Carbohydr. Res. 340 1499-1507 (2005)
  52. NMR solution conformation of heparin-derived tetrasaccharide. Mikhailov D, Mayo KH, Vlahov IR, Toida T, Pervin A, Linhardt RJ. Biochem. J. 318 ( Pt 1) 93-102 (1996)
  53. Heparan sulfate phage display antibodies identify distinct epitopes with complex binding characteristics: insights into protein binding specificities. Thompson SM, Fernig DG, Jesudason EC, Losty PD, van de Westerlo EM, van Kuppevelt TH, Turnbull JE. J. Biol. Chem. 284 35621-35631 (2009)
  54. Structural investigation of C4b-binding protein by molecular modeling: localization of putative binding sites. Villoutreix BO, Härdig Y, Wallqvist A, Covell DG, García de Frutos P, Dahlbäck B. Proteins 31 391-405 (1998)
  55. Free energy calculations of glycosaminoglycan-protein interactions. Gandhi NS, Mancera RL. Glycobiology 19 1103-1115 (2009)
  56. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (I): preparation and characterization. Chang LC, Lee HF, Yang Z, Yang VC. AAPS PharmSci 3 E17 (2001)
  57. Conformational transitions induced in heparin octasaccharides by binding with antithrombin III. Guerrini M, Guglieri S, Beccati D, Torri G, Viskov C, Mourier P. Biochem. J. 399 191-198 (2006)
  58. Heparin modulates the mitogenic activity of fibroblast growth factor by inducing dimerization of its receptor. a 3D view by using NMR. Nieto L, Canales Á, Fernández IS, Santillana E, González-Corrochano R, Redondo-Horcajo M, Cañada FJ, Nieto P, Martín-Lomas M, Giménez-Gallego G, Jiménez-Barbero J. Chembiochem 14 1732-1744 (2013)
  59. Residual dipolar coupling investigation of a heparin tetrasaccharide confirms the limited effect of flexibility of the iduronic acid on the molecular shape of heparin. Jin L, Hricovíni M, Deakin JA, Lyon M, Uhrín D. Glycobiology 19 1185-1196 (2009)
  60. Synthesis and structural study of two new heparin-like hexasaccharides. Lucas R, Angulo J, Nieto PM, Martín-Lomas M. Org. Biomol. Chem. 1 2253-2266 (2003)
  61. A stereochemical approach to pyranose ring flexibility: its implications for the conformation of dermatan sulfate. Venkataraman G, Sasisekharan V, Cooney CL, Langer R, Sasisekharan R. Proc. Natl. Acad. Sci. U.S.A. 91 6171-6175 (1994)
  62. Dynamic properties of biologically active synthetic heparin-like hexasaccharides. Angulo J, Hricovíni M, Gairi M, Guerrini M, de Paz JL, Ojeda R, Martín-Lomas M, Nieto PM. Glycobiology 15 1008-1015 (2005)
  63. Importance of the spatial display of charged residues in heparin-peptide interactions. Rullo A, Nitz M. Biopolymers 93 290-298 (2010)
  64. The structural plasticity of heparan sulfate NA-domains and hence their role in mediating multivalent interactions is confirmed by high-accuracy (15)N-NMR relaxation studies. Mobli M, Nilsson M, Almond A. Glycoconj. J. 25 401-414 (2008)
  65. Binding of a de novo designed peptide to specific glycosaminoglycans. Jayaraman G, Wu CW, Liu YJ, Chien KY, Fang JC, Lyu PC. FEBS Lett. 482 154-158 (2000)
  66. Molecular modeling of the interaction between heparan sulfate and cellular growth factors: bringing pieces together. Sapay N, Cabannes E, Petitou M, Imberty A. Glycobiology 21 1181-1193 (2011)
