1haf Citations

High-resolution solution structure of the EGF-like domain of heregulin-alpha.

Biochemistry 35 3402-17 (1996)
Cited: 36 times
EuropePMC logo PMID: 8639490

Abstract

The solution structure of the 63-residue heregulin-alpha (HRG-alpha) epidermal growth factor (EGF)-like domain, corresponding to residues 177-239 of HRG-alpha, has been determined to high resolution using data from two-dimensional and three-dimensional homo- and heteronuclear NMR spectroscopy. The structure is based on a total of 887 internuclear distance and dihedral restraints derived from data obtained using unlabeled and uniformly 15N-labeled protein samples, at pH 4.5, 20 degrees C. A total of 20 structures were calculated using a hybrid distance geometry-simulated annealing approach with the program DGII, followed by restrained molecular dynamics using the program DISCOVER. The average maximum violations are 0.12 +/- 0.01 angstroms and 1.4 +/- 0.3 degrees for distance and dihedral restraints, respectively. The backbone (N,C(alpha),C) atomic rms distribution about the mean coordinates for residues 3-23 and 31-49 is 0.29 +/- 0/07 angstroms. The N-and C-terminal residues (1-2 and 50-63) and 24-30 are disordered. Comparison of the HRG-alpha EGF-like domain structure with the previously determined structure of human EGF [Hommel et al. (1992) J. Mol. Biol. 227, 271-282] reveals a high degree of structural similarity; excluding the N-terminal region (residues 1-13), the disordered phi-loop region (residues 24-30) that contains a three-residue insertion in HRG-alpha relative to hEGF, and the disordered C-terminal region (residues 50-63), the C(alpha) alignment between the HRG-alpha and hEGF minimized mean structures has a rms difference of approximately 1 angstrom. In HRG-alpha the N-terminal residues 2-6 form a well-defined beta strand rather than being disordered as found for hEGF. This structural difference correlates with functional data which suggest that the N-terminal region of the HRG-alpha EGF-like domain is responsible for the observed receptor specificity differences between HRG-alpha and EGF.

Articles - 1haf mentioned but not cited (2)

  1. Direct binding of the EGF-like domain of neuregulin-1 to integrins ({alpha}v{beta}3 and {alpha}6{beta}4) is involved in neuregulin-1/ErbB signaling. Ieguchi K, Fujita M, Ma Z, Davari P, Taniguchi Y, Sekiguchi K, Wang B, Takada YK, Takada Y. J. Biol. Chem. 285 31388-31398 (2010)
  2. Deciphering the stepwise binding mode of HRG1β to HER3 by surface plasmon resonance and interaction map. Peess C, von Proff L, Goller S, Andersson K, Gerg M, Malmqvist M, Bossenmaier B, Schräml M. PLoS ONE 10 e0116870 (2015)


Reviews citing this publication (4)

Articles citing this publication (30)

