1hjp Citations

Functional analyses of the domain structure in the Holliday junction binding protein RuvA.

Structure 6 11-21 (1998)
Cited: 37 times
EuropePMC logo PMID: 9493263

Abstract

Background

Homologous recombination is crucial for genetic diversity and repairing damaged chromosomes. In Escherichia coli cells, the RuvA, RuvB and RuvC proteins participate in the processing of an important intermediate, the Holliday junction. The RuvA-RuvB protein complex facilitates branch migration of the junction, depending on ATP hydrolysis. The atomic structure of RuvA should enable critical questions to be addressed about its specific interactions with the Holliday junction and the RuvB protein.

Results

The crystal structure of RuvA shows the tetrameric molecules with a fourfold axis at the center. Each subunit consists of three distinct domains, some of which contain important secondary structure elements for DNA binding. Together with the detailed structural information, the biochemical assays of various mutant RuvA proteins and domains, isolated by partial proteolysis, allowed us to define the functional roles of these domains in Holliday junction binding and the RuvB interaction.

Conclusion

The RuvA molecule is formed by four identical subunits, each with three domains, I, II and III. The locations of the putative DNA-binding motifs define an interface between the DNA and the Holliday junction. Domain III is weakly attached to the core region, comprising domains I and II; the core domains can form a tetramer in the absence of domain III. Functional analyses of the mutant proteins and the partial digestion products, including Holliday junction binding and branch-migration assays, revealed that domain III and the preceding loop are crucial for RuvB binding and branch migration, although this region is not required for the junction-DNA binding.

Articles - 1hjp mentioned but not cited (2)

  1. Common fold in helix-hairpin-helix proteins. Shao X, Grishin NV. Nucleic Acids Res 28 2643-2650 (2000)
  2. Protein structure similarity from Principle Component Correlation analysis. Zhou X, Chou J, Wong ST. BMC Bioinformatics 7 40 (2006)


Reviews citing this publication (7)

  1. Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG, and RusA. Sharples GJ, Ingleston SM, Lloyd RG. J Bacteriol 181 5543-5550 (1999)
  2. Holliday junction resolvases. Wyatt HD, West SC. Cold Spring Harb Perspect Biol 6 a023192 (2014)
  3. The junction-resolving enzymes. Lilley DM, White MF. Nat Rev Mol Cell Biol 2 433-443 (2001)
  4. Three-dimensional structural views of branch migration and resolution in DNA homologous recombination. Yamada K, Ariyoshi M, Morikawa K. Curr Opin Struct Biol 14 130-137 (2004)
  5. Redox modifications of the C-terminal cysteine residue cause structural changes in S100A1 and S100B proteins. Zhukova L, Zhukov I, Bal W, Wyslouch-Cieszynska A. Biochim Biophys Acta 1742 191-201 (2004)
  6. DNA repair gets physical: mapping an XPA-binding site on ERCC1. Croteau DL, Peng Y, Van Houten B. DNA Repair (Amst) 7 819-826 (2008)
  7. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Bianco PR. Front Mol Biosci 9 784451 (2022)

Articles citing this publication (28)