  67. Specificities of heparin-binding sites from the amino-terminus and type 1 repeats of thrombospondin-1. Yu H, Tyrrell D, Cashel J, Guo NH, Vogel T, Sipes JM, Lam L, Fillit HM, Hartman J, Mendelovitz S, Panel A, Roberts DD. Arch. Biochem. Biophys. 374 13-23 (2000)
  68. Transient tropoelastin nanoparticles are early-stage intermediates in the coacervation of human tropoelastin whose aggregation is facilitated by heparan sulfate and heparin decasaccharides. Tu Y, Weiss AS. Matrix Biol. 29 152-159 (2010)
  69. A molecular dynamics description of the conformational flexibility of the L-iduronate ring in glycosaminoglycans. Angulo J, Nieto PM, Martín-Lomas M. Chem. Commun. (Camb.) 1512-1513 (2003)
  70. Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase. Pala D, Rivara S, Mor M, Milazzo FM, Roscilli G, Pavoni E, Giannini G. Glycobiology 26 640-654 (2016)
  71. Model for the three-dimensional structure of vitronectin: predictions for the multi-domain protein from threading and docking. Xu D, Baburaj K, Peterson CB, Xu Y. Proteins 44 312-320 (2001)
  72. Experimental proof for the structure of a thrombin-inhibiting heparin molecule. Petitou M, Imberty A, Duchaussoy P, Driguez PA, Ceccato ML, Gourvenec F, Sizun P, Hérault JP, Pérez S, Herbert JM. Chemistry 7 858-873 (2001)
  73. Structure of heparin-derived tetrasaccharide complexed to the plasma protein antithrombin derived from NOEs, J-couplings and chemical shifts. Hricovíni M, Guerrini M, Bisio A. Eur. J. Biochem. 261 789-801 (1999)
  74. The solution structure of heparan sulfate differs from that of heparin: implications for function. Khan S, Rodriguez E, Patel R, Gor J, Mulloy B, Perkins SJ. J. Biol. Chem. 286 24842-24854 (2011)
  75. Conformational analysis of heparin epoxide in aqueous solution. An NMR relaxation study. Hricovíni M, Guerrini M, Torri G, Piani S, Ungarelli F. Carbohydr. Res. 277 11-23 (1995)
  76. Enrichment of (8,4) single-walled carbon nanotubes through coextraction with heparin. Yan LY, Li W, Fan XF, Wei L, Chen Y, Kuo JL, Li LJ, Kwak SK, Mu Y, Chan-Park MB. Small 6 110-118 (2010)
  77. Improved impurity fingerprinting of heparin by high resolution (1)H NMR spectroscopy. Bigler P, Brenneisen R. J Pharm Biomed Anal 49 1060-1064 (2009)
  78. Motional properties of E. coli polysaccharide K5 in aqueous solution analyzed by NMR relaxation measurements. Hricovíni M, Guerrini M, Torri G, Casu B. Carbohydr. Res. 300 69-76 (1997)
  79. Rapid oligomer formation of human muscle acylphosphatase induced by heparan sulfate. Motamedi-Shad N, Garfagnini T, Penco A, Relini A, Fogolari F, Corazza A, Esposito G, Bemporad F, Chiti F. Nat. Struct. Mol. Biol. 19 547-54, S1-2 (2012)
  80. Letter Rational design of synthetic heparin analogues with tailor-made coagulation factor inhibitory activity. Grootenhuis PD, Westerduin P, Meuleman D, Petitou M, van Boeckel CA. Nat. Struct. Biol. 2 736-739 (1995)
  81. Characterization of currently marketed heparin products: key tests for quality assurance. Keire DA, Ye H, Trehy ML, Ye W, Kolinski RE, Westenberger BJ, Buhse LF, Nasr M, Al-Hakim A. Anal Bioanal Chem 399 581-591 (2011)
