1gig Citations

Refined three-dimensional structure of the Fab fragment of a murine IgGl,lambda antibody.

Acta Crystallogr D Biol Crystallogr 50 768-77 (1994)
Cited: 39 times
EuropePMC logo PMID: 15299376

Abstract

We report the cDNA sequence determination and the crystal structure of the Fab fragment of a murine IgG1,lambda antibody (HC19), specific for an influenza virus hemagglutinin. The HC19 Fab-fragment structure has been refined; the crystallographic R-factor is 19.5% at 2.3 A resolution. We have compared the conformation of HC19 complementarity determining regions (CDRs) with those of CDR loops of Fab structures available from the Protein Data Bank. These loops were chosen based on the identity of key residues, following the canonical-structure approach; four CDRs have a main-chain conformation very similar to the canonical structure that had been identified. HC19 L1 CDR adopts a conformation clearly distinct from all L1 CDRs that belong to a chain of a different class or origin; this is determined by the nature of a few residues at positions in the sequence different from those of key residues in other light chains. This canonical structure should be representative of most murine lambda-class light chains, as inferred from the very high sequence homologies of these polypeptides.

Articles - 1gig mentioned but not cited (22)

  1. Protein-protein docking benchmark version 3.0. Hwang H, Pierce B, Mintseris J, Janin J, Weng Z. Proteins 73 705-709 (2008)
  2. Influenza Antigen Engineering Focuses Immune Responses to a Subdominant but Broadly Protective Viral Epitope. Bajic G, Maron MJ, Adachi Y, Onodera T, McCarthy KR, McGee CE, Sempowski GD, Takahashi Y, Kelsoe G, Kuraoka M, Schmidt AG. Cell Host Microbe 25 827-835.e6 (2019)
  3. Crystal structure of an anti-carbohydrate antibody directed against Vibrio cholerae O1 in complex with antigen: molecular basis for serotype specificity. Villeneuve S, Souchon H, Riottot MM, Mazie JC, Lei P, Glaudemans CP, Kovác P, Fournier JM, Alzari PM. Proc. Natl. Acad. Sci. U.S.A. 97 8433-8438 (2000)
  4. Postentry neutralization of adenovirus type 5 by an antihexon antibody. Varghese R, Mikyas Y, Stewart PL, Ralston R. J. Virol. 78 12320-12332 (2004)
  5. Structural and pharmacological characterization of novel potent and selective monoclonal antibody antagonists of glucose-dependent insulinotropic polypeptide receptor. Ravn P, Madhurantakam C, Kunze S, Matthews E, Priest C, O'Brien S, Collinson A, Papworth M, Fritsch-Fredin M, Jermutus L, Benthem L, Gruetter M, Jackson RH. J. Biol. Chem. 288 19760-19772 (2013)
  6. A series of Fas receptor agonist antibodies that demonstrate an inverse correlation between affinity and potency. Chodorge M, Züger S, Stirnimann C, Briand C, Jermutus L, Grütter MG, Minter RR. Cell Death Differ. 19 1187-1195 (2012)
  7. The structural basis of repertoire shift in an immune response to phosphocholine. Brown M, Schumacher MA, Wiens GD, Brennan RG, Rittenberg MB. J. Exp. Med. 191 2101-2112 (2000)
  8. Accurate Structure Prediction of CDR H3 Loops Enabled by a Novel Structure-Based C-Terminal Constraint. Weitzner BD, Gray JJ. J Immunol 198 505-515 (2017)
  9. Scoring predictive models using a reduced representation of proteins: model and energy definition. Fogolari F, Pieri L, Dovier A, Bortolussi L, Giugliarelli G, Corazza A, Esposito G, Viglino P. BMC Struct Biol 7 15 (2007)
  10. Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies. Townsend S, Fennell BJ, Apgar JR, Lambert M, McDonnell B, Grant J, Wade J, Franklin E, Foy N, Ní Shúilleabháin D, Fields C, Darmanin-Sheehan A, King A, Paulsen JE, Hickling TP, Tchistiakova L, Cunningham O, Finlay WJ. Proc. Natl. Acad. Sci. U.S.A. 112 15354-15359 (2015)
  11. Structural mechanism of SARS-CoV-2 neutralization by two murine antibodies targeting the RBD. Errico JM, Zhao H, Chen RE, Liu Z, Case JB, Ma M, Schmitz AJ, Rau MJ, Fitzpatrick JAJ, Shi PY, Diamond MS, Whelan SPJ, Ellebedy AH, Fremont DH. Cell Rep 37 109881 (2021)
  12. A relation between the principal axes of inertia and ligand binding. Foote J, Raman A. Proc. Natl. Acad. Sci. U.S.A. 97 978-983 (2000)
  13. Structure-based cross-docking analysis of antibody-antigen interactions. Kilambi KP, Gray JJ. Sci Rep 7 8145 (2017)
  14. A knowledge-based structure-discriminating function that requires only main-chain atom coordinates. Makino Y, Itoh N. BMC Struct. Biol. 8 46 (2008)
  15. All-Atom Four-Body Knowledge-Based Statistical Potentials to Distinguish Native Protein Structures from Nonnative Folds. Masso M. Biomed Res Int 2017 5760612 (2017)
  16. Mapping paratope on antithrombotic antibody 6B4 to epitope on platelet glycoprotein Ibalpha via molecular dynamic simulations. Fang X, Fang Y, Liu L, Liu G, Wu J. PLoS ONE 7 e42263 (2012)
  17. cDNA sequence and Fab crystal structure of HL4E10, a hamster IgG lambda light chain antibody stimulatory for γδ T cells. Verdino P, Witherden DA, Podshivalova K, Rieder SE, Havran WL, Wilson IA. PLoS ONE 6 e19828 (2011)
  18. Using molecular principal axes for structural comparison: determining the tertiary changes of a FAB antibody domain induced by antigenic binding. Silverman BD. BMC Struct. Biol. 7 77 (2007)
  19. ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins. Abanades B, Wong WK, Boyles F, Georges G, Bujotzek A, Deane CM. Commun Biol 6 575 (2023)
  20. Nonnative Energetic Frustrations in