  1. Crystal structure of the holliday junction DNA in complex with a single RuvA tetramer. Ariyoshi M, Nishino T, Iwasaki H, Shinagawa H, Morikawa K. Proc Natl Acad Sci U S A 97 8257-8262 (2000)
  2. Crystal structure of an octameric RuvA-Holliday junction complex. Roe SM, Barlow T, Brown T, Oram M, Keeley A, Tsaneva IR, Pearl LH. Mol Cell 2 361-372 (1998)
  3. Crystal structure of the RuvA-RuvB complex: a structural basis for the Holliday junction migrating motor machinery. Yamada K, Miyata T, Tsuchiya D, Oyama T, Fujiwara Y, Ohnishi T, Iwasaki H, Shinagawa H, Ariyoshi M, Mayanagi K, Morikawa K. Mol Cell 10 671-681 (2002)
  4. Pathways for Holliday junction processing during homologous recombination in Saccharomyces cerevisiae. Ashton TM, Mankouri HW, Heidenblut A, McHugh PJ, Hickson ID. Mol Cell Biol 31 1921-1933 (2011)
  5. A cruciform structural transition provides a molecular switch for chromosome structure and dynamics. Shlyakhtenko LS, Hsieh P, Grigoriev M, Potaman VN, Sinden RR, Lyubchenko YL. J Mol Biol 296 1169-1173 (2000)
  6. Crystal structures of RMI1 and RMI2, two OB-fold regulatory subunits of the BLM complex. Wang F, Yang Y, Singh TR, Busygina V, Guo R, Wan K, Wang W, Sung P, Meetei AR, Lei M. Structure 18 1159-1170 (2010)
  7. Direct evidence that a conserved arginine in RuvB AAA+ ATPase acts as an allosteric effector for the ATPase activity of the adjacent subunit in a hexamer. Hishida T, Han YW, Fujimoto S, Iwasaki H, Shinagawa H. Proc Natl Acad Sci U S A 101 9573-9577 (2004)
  8. ruvA Mutants that resolve Holliday junctions but do not reverse replication forks. Baharoglu Z, Bradley AS, Le Masson M, Tsaneva I, Michel B. PLoS Genet 4 e1000012 (2008)
  9. Modulation of RuvB function by the mobile domain III of the Holliday junction recognition protein RuvA. Nishino T, Iwasaki H, Kataoka M, Ariyoshi M, Fujita T, Shinagawa H, Morikawa K. J Mol Biol 298 407-416 (2000)
  10. Holliday junction binding and processing by the RuvA protein of Mycoplasma pneumoniae. Ingleston SM, Dickman MJ, Grasby JA, Hornby DP, Sharples GJ, Lloyd RG. Eur J Biochem 269 1525-1533 (2002)
  11. ruvA and ruvB mutants specifically impaired for replication fork reversal. Le Masson M, Baharoglu Z, Michel B. Mol Microbiol 70 537-548 (2008)
  12. The role of RuvA octamerization for RuvAB function in vitro and in vivo. Privezentzev CV, Keeley A, Sigala B, Tsaneva IR. J Biol Chem 280 3365-3375 (2005)
  13. A synthetic holliday junction is sandwiched between two tetrameric Mycobacterium leprae RuvA structures in solution: new insights from neutron scattering contrast variation and modelling. Chamberlain D, Keeley A, Aslam M, Arenas-Licea J, Brown T, Tsaneva IR, Perkins SJ. J Mol Biol 284 385-400 (1998)
  14. Mutational analysis on structure-function relationship of a holliday junction specific endonuclease RuvC. Ichiyanagi K, Iwasaki H, Hishida T, Shinagawa H. Genes Cells 3 575-586 (1998)
  15. Electron microscopic single particle analysis of a tetrameric RuvA/RuvB/Holliday junction DNA complex. Mayanagi K, Fujiwara Y, Miyata T, Morikawa K. Biochem Biophys Res Commun 365 273-278 (2008)
  16. Mechanism of AAA+ ATPase-mediated RuvAB-Holliday junction branch migration. Wald J, Fahrenkamp D, Goessweiner-Mohr N, Lugmayr W, Ciccarelli L, Vesper O, Marlovits TC. Nature 609 630-639 (2022)
  17. A tetramer-octamer equilibrium in Mycobacterium leprae and Escherichia coli RuvA by analytical ultracentrifugation. Lee YC, Flora R, McCafferty JA, Gor J, Tsaneva IR, Perkins SJ. J Mol Biol 333 677-682 (2003)
  18. Signs of neutralization in a redundant gene involved in homologous recombination in Wolbachia endosymbionts. Badawi M, Giraud I, Vavre F, Grève P, Cordaux R. Genome Biol Evol 6 2654-2664 (2014)
  19. Synergistic effect of ATP for RuvA-RuvB-Holliday junction DNA complex formation. Iwasa T, Han YW, Hiramatsu R, Yokota H, Nakao K, Yokokawa R, Ono T, Harada Y. Sci Rep 5 18177 (2015)
  20. Branch migration of Holliday junction in RuvA tetramer complex studied by umbrella sampling simulation using a path-search algorithm. Ishida H. J Comput Chem 31 2317-2329 (2010)
  21. The RuvA homologues from Mycoplasma genitalium and Mycoplasma pneumoniae exhibit unique functional characteristics. Sluijter M, Estevão S, Hoogenboezem T, Hartwig NG, van Rossum AM, Vink C. PLoS One 7 e38301 (2012)
  22. Identification and characterization of Thermus thermophilus HB8 RuvA protein, the subunit of the RuvAB protein complex that promotes branch migration of Holliday junctions. Ohnishi T, Iwasaki H, Ishino Y, Kuramitsu S, Nakata A, Shinagawa H. Genes Genet Syst 75 233-243 (2000)
  23. Uncoupling of the ATPase activity from the branch migration activity of RuvAB protein complexes containing both wild-type and ATPase-defective RuvB proteins. Hishida T, Iwasaki H, Han YW, Ohnishi T, Shinagawa H. Genes Cells 8 721-730 (2003)
  24. Functional interactions of Mycobacterium leprae RuvA with Escherichia coli RuvB and RuvC on holliday junctions. Arenas-Licea J, van Gool AJ, Keeley AJ, Davies A, West SC, Tsaneva IR. J Mol Biol 301 839-850 (2000)
  25. DisA Restrains the Processing and Cleavage of Reversed Replication Forks by the RuvAB-RecU Resolvasome. Gándara C, Torres R, Carrasco B, Ayora S, Alonso JC. Int J Mol Sci 22 11323 (2021)
  26. Studies on tautomeric forms of Guanine-Cytosine base pairs of nucleic acids and their interactions with water molecules. Deepa P, Kolandaivel P. J Biomol Struct Dyn 25 733-746 (2008)
  27. Complex of the herpes simplex virus type 1 origin binding protein UL9 with DNA as a platform for the design of a new type of antiviral drugs. Bazhulina NP, Surovaya AN, Gursky YG, Andronova VL, Moiseeva ED, Nikitin CA, Golovkin MV, Galegov GА, Grokhovsky SL, Gursky GV. J Biomol Struct Dyn 32 1456-1473 (2014)
  28. DNA Helicases. Bianco PR. EcoSal Plus 4 (2010)