  82. Conformational selection of the AGA*IA(M) heparin pentasaccharide when bound to the fibroblast growth factor receptor. Nieto L, Canales Á, Giménez-Gallego G, Nieto PM, Jiménez-Barbero J. Chemistry 17 11204-11209 (2011)
  83. Heparin binds to the laminin alpha4 chain LG4 domain at a site different from that found for other laminins. Yamashita H, Beck K, Kitagawa Y. J. Mol. Biol. 335 1145-1149 (2004)
  84. Mapping of heparin/heparan sulfate binding sites on αvβ3 integrin by molecular docking. Ballut L, Sapay N, Chautard E, Imberty A, Ricard-Blum S. J. Mol. Recognit. 26 76-85 (2013)
  85. Antithrombin-binding oligosaccharides: structural diversities in a unique function? Guerrini M, Mourier PA, Torri G, Viskov C. Glycoconj J 31 409-416 (2014)
  86. Chondroitin Sulfate Tetrasaccharides: Synthesis, Three-Dimensional Structure and Interaction with Midkine. Solera C, Macchione G, Maza S, Kayser MM, Corzana F, de Paz JL, Nieto PM. Chemistry 22 2356-2369 (2016)
  87. Combined NMR and molecular modeling study of an iduronic acid-containing trisaccharide related to antithrombotic heparin fragments. Cros S, Petitou M, Sizun P, Pérez S, Imberty A. Bioorg. Med. Chem. 5 1301-1309 (1997)
  88. The impact of heparin intercalation at specific binding sites in telopeptide-free collagen type I fibrils. Stamov DR, Khoa Nguyen TA, Evans HM, Pfohl T, Werner C, Pompe T. Biomaterials 32 7444-7453 (2011)
  89. The solution structure of heparan sulfate differs from that of heparin: implications for function. Khan S, Fung KW, Rodriguez E, Patel R, Gor J, Mulloy B, Perkins SJ. J. Biol. Chem. 288 27737-27751 (2013)
  90. 3D structure of a heparin mimetic analogue of a FGF-1 activator. A NMR and molecular modelling study. Muñoz-García JC, Solera C, Carrero P, de Paz JL, Angulo J, Nieto PM. Org. Biomol. Chem. 11 8269-8275 (2013)
  91. Can current force fields reproduce ring puckering in 2-O-sulfo-alpha-L-iduronic acid? A molecular dynamics simulation study. Gandhi NS, Mancera RL. Carbohydr. Res. 345 689-695 (2010)
  92. Conformational analysis of a dermatan sulfate-derived tetrasaccharide by NMR, molecular modeling, and residual dipolar couplings. Silipo A, Zhang Z, Cañada FJ, Molinaro A, Linhardt RJ, Jiménez-Barbero J. Chembiochem 9 240-252 (2008)
  93. Extension and validation of the GLYCAM force field parameters for modeling glycosaminoglycans. Singh A, Tessier MB, Pederson K, Wang X, Venot AP, Boons GJ, Prestegard JH, Woods RJ. Can J Chem 94 927-935 (2016)
  94. Tailored chondroitin sulfate glycomimetics via a tunable multivalent scaffold for potentiating NGF/TrkA-induced neurogenesis. Liu P, Chen L, Toh JKC, Ang YL, Jee JE, Lim J, Lee SS, Lee SG. Chem Sci 6 450-456 (2015)
  95. 2-O-Sulfated Domains in Syndecan-1 Heparan Sulfate Inhibit Neutrophil Cathelicidin and Promote Staphylococcus aureus Corneal Infection. Hayashida A, Amano S, Gallo RL, Linhardt RJ, Liu J, Park PW. J. Biol. Chem. 290 16157-16167 (2015)
  96. Effects of glycosylation on heparin binding and antithrombin activation by heparin. Pol-Fachin L, Franco Becker C, Almeida Guimarães J, Verli H. Proteins 79 2735-2745 (2011)
  97. Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes. Goding J, Gilmour A, Martens P, Poole-Warren L, Green R. Adv Healthc Mater 6 (2017)