  1. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Garrett TP, McKern NM, Lou M, Elleman TC, Adams TE, Lovrecz GO, Zhu HJ, Walker F, Frenkel MJ, Hoyne PA, Jorissen RN, Nice EC, Burgess AW, Ward CW. Cell 110 763-773 (2002)
  2. Binding specificities and affinities of egf domains for ErbB receptors. Jones JT, Akita RW, Sliwkowski MX. FEBS Lett. 447 227-231 (1999)
  3. Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Gitschier J, Moffat B, Reilly D, Wood WI, Fairbrother WJ. Nat. Struct. Biol. 5 47-54 (1998)
  4. Axonal neuregulin signals cells of the oligodendrocyte lineage through activation of HER4 and Schwann cells through HER2 and HER3. Vartanian T, Goodearl A, Viehöver A, Fischbach G. J. Cell Biol. 137 211-220 (1997)
  5. ErbB tyrosine kinases and the two neuregulin families constitute a ligand-receptor network. Pinkas-Kramarski R, Shelly M, Guarino BC, Wang LM, Lyass L, Alroy I, Alimandi M, Kuo A, Moyer JD, Lavi S, Eisenstein M, Ratzkin BJ, Seger R, Bacus SS, Pierce JH, Andrews GC, Yarden Y. Mol. Cell. Biol. 18 6090-6101 (1998)
  6. Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Louie GV, Yang W, Bowman ME, Choe S. Mol. Cell 1 67-78 (1997)
  7. Analysis of heregulin symmetry by weighted evolutionary tracing. Landgraf R, Fischer D, Eisenberg D. Protein Eng. 12 943-951 (1999)
  8. Protein similarities beyond disulphide bridge topology. Mas JM, Aloy P, Martí-Renom MA, Oliva B, Blanco-Aparicio C, Molina MA, de Llorens R, Querol E, Avilés FX. J. Mol. Biol. 284 541-548 (1998)
  9. The importance of micelle-bound states for the bioactivities of bifunctional peptide derivatives for delta/mu opioid receptor agonists and neurokinin 1 receptor antagonists. Yamamoto T, Nair P, Jacobsen NE, Davis P, Ma SW, Navratilova E, Moye S, Lai J, Yamamura HI, Vanderah TW, Porreca F, Hruby VJ. J. Med. Chem. 51 6334-6347 (2008)
  10. Improving metabolic stability by glycosylation: bifunctional peptide derivatives that are opioid receptor agonists and neurokinin 1 receptor antagonists. Yamamoto T, Nair P, Jacobsen NE, Vagner J, Kulkarni V, Davis P, Ma SW, Navratilova E, Yamamura HI, Vanderah TW, Porreca F, Lai J, Hruby VJ. J. Med. Chem. 52 5164-5175 (2009)
  11. The N-terminal domains of neuregulin 1 confer signal attenuation. Warren CM, Kani K, Landgraf R. J Biol Chem 281 27306-27316 (2006)
  12. Discovery of a potent and efficacious peptide derivative for δ/μ opioid agonist/neurokinin 1 antagonist activity with a 2',6'-dimethyl-L-tyrosine: in vitro, in vivo, and NMR-based structural studies. Yamamoto T, Nair P, Largent-Milnes TM, Jacobsen NE, Davis P, Ma SW, Yamamura HI, Vanderah TW, Porreca F, Lai J, Hruby VJ. J. Med. Chem. 54 2029-2038 (2011)
  13. NMR structure and backbone dynamics of a concatemer of epidermal growth factor homology modules of the human low-density lipoprotein receptor. Kurniawan ND, Aliabadizadeh K, Brereton IM, Kroon PA, Smith R. J. Mol. Biol. 311 341-356 (2001)
  14. Computational analysis of molecular basis of 1:1 interactions of NRG-1beta wild-type and variants with ErbB3 and ErbB4. Luo C, Xu L, Zheng S, Luo X, Shen J, Jiang H, Liu X, Zhou M. Proteins 59 742-756 (2005)
  15. Her2 activation mechanism reflects evolutionary preservation of asymmetric ectodomain dimers in the human EGFR family. Arkhipov A, Shan Y, Kim ET, Dror RO, Shaw DE. Elife 2 e00708 (2013)
  16. Backbone dynamics of the EGF-like domain of heregulin-alpha. Fairbrother WJ, Liu J, Pisacane PI, Sliwkowski MX, Palmer AG. J. Mol. Biol. 279 1149-1161 (1998)
  17. Classification of protein disulphide-bridge topologies. Mas JM, Aloy P, Martí-Renom MA, Oliva B, de Llorens R, Avilés FX, Querol E. J. Comput. Aided Mol. Des. 15 477-487 (2001)
  18. Neuregulin-1 (Nrg1) is mainly expressed in rat pituitary gonadotroph cells and possibly regulates prolactin (PRL) secretion in a juxtacrine manner. Zhao W, Ren SG. J. Neuroendocrinol. 23 1252-1262 (2011)
  19. Solution structure of betacellulin, a new member of EGF-family ligands. Miura K, Doura H, Aizawa T, Tada H, Seno M, Yamada H, Kawano K. Biochem. Biophys. Res. Commun. 294 1040-1046 (2002)
  20. Solution structure of epiregulin and the effect of its C-terminal domain for receptor binding affinity. Sato K, Nakamura T, Mizuguchi M, Miura K, Tada M, Aizawa T, Gomi T, Miyamoto K, Kawano K. FEBS Lett. 553 232-238 (2003)
  21. Structure of the fifth EGF-like domain of thrombomodulin: An EGF-like domain with a novel disulfide-bonding pattern. Sampoli Benitez BA, Hunter MJ, Meininger DP, Komives EA. J. Mol. Biol. 273 913-926 (1997)
  22. Biological and conformational evaluation of bifunctional compounds for opioid receptor agonists and neurokinin 1 receptor antagonists possessing two penicillamines. Yamamoto T, Nair P, Jacobsen NE, Kulkarni V, Davis P, Ma SW, Navratilova E, Yamamura HI, Vanderah TW, Porreca F, Lai J, Hruby VJ. J. Med. Chem. 53 5491-5501 (2010)
  23. Endogenous expression of Neuregulin-1 (Nrg1) as a potential modulator of prolactin (PRL) secretion in GH3 cells. Zhao W, Shen Y, Ren S. Cell Tissue Res. 344 313-320 (2011)
  24. Structural analysis of an epidermal growth factor/transforming growth factor-alpha chimera with unique ErbB binding specificity. Wingens M, Walma T, van Ingen H, Stortelers C, van Leeuwen JE, van Zoelen EJ, Vuister GW. J. Biol. Chem. 278 39114-39123 (2003)
  25. Differential expression profiling of hypothalamus genes in laying period and ceased period Huoyan geese. Luan X, Cao Z, Li R, Liu M, Hu J. Mol. Biol. Rep. 41 3401-3411 (2014)
  26. HER3 targeting of adenovirus by fiber modification increases infection of breast cancer cells in vitro, but not following intratumoral injection in mice. MacLeod SH, Elgadi MM, Bossi G, Sankar U, Pisio A, Agopsowicz K, Sharon D, Graham FL, Hitt MM. Cancer Gene Ther. 19 888-898 (2012)
  27. Simulation of homology models for the extracellular domains (ECD) of ErbB3, ErbB4 and the ErbB2-ErbB3 complex in their active conformations. Franco-Gonzalez JF, Ramos J, Cruz VL, Martínez-Salazar J. J Mol Model 19 931-941 (2013)
  28. Deviation versus violation plots: A new technique for assessing the self-consistency of NMR data. Adler M. J. Biomol. NMR 8 404-416 (1996)
  29. The solution structure of heregulin-alpha and a N-terminal mutant with suppressed activity. Adler M, Thompson SA. Biochem. Biophys. Res. Commun. 256 156-161 (1999)
  30. Long-acting antibody ligand mimetics for HER4-selective agonism. Shan L, Cook KM, Haskins N, Omar B, Jiang Y, Garcia A, Koksal A, Oganesyan V, Rosenthal K, Wu H, Dall'Acqua WF, Damschroder MM. Sci Rep 10 17257 (2020)


Related citations provided by authors (1)

  1. Identification of Heregulin, a Specific Activator of P185Erbb2. Holmes WE, Sliwkowski MX, Akita RW, Henzel WJ, Lee J, Park JW, Yansura D, Abadi N, Raab H, Lewis GD, al et Science 256 1205- (1992)