1gky Citations

Refined structure of the complex between guanylate kinase and its substrate GMP at 2.0 A resolution.

J Mol Biol 224 1127-41 (1992)
Cited: 84 times
EuropePMC logo PMID: 1314905

Abstract

The crystal structure of guanylate kinase from Saccharomyces cerevisiae complexed with its substrate GMP has been refined at a resolution of 2.0 A. The final crystallographic R-factor is 17.3% in the resolution range 7.0 A to 2.0 A for all reflections of the 100% complete data set. The final model has standard geometry with root-mean-square deviations of 0.016 A in bond lengths and 3.0 in bond angles. It consists of all 186 amino acid residues, the N-terminal acetyl group, the substrate GMP, one sulfate ion and 174 water molecules. Guanylate kinase is structurally related to adenylate kinases and G-proteins with respect to its central beta-sheet with connecting helices and the giant anion hole that binds nucleoside triphosphates. These nucleotides are ATP and GTP for the kinases and GTP for the G-proteins. The chain segment binding the substrate GMP of guanylate kinase differs grossly from the respective part of the adenylate kinases; it has no counterpart in the G-proteins. The binding mode of GMP is described in detail. Probably, the observed structure represents one of several structurally quite different intermediate states of the catalytic cycle.

Reviews - 1gky mentioned but not cited (1)

  1. Overview of protein structural and functional folds. Sun PD, Foster CE, Boyington JC. Curr Protoc Protein Sci Chapter 17 Unit 17.1 (2004)

Articles - 1gky mentioned but not cited (18)

  1. Prediction of functional sites by analysis of sequence and structure conservation. Panchenko AR, Kondrashov F, Bryant S. Protein Sci 13 884-892 (2004)
  2. Assigning folds to the proteins encoded by the genome of Mycoplasma genitalium. Fischer D, Eisenberg D. Proc Natl Acad Sci U S A 94 11929-11934 (1997)
  3. On the molecular discrimination between adenine and guanine by proteins. Nobeli I, Laskowski RA, Valdar WS, Thornton JM. Nucleic Acids Res. 29 4294-4309 (2001)
  4. iPBA: a tool for protein structure comparison using sequence alignment strategies. Gelly JC, Joseph AP, Srinivasan N, de Brevern AG. Nucleic Acids Res. 39 W18-23 (2011)
  5. Predicting the accuracy of protein-ligand docking on homology models. Bordogna A, Pandini A, Bonati L. J Comput Chem 32 81-98 (2011)
  6. Letter Protein coding palindromes are a unique but recurrent feature in Rickettsia. Ogata H, Audic S, Abergel C, Fournier PE, Claverie JM. Genome Res 12 808-816 (2002)
  7. BCL::Score--knowledge based energy potentials for ranking protein models represented by idealized secondary structure elements. Woetzel N, Karakaş M, Staritzbichler R, Müller R, Weiner BE, Meiler J. PLoS One 7 e49242 (2012)
  8. Application of MM/PBSA colony free energy to loop decoy discrimination: toward correlation between energy and root mean square deviation. Fogolari F, Tosatto SC. Protein Sci 14 889-901 (2005)
  9. Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon. Chimnaronk S, Forouhar F, Sakai J, Yao M, Tron CM, Atta M, Fontecave M, Hunt JF, Tanaka I. Biochemistry 48 5057-5065 (2009)
  10. Amino acid interaction preferences in proteins. Jha AN, Vishveshwara S, Banavar JR. Protein Sci 19 603-616 (2010)
  11. Evolution of an ancient protein function involved in organized multicellularity in animals. Anderson DP, Whitney DS, Hanson-Smith V, Woznica A, Campodonico-Burnett W, Volkman BF, King N, Thornton JW, Prehoda KE. Elife 5 e10147 (2016)
  12. Predicting protein function from structure: unique structural features of proteases. Stawiski EW, Baucom AE, Lohr SC, Gregoret LM. Proc. Natl. Acad. Sci. U.S.A. 97 3954-3958 (2000)
  13. Identification of essential amino acids in the Azorhizobium caulinodans fucosyltransferase NodZ. Chazalet V, Uehara K, Geremia RA, Breton C. J. Bacteriol. 183 7067-7075 (2001)
  14. Structure of tRNA dimethylallyltransferase: RNA modification through a channel. Xie W, Zhou C, Huang RH. J. Mol. Biol. 367 872-881 (2007)
  15. A knowledge-based structure-discriminating function that requires only main-chain atom coordinates. Makino Y, Itoh N. BMC Struct. Biol. 8 46 (2008)
  16. 3dLOGO: a web server for the identification, analysis and use of conserved protein substructures. Via A, Peluso D, Gherardini PF, de Rinaldis E, Colombo T, Ausiello G, Helmer-Citterich M. Nucleic Acids Res. 35 W416-9 (2007)
  17. Splitting statistical potentials into meaningful scoring functions: testing the prediction of near-native structures from decoy conformations. Aloy P, Oliva B. BMC Struct. Biol. 9 71 (2009)
  18. Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics. Smith RD, Carlson HA. J Chem Inf Model 61 1287-1299 (2021)