  98. B3LYP/6-311++G* * study of structure and spin-spin coupling constant in heparin disaccharide. Hricovíni M, Scholtzová E, Bízik F. Carbohydr. Res. 342 1350-1356 (2007)
  99. Consequences of the non-specific binding of a protein to a linear polymer: reconciliation of stoichiometric and equilibrium titration data for the thrombin-heparin interaction. Munro PD, Jackson CM, Winzor DJ. J. Theor. Biol. 203 407-418 (2000)
  100. Tilorone-induced lysosomal lesions: the bisbasic character of the drug is essential for its high potency to cause storage of sulphated glycosaminoglycans. Fischer J, Hein L, Lüllmann-Rauch R, von Witzendorff B. Biochem. J. 315 ( Pt 2) 369-375 (1996)
  101. 13C-NMR relation study of heparin-disaccharide interactions with tripeptides GRG and GKG. Mikhailov D, Mayo KH, Pervin A, Linhardt RJ. Biochem. J. 315 ( Pt 2) 447-454 (1996)
  102. Conformational analysis of heparin binding peptides. Vacatello M, D'Auria G, Falcigno L, Dettin M, Gambaretto R, Di Bello C, Paolillo L. Biomaterials 26 3207-3214 (2005)
  103. Heparinoids activate a protease, secreted by mucosa and tumors, via tethering supplemented by allostery. Fulcher YG, Sanganna Gari RR, Frey NC, Zhang F, Linhardt RJ, King GM, Van Doren SR. ACS Chem. Biol. 9 957-966 (2014)
  104. Importance of IdoA and IdoA(2S) ring conformations in computational studies of glycosaminoglycan-protein interactions. Samsonov SA, Pisabarro MT. Carbohydr. Res. 381 133-137 (2013)
  105. Isolation and characterization of hexasaccharides derived from heparin. Analysis by HPLC and elucidation of structure by 1H NMR. Larnkjaer A, Hansen SH, Ostergaard PB. Carbohydr. Res. 266 37-52 (1995)
  106. Strategies for carbohydrate model building, refinement and validation. Agirre J. Acta Crystallogr D Struct Biol 73 171-186 (2017)
  107. Surface Plasmon Resonance Measurement of the Binding of Low-Density Lipoprotein at a Heparin Surface. Gaus K, Hall EA. J Colloid Interface Sci 217 111-118 (1999)
  108. Altered inactivation pathway of factor Va by activated protein C in the presence of heparin. Nicolaes GA, Sørensen KW, Friedrich U, Tans G, Rosing J, Autin L, Dahlbäck B, Villoutreix BO. Eur. J. Biochem. 271 2724-2736 (2004)
  109. Conformations of the iduronate ring in short heparin fragments described by time-averaged distance restrained molecular dynamics. Muñoz-García JC, Corzana F, de Paz JL, Angulo J, Nieto PM. Glycobiology 23 1220-1229 (2013)
  110. Effect of the substituents of the neighboring ring in the conformational equilibrium of iduronate in heparin-like trisaccharides. Muñoz-García JC, López-Prados J, Angulo J, Díaz-Contreras I, Reichardt N, de Paz JL, Martín-Lomas M, Nieto PM. Chemistry 18 16319-16331 (2012)
  111. Evaluation of Surface Plasmon Resonance (SPR) for Heparin Assay Gaus K, Hall EAH. J Colloid Interface Sci 194 364-372 (1997)
  112. Heparin derivatives for the targeting of multiple activities in the inflammatory response. Veraldi N, Hughes AJ, Rudd TR, Thomas HB, Edwards SW, Hadfield L, Skidmore MA, Siligardi G, Cosentino C, Shute JK, Naggi A, Yates EA. Carbohydr Polym 117 400-407 (2015)
  113. The 2.8 Å Electron Microscopy Structure of Adeno-Associated Virus-DJ Bound by a Heparinoid Pentasaccharide. Xie Q, Spear JM, Noble AJ, Sousa DR, Meyer NL, Davulcu O, Zhang F, Linhardt RJ, Stagg SM, Chapman MS. Mol Ther Methods Clin Dev 5 1-12 (2017)
