1hbs Citations

Refined crystal structure of deoxyhemoglobin S. I. Restrained least-squares refinement at 3.0-A resolution.

J Biol Chem 260 8272-9 (1985)
Cited: 49 times
EuropePMC logo PMID: 4008491

Abstract

The crystal structure of deoxyhemoglobin S has been refined at 3.0-A resolution using the Hendrickson-Konnert restrained least-squares method. Comparison with the structure of deoxyhemoglobin A reveals a hingelike movement of the beta-chain A helices, which are involved in molecular contacts, toward the EF corners of their respective subunits. This movement brings the amino termini of the beta-chains closer to the molecular dyad. The A helices remain alpha-helical throughout their entire lengths. No other major structural difference is found between deoxyhemoglobin A and deoxyhemoglobin S.

Reviews - 1hbs mentioned but not cited (1)

Articles - 1hbs mentioned but not cited (1)



Reviews citing this publication (3)

  1. Sickle cell disease pathophysiology. Noguchi CT, Schechter AN, Rodgers GP. Baillieres Clin Haematol 6 57-91 (1993)
  2. Sickle cell disease: Its molecular mechanism and the one drug that treats it. Ferrone FA. Int J Biol Macromol 93 1168-1173 (2016)
  3. The Sickle-Cell Fiber Revisited. Bishop MF, Ferrone FA. Biomolecules 13 413 (2023)

Articles citing this publication (44)