Reviews citing this publication (3)

Articles citing this publication (62)

  1. Dlg protein is required for junction structure, cell polarity, and proliferation control in Drosophila epithelia. Woods DF, Hough C, Peel D, Callaini G, Bryant PJ. J. Cell Biol. 134 1469-1482 (1996)
  2. Cloning and characterization of hdlg: the human homologue of the Drosophila discs large tumor suppressor binds to protein 4.1. Lue RA, Marfatia SM, Branton D, Chishti AH. Proc. Natl. Acad. Sci. U.S.A. 91 9818-9822 (1994)
  3. Human CASK/LIN-2 binds syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cells. Cohen AR, Woods DF, Marfatia SM, Walther Z, Chishti AH, Anderson JM. J. Cell Biol. 142 129-138 (1998)
  4. Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Müller CW, Schlauderer GJ, Reinstein J, Schulz GE. Structure 4 147-156 (1996)
  5. Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. Maragakis P, Karplus M. J. Mol. Biol. 352 807-822 (2005)
  6. Structural analysis of the voltage-dependent calcium channel beta subunit functional core and its complex with the alpha 1 interaction domain. Opatowsky Y, Chen CC, Campbell KP, Hirsch JA. Neuron 42 387-399 (2004)
  7. Evolution and classification of P-loop kinases and related proteins. Leipe DD, Koonin EV, Aravind L. J. Mol. Biol. 333 781-815 (2003)
  8. Movie of the structural changes during a catalytic cycle of nucleoside monophosphate kinases. Vonrhein C, Schlauderer GJ, Schulz GE. Structure 3 483-490 (1995)
  9. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Smith CA, Rayment I. Biophys. J. 70 1590-1602 (1996)
  10. Structure of the SH3-guanylate kinase module from PSD-95 suggests a mechanism for regulated assembly of MAGUK scaffolding proteins. McGee AW, Dakoji SR, Olsen O, Bredt DS, Lim WA, Prehoda KE. Mol. Cell 8 1291-1301 (2001)
  11. Letter Crystal structure of estrogen sulphotransferase. Kakuta Y, Pedersen LG, Carter CW, Negishi M, Pedersen LC. Nat. Struct. Biol. 4 904-908 (1997)
  12. Modelling of a voltage-dependent Ca2+ channel beta subunit as a basis for understanding its functional properties. Hanlon MR, Berrow NS, Dolphin AC, Wallace BA. FEBS Lett. 445 366-370 (1999)
  13. Intramolecular interactions regulate SAP97 binding to GKAP. Wu H, Reissner C, Kuhlendahl S, Coblentz B, Reuver S, Kindler S, Gundelfinger ED, Garner CC. EMBO J. 19 5740-5751 (2000)
  14. DLG5 variants do not influence susceptibility to inflammatory bowel disease in the Scottish population. Noble CL, Nimmo ER, Drummond H, Smith L, Arnott ID, Satsangi J. Gut 54 1416-1420 (2005)
  15. Crystal structure of unligated guanylate kinase from yeast reveals GMP-induced conformational changes. Blaszczyk J, Li Y, Yan H, Ji X. J. Mol. Biol. 307 247-257 (2001)
  16. Structural characterization of the closed conformation of mouse guanylate kinase. Sekulic N, Shuvalova L, Spangenberg O, Konrad M, Lavie A. J Biol Chem 277 30236-30243 (2002)
  17. Molecular evolution of the MAGUK family in metazoan genomes. te Velthuis AJ, Admiraal JF, Bagowski CP. BMC Evol. Biol. 7 129 (2007)
  18. Nucleotide binding by the synapse associated protein SAP90. Kistner U, Garner CC, Linial M. FEBS Lett. 359 159-163 (1995)
  19. Ancient divergence of long and short isoforms of adenylate kinase: molecular evolution of the nucleoside monophosphate kinase family. Fukami-Kobayashi K, Nosaka M, Nakazawa A, Go M. FEBS Lett. 385 214-220 (1996)
  20. The structure of a trimeric archaeal adenylate kinase. Vonrhein C, Bönisch H, Schäfer G, Schulz GE. J. Mol. Biol. 282 167-179 (1998)
  21. Structures of escherichia coli CMP kinase alone and in complex with CDP: a new fold of the nucleoside monophosphate binding domain and insights into cytosine nucleotide specificity. Briozzo P, Golinelli-Pimpaneau B, Gilles AM, Gaucher JF, Burlacu-Miron S, Sakamoto H, Janin J, Bârzu O. Structure 6 1517-1527 (1998)