  114. Heparin molecularly imprinted surfaces for the attenuation of complement activation in blood. Rosengren-Holmberg JP, Andersson J, Smith JR, Alexander C, Alexander MR, Tovar G, Ekdahl KN, Nicholls IA. Biomater Sci 3 1208-1217 (2015)
  115. Molecular modeling of the collagen-like tail of asymmetric acetylcholinesterase. Deprez P, Inestrosa NC. Protein Eng. 13 27-34 (2000)
  116. PolySac3DB: an annotated data base of 3 dimensional structures of polysaccharides. Sarkar A, Pérez S. BMC Bioinformatics 13 302 (2012)
  117. Precocious axons and improved survival of rat hippocampal neurons on lysine-alanine polymer substrates. Brewer GJ, Deshmane S, Ponnusamy E. J. Neurosci. Methods 85 13-20 (1998)
  118. DMT-MM mediated functionalisation of the non-reducing end of glycosaminoglycans. Gemma E, Hulme AN, Jahnke A, Jin L, Lyon M, Müller RM, Uhrín D. Chem. Commun. (Camb.) 2686-2688 (2007)
  119. Exploiting the carboxylate chemical shift to resolve degenerate resonances in spectra of 13C-labelled glycosaminoglycans. Colebrooke SA, Blundell CD, DeAngelis PL, Campbell ID, Almond A. Magn Reson Chem 43 805-815 (2005)
  120. Fabrication of carbohydrate surfaces by using nonderivatised oligosaccharides, and their application to measuring the assembly of sugar-protein complexes. Popplewell JF, Swann MJ, Ahmed Y, Turnbull JE, Fernig DG. Chembiochem 10 1218-1226 (2009)
  121. High Sulfation and a High Molecular Weight Are Important for Anti-hepcidin Activity of Heparin. Asperti M, Naggi A, Esposito E, Ruzzenenti P, Di Somma M, Gryzik M, Arosio P, Poli M. Front Pharmacol 6 316 (2015)
  122. Identification of structural motifs and amino acids within the structure of human heparan sulfate 3-O-sulfotransferase that mediate enzymatic function. Raman R, Myette J, Venkataraman G, Sasisekharan V, Sasisekharan R. Biochem. Biophys. Res. Commun. 290 1214-1219 (2002)
  123. In vitro study of drug loading on polymer-free oxide films of metallic implants. Shih CM, Shih CC, Su YY, Chang NC, Lin SJ. J Biomed Mater Res A 75 519-529 (2005)
  124. Structural glycobiology of heparin dynamics on the exosite 2 of coagulation cascade proteases: Implications for glycosaminoglycans antithrombotic activity. Pol-Fachin L, Verli H. Glycobiology 24 97-105 (2014)
  125. Amorphous oxide--a platform for drug delivery. Shih CM, Lin SJ, Su YY, Shih CC. J Control Release 102 539-549 (2005)
  126. Comparative study of Plasmodium falciparum erythrocyte membrane protein 1-DBLα domain variants with respect to antigenic variations and docking interaction analysis with glycosaminoglycans. Agrawal MR, Ozarkar AD, Gupta S, Deobagkar DN, Deobagkar DD. Mol Biosyst 10 2466-2479 (2014)
  127. Interaction of heparins and dextran sulfates with a mesoscopic protein nanopore. Teixeira LR, Merzlyak PG, Valeva A, Krasilnikov OV. Biophys. J. 97 2894-2903 (2009)
  128. A fluorescent probe assay (Heparin Red) for direct detection of heparins in human plasma. Warttinger U, Giese C, Harenberg J, Holmer E, Krämer R. Anal Bioanal Chem 408 8241-8251 (2016)