  1. The high resolution crystal structure of deoxyhemoglobin S. Harrington DJ, Adachi K, Royer WE. J Mol Biol 272 398-407 (1997)
  2. Distribution and complementarity of hydropathy in multisubunit proteins. Korn AP, Burnett RM. Proteins 9 37-55 (1991)
  3. Molecular anatomy: phyletic relationships derived from three-dimensional structures of proteins. Johnson MS, Sutcliffe MJ, Blundell TL. J Mol Evol 30 43-59 (1990)
  4. Structural analysis of polymers of sickle cell hemoglobin. I. Sickle hemoglobin fibers. Carragher B, Bluemke DA, Gabriel B, Potel MJ, Josephs R. J Mol Biol 199 315-331 (1988)
  5. Recognition of distantly related proteins through energy calculations. Abagyan R, Frishman D, Argos P. Proteins 19 132-140 (1994)
  6. Twisted protein aggregates and disease: the stability of sickle hemoglobin fibers. Turner MS, Briehl RW, Ferrone FA, Josephs R. Phys Rev Lett 90 128103 (2003)
  7. Structure of the thermolabile mutant aldolase B, A149P: molecular basis of hereditary fructose intolerance. Malay AD, Allen KN, Tolan DR. J Mol Biol 347 135-144 (2005)
  8. Intermolecular contacts within sickle hemoglobin fibers. Watowich SJ, Gross LJ, Josephs R. J Mol Biol 209 821-828 (1989)
  9. The reconstruction of helical particles with variable pitch. Bluemke DA, Carragher B, Josephs R. Ultramicroscopy 26 255-270 (1988)
  10. Intracellular polymerization. Disease severity and therapeutic predictions. Noguchi CT, Rodgers GP, Schechter AN. Ann N Y Acad Sci 565 75-82 (1989)
  11. Significance of structural changes in proteins: expected errors in refined protein structures. Stroud RM, Fauman EB. Protein Sci 4 2392-2404 (1995)
  12. Steric and hydrophobic determinants of the solubilities of recombinant sickle cell hemoglobins. Bihoreau MT, Baudin V, Marden M, Lacaze N, Bohn B, Kister J, Schaad O, Dumoulin A, Edelstein SJ, Poyart C. Protein Sci 1 145-150 (1992)
  13. Electrostatics of hemoglobins from measurements of the electric dichroism and computer simulations. Antosiewicz J, Porschke D. Biophys J 68 655-664 (1995)
  14. Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease. Henry ER, Cellmer T, Dunkelberger EB, Metaferia B, Hofrichter J, Li Q, Ostrowski D, Ghirlando R, Louis JM, Moutereau S, Galactéros F, Thein SL, Bartolucci P, Eaton WA. Proc Natl Acad Sci U S A 117 15018-15027 (2020)
  15. The effect of 2,3-diphosphoglycerate on the solubility of deoxyhemoglobin S. Poillon WN, Kim BC, Welty EV, Walder JA. Arch Biochem Biophys 249 301-305 (1986)
  16. Nitric oxide pathology and therapeutics in sickle cell disease. Kim-Shapiro DB, Gladwin MT. Clin Hemorheol Microcirc 68 223-237 (2018)
  17. Anisotropy in sickle hemoglobin fibers from variations in bending and twist. Turner MS, Briehl RW, Wang JC, Ferrone FA, Josephs R. J Mol Biol 357 1422-1427 (2006)
  18. Enhanced polymerization of recombinant human deoxyhemoglobin beta 6 Glu----Ile. Baudin-Chich V, Pagnier J, Marden M, Bohn B, Lacaze N, Kister J, Schaad O, Edelstein SJ, Poyart C. Proc Natl Acad Sci U S A 87 1845-1849 (1990)
  19. Free energy of sickling: A simulation analysis. Kuczera K, Gao J, Tidor B, Karplus M. Proc Natl Acad Sci U S A 87 8481-8485 (1990)
  20. A model for the sickle hemoglobin fiber using both mutation sites. Roufberg A, Ferrone FA. Protein Sci 9 1031-1034 (2000)
  21. Use of protein database for the computation of the dipole moments of normal and abnormal hemoglobins. Takashima S. Biophys J 64 1550-1558 (1993)
  22. Polymerization of deoxy-sickle cell hemoglobin in high-phosphate buffer. Wang Z, Kishchenko G, Chen Y, Josephs R. J Struct Biol 131 197-209 (2000)
  23. A role for the alpha 113 (GH1) amino acid residue in the polymerization of sickle hemoglobin. Evaluation of its inhibitory strength and interaction linkage with two fiber contact sites (alpha 16/23) located in the AB region of the alpha-chain. Sivaram MV, Sudha R, Roy RP. J Biol Chem 276 18209-18215 (2001)
  24. Comment GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Ferrone FA. Br J Haematol 174 499-500 (2016)
  25. Structural analysis of polymers of sickle cell hemoglobin. II. Sickle hemoglobin macrofibers. Bluemke DA, Carragher B, Potel MJ, Josephs R. J Mol Biol 199 333-348 (1988)
  26. The role of beta93 Cys in the inhibition of Hb S fiber formation. Knee KM, Roden CK, Flory MR, Mukerji I. Biophys Chem 127 181-193 (2007)
  27. HbS-Savaria: the anti-polymerization effect of a single mutation in human alpha-chains. Srinivasulu S, Acharya AS, Prabhakaran M, Fabry ME, Alami R, Fiering SN, Bouhasirra EE, Nagel RL. Protein J 26 523-532 (2007)
  28. Sickle Cell Hemoglobin with Mutation at αHis-50 Has Improved Solubility. Tam MF, Tam TC, Simplaceanu V, Ho NT, Zou M, Ho C. J Biol Chem 290 21762-21772 (2015)
  29. Mutational analysis of phenylalanine beta 85 in the valine beta 6 acceptor pocket during hemoglobin S polymerization. Adachi K, Reddy LR, Reddy KS, Surrey S. Protein Sci 4 1272-1278 (1995)
  30. Analysis of the stability of hemoglobin S double strands. Mu XQ, Makowski L, Magdoff-Fairchild B. Biophys J 74 655-668 (1998)
  31. On the assembly of sickle hemoglobin fascicles. McDade WA, Carragher B, Miller CA, Josephs R. J Mol Biol 206 637-649 (1989)
  32. Photoaffinity labelling of cyanomethaemoglobin with derivatives of tryptophan and 5-bromotryptophan. Li M, Lin Z, Johnson ME. Biochem J 308 ( Pt 1) 251-260 (1995)
  33. Free energy simulations of axial contacts in sickle-cell hemoglobin. Kuczera K. Biopolymers 39 221-242 (1996)
  34. Location of potential binding sites on deoxy hemoglobin for the design of antigelling agents. Manavalan P, Prabhakaran M, Johnson ME. J Mol Biol 223 791-800 (1992)
  35. Molecular dynamics of sickle and normal hemoglobins. Prabhakaran M, Johnson ME. Biopolymers 33 735-742 (1993)
  36. The Hb A variant (beta73 Asp-->Leu) disrupts Hb S polymerization by a novel mechanism. Adachi K, Ding M, Surrey S, Rotter M, Aprelev A, Zakharov M, Weng W, Ferrone FA. J Mol Biol 362 528-538 (2006)
  37. Wetting of nonconserved residue-backbones: A feature indicative of aggregation associated regions of proteins. Pradhan MR, Pal A, Hu Z, Kannan S, Chee Keong K, Lane DP, Verma CS. Proteins 84 254-266 (2016)
  38. Molecular insights of inhibition in sickle hemoglobin polymerization upon glutathionylation: hydrogen/deuterium exchange mass spectrometry and molecular dynamics simulation-based approach. Das R, Mitra A, Mitra G, Maity D, Bhat V, Pal D, Ross C, Kurpad AV, Mandal AK. Biochem J 475 2153-2166 (2018)
  39. Nitric oxide-mediated suppression of 2,3-bisphosphoglycerate synthesis: therapeutic relevance for environmental hypoxia and sickle cell disease. Bertrand R. Med Hypotheses 79 315-318 (2012)
  40. Basic carboxyl groups of hemoglobin S: influence of oxy-deoxy conformation on the chemical reactivity of Glu-43(beta). Rao MJ, Acharya AS. J Protein Chem 10 129-138 (1991)
  41. Computer models of a new deoxy-sickle cell hemoglobin fiber based on x-ray diffraction data. Mu XQ, Fairchild BM. Biophys J 61 1638-1646 (1992)
  42. Increased sequence hydrophobicity reduces conformational specificity: A mutational case study of the Arc repressor protein. Stewart KL, Rathore D, Dodds ED, Cordes MHJ. Proteins 87 23-33 (2019)
  43. More to voxelotor than meets the eye? Bovino RC, Jackson AC, Ferrone FA. Blood Adv 6 5870-5872 (2022)
  44. Voxelotor does not inhibit sickle hemoglobin fiber formation upon complete deoxygenation. Worth EH, Fugate MK, Ferrone FA. Biophys J 122 2782-2790 (2023)


Related citations provided by authors (5)

  1. Refined Crystal Structure of Deoxyhemoglobin S. II. Molecular Interactions in the Crystal. Padlan EA, Love WE J. Biol. Chem. 260 8280- (1985)
  2. Intermolecular Interactions in Crystals of Human Deoxy Hemoglobin A, C, F and S. Love WE, Fitzgerald PMD, Hanson JC, Royerjunior WE Inserm Symp. 9 65- (1978)
  3. Crystal Structure of Sickle-Cell Deoxyhemoglobin. Wishner BC, Hanson JC, Ringle WM, Love WE MOLECULAR STRUCTURE AND BIOLOGICAL ACTIVITY 1- (1976)
  4. Crystal Structure of Sickle-Cell Deoxyhemoglobin at 5 Angstroms Resolution. Wishner BC, Ward KB, Lattman EE, Love WE J. Mol. Biol. 98 179- (1975)
  5. Crystals of Deoxy Sickle Cell Hemoglobin. Wishner BC, Love WE Proceedings of the First National Symposium on Sickle Cell Disease 85- (1975)