  22. Hydration in drug design. 2. Influence of local site surface shape on water binding. Poornima CS, Dean PM. J. Comput. Aided Mol. Des. 9 513-520 (1995)
  23. Identification of a novel human homolog of the Drosophila dlg, P-dlg, specifically expressed in the gland tissues and interacting with p55. Nakamura H, Sudo T, Tsuiki H, Miyake H, Morisaki T, Sasaki J, Masuko N, Kochi M, Ushio Y, Saya H. FEBS Lett. 433 63-67 (1998)
  24. The structure of bovine mitochondrial adenylate kinase: comparison with isoenzymes in other compartments. Schlauderer GJ, Schulz GE. Protein Sci. 5 434-441 (1996)
  25. Structure-based identification and clustering of protein families and superfamilies. Rufino SD, Blundell TL. J. Comput. Aided Mol. Des. 8 5-27 (1994)
  26. On the binding of ATP to the autophosphorylating protein, Ptk, of the bacterium Acinetobacter johnsonii. Doublet P, Vincent C, Grangeasse C, Cozzone AJ, Duclos B. FEBS Lett. 445 137-143 (1999)
  27. The cloning, genomic organization and tissue expression profile of the human DLG5 gene. Shah G, Brugada R, Gonzalez O, Czernuszewicz G, Gibbs RA, Bachinski L, Roberts R. BMC Genomics 3 6 (2002)
  28. Crystal structure of dephospho-coenzyme A kinase from Haemophilus influenzae. Obmolova G, Teplyakov A, Bonander N, Eisenstein E, Howard AJ, Gilliland GL. J. Struct. Biol. 136 119-125 (2001)
  29. Detection of altered protein conformations in living cells. Raquet X, Eckert JH, Müller S, Johnsson N. J. Mol. Biol. 305 927-938 (2001)
  30. Calorimetric and crystallographic analysis of the oligomeric structure of Escherichia coli GMP kinase. Hible G, Renault L, Schaeffer F, Christova P, Zoe Radulescu A, Evrin C, Gilles AM, Cherfils J. J. Mol. Biol. 352 1044-1059 (2005)
  31. Crystal structure of bacteriophage T4 deoxynucleotide kinase with its substrates dGMP and ATP. Teplyakov A, Sebastiao P, Obmolova G, Perrakis A, Brush GS, Bessman MJ, Wilson KS. EMBO J. 15 3487-3497 (1996)
  32. Functional properties of the alternative NADH:ubiquinone oxidoreductase from E. coli through comparative 3-D modelling. Schmid R, Gerloff DL. FEBS Lett. 578 163-168 (2004)
  33. Unique GMP-binding site in Mycobacterium tuberculosis guanosine monophosphate kinase. Hible G, Christova P, Renault L, Seclaman E, Thompson A, Girard E, Munier-Lehmann H, Cherfils J. Proteins 62 489-500 (2006)
  34. Enzymes of the cyclic GMP metabolism in bovine retina. I. Cloning and expression of the gene for guanylate kinase. Gaidarov IO, Suslov ON, Abdulaev NG. FEBS Lett. 335 81-84 (1993)
  35. Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. Francis BR. J. Mol. Evol. 77 134-158 (2013)
  36. Functional modes and residue flexibility control the anisotropic response of guanylate kinase to mechanical stress. Sacquin-Mora S, Delalande O, Baaden M. Biophys. J. 99 3412-3419 (2010)
  37. Crystal structure of human nicotinamide riboside kinase. Khan JA, Xiang S, Tong L. Structure 15 1005-1013 (2007)
  38. Molecular modeling and dynamics studies of cytidylate kinase from Mycobacterium tuberculosis H37Rv. Caceres RA, Macedo Timmers LF, Vivan AL, Schneider CZ, Basso LA, De Azevedo WF, Santos DS. J Mol Model 14 427-434 (2008)
  39. Purification and sequence determination of guanylate kinase from pig brain. Zschocke PD, Schiltz E, Schulz GE. Eur. J. Biochem. 213 263-269 (1993)
  40. Secondary structure of P-glycoprotein investigated by circular dichroism and amino acid sequence analysis. Dong M, Ladavière L, Penin F, Deléage G, Baggetto LG. Biochim. Biophys. Acta 1371 317-334 (1998)
  41. The inducers 1,3-diaminopropane and spermidine cause the reprogramming of metabolism in Penicillium chrysogenum, leading to multiple vesicles and penicillin overproduction. García-Estrada C, Barreiro C, Jami MS, Martín-González J, Martín JF. J Proteomics 85 129-159 (2013)
  42. A mutation in the essential gene gmk (encoding guanlyate kinase) generates a requirement for adenine at low temperature in Salmonella enterica. Beck BJ, Huelsmeyer M, Paul S, Downs DM. J. Bacteriol. 185 6732-6735 (2003)
  43. Cloning of the guanylate kinase homologues AGK-1 and AGK-2 from Arabidopsis thaliana and characterization of AGK-1. Kumar V, Spangenberg O, Konrad M. Eur. J. Biochem. 267 606-615 (2000)
  44. Interaction of guanine phosphonomethoxyalkyl derivatives with GMP kinase isoenzymes. Krejcová R, Horská K, Votruba I, Holý A. Biochem. Pharmacol. 60 1907-1913 (2000)
  45. Primary structure of maize chloroplast adenylate kinase. Schiltz E, Burger S, Grafmüller R, Deppert WR, Haehnel W, Wagner E. Eur. J. Biochem. 222 949-954 (1994)
  46. Protein-binding domains of the tight junction protein, ZO-2, are highly conserved between avian and mammalian species. Collins JR, Rizzolo LJ. Biochem. Biophys. Res. Commun. 252 617-622 (1998)
  47. The mouse guanylate kinase double mutant E72Q/D103N is a functional adenylate kinase. Stolworthy TS, Black ME. Protein Eng. 14 903-909 (2001)
  48. Letter dlg-R proteins: modified guanylate kinases. Koonin EV, Woods DF, Bryant PJ. Nat. Genet. 2 256-257 (1992)
  49. Crystal structures of GMP kinase in complex with ganciclovir monophosphate and Ap5G. Hible G, Daalova P, Gilles AM, Cherfils J. Biochimie 88 1157-1164 (2006)
  50. LRGUK1 is part of a multiprotein complex required for manchette function and male fertility. Okuda H, DeBoer K, O'Connor AE, Merriner DJ, Jamsai D, O'Bryan MK. FASEB J. 31 1141-1152 (2017)
  51. Liposomes for microcompartmentation of enzymes and their influence on catalytic activity. Wichmann C, Naumann PT, Spangenberg O, Konrad M, Mayer F, Hoppert M. Biochem. Biophys. Res. Commun. 310 1104-1110 (2003)
  52. Mutations at serine 37 in mouse guanylate kinase confer resistance to 6-thioguanine. Ardiani A, Goyke A, Black ME. Protein Eng. Des. Sel. 22 225-232 (2009)
  53. Enzyme closure and nucleotide binding structurally lock guanylate kinase. Delalande O, Sacquin-Mora S, Baaden M. Biophys. J. 101 1440-1449 (2011)
  54. Functional repertoire, molecular pathways and diseases associated with 3D domain swapping in the human proteome. Shameer K, Sowdhamini R. J Clin Bioinforma 2 8 (2012)
  55. ATP interacts with the CPVT mutation-associated central domain of the cardiac ryanodine receptor. Blayney L, Beck K, MacDonald E, D'Cruz L, Nomikos M, Griffiths J, Thanassoulas A, Nounesis G, Lai FA. Biochim. Biophys. Acta 1830 4426-4432 (2013)
  56. Temperature effects on the allosteric transition of ATP sulfurylase from Penicillium chrysogenum. Medina DC, Hanna E, MacRae IJ, Fisher AJ, Segel IH. Arch. Biochem. Biophys. 393 51-60 (2001)
  57. Cloning and sequence analysis of lily and tobacco guanylate kinases. Kumar V. Mol. Biol. Rep. 27 45-49 (2000)
  58. Differential protein expression of kidney tissue in the scallop Patinopecten yessoensis under acute cadmium stress. Huang X, Fang CW, Guo YW, Huang HQ. Ecotoxicol. Environ. Saf. 74 1232-1237 (2011)
  59. Productive versus unproductive nucleotide binding in yeast guanylate kinase mutants: comparison of R41M with K14M by proton two dimensional transferred NOESY. Ray BD, Scott J, Yan H, Rao BD. Biochemistry 48 5532-5540 (2009)
  60. 1H, 13C and 15N resonance assignment of human guanylate kinase. Khan N, Ban D, Trigo-Mourino P, Carneiro MG, Konrad M, Lee D, Sabo TM. Biomol NMR Assign 12 11-14 (2018)
  61. Association of CARD14 Single-Nucleotide Polymorphisms with Psoriasis. Suleman S, Chhabra G, Raza R, Hamid A, Qureshi JA, Ahmad N. Int J Mol Sci 23 9336 (2022)
  62. Solution structure and functional investigation of human guanylate kinase reveals allosteric networking and a crucial role for the enzyme in cancer. Khan N, Shah PP, Ban D, Trigo-Mouriño P, Carneiro MG, DeLeeuw L, Dean WL, Trent JO, Beverly LJ, Konrad M, Lee D, Sabo TM. J Biol Chem 294 11920-11933 (2019)


Related citations provided by authors (2)