  129. Heparinase I-specific disaccharide unit of heparin is a key structure but insufficient for exerting anti-prion activity in prion-infected cells. Teruya K, Wakao M, Sato M, Hamanaka T, Nishizawa K, Funayama Y, Sakasegawa Y, Suda Y, Doh-ura K. Biochem. Biophys. Res. Commun. 460 989-995 (2015)
  130. Perspective on computational simulations of glycosaminoglycans. Nagarajan B, Sankaranarayanan NV, Desai UR. Wiley Interdiscip Rev Comput Mol Sci 9 (2019)
  131. Rapid Uptake and Inhibition of Viral Propagation by Extracellular OAS1. Thavachelvam K, Gad HH, Ibsen MS, Desprès P, Hokland M, Hartmann R, Kristiansen H. J. Interferon Cytokine Res. 35 359-366 (2015)
  132. Effect of heparin and heparan sulphate on open promoter complex formation for a simple tandem gene model using ex situ atomic force microscopy. Chammas O, Bonass WA, Thomson NH. Methods 120 91-102 (2017)
  133. Interactions between a Heparin Trisaccharide Library and FGF-1 Analyzed by NMR Methods. García-Jiménez MJ, Gil-Caballero S, Canales Á, Jiménez-Barbero J, de Paz JL, Nieto PM. Int J Mol Sci 18 (2017)
  134. R-spondins engage heparan sulfate proteoglycans to potentiate WNT signaling. Dubey R, van Kerkhof P, Jordens I, Malinauskas T, Pusapati GV, McKenna JK, Li D, Carette JE, Ho M, Siebold C, Maurice M, Lebensohn AM, Rohatgi R. Elife 9 (2020)
  135. A Repeating Sulfated Galactan Motif Resuscitates Dormant Micrococcus luteus Bacteria. Böttcher T, Szamosvári D, Clardy J. Appl. Environ. Microbiol. 84 (2018)
  136. Heparin and heparan sulfate proteoglycans promote HIV-1 p17 matrix protein oligomerization: computational, biochemical and biological implications. Bugatti A, Paiardi G, Urbinati C, Chiodelli P, Orro A, Uggeri M, Milanesi L, Caruso A, Caccuri F, D'Ursi P, Rusnati M. Sci Rep 9 15768 (2019)
  137. Heparin's solution structure determined by small-angle neutron scattering. Rubinson KA, Chen Y, Cress BF, Zhang F, Linhardt RJ. Biopolymers 105 905-913 (2016)
  138. Heparin-fibronectin interactions in the development of extracellular matrix insolubility. Raitman I, Huang ML, Williams SA, Friedman B, Godula K, Schwarzbauer JE. Matrix Biol. 67 107-122 (2018)
  139. Investigation of the heparin-thrombin interaction by dynamic force spectroscopy. Wang C, Jin Y, Desai UR, Yadavalli VK. Biochim. Biophys. Acta 1850 1099-1106 (2015)
  140. Substitution-Inert Polynuclear Platinum Complexes as Metalloshielding Agents for Heparan Sulfate. Gorle AK, Katner SJ, Johnson WE, Lee DE, Daniel AG, Ginsburg EP, von Itzstein M, Berners-Price SJ, Farrell NP. Chemistry 24 6606-6616 (2018)
  141. The cationic dye basic orange 21 (BO21) as a potential fluorescent sensor. Eizig Bar-On Z, Iron MA, Kasdan HL, Amir D, Afrimzon E, Zurgil N, Moshkov S, Deutsch M. Photochem. Photobiol. Sci. 17 1417-1428 (2018)


Related citations provided by authors (2)

  1. The effect of variation of substitution on the solution conformation of heparin: a spectroscopic and molecular modelling study.. Mulloy B, Forster MJ, Jones C, Drake AF, Johnson EA, Davies DB Carbohydr. Res. 255 1-26 (1994)
  2. NOEMOL: integrated molecular graphics and the simulation of Nuclear Overhauser effects in NMR spectroscopy.. Forster M, Jones C, Mulloy B J Mol Graph 7 196-201, 217 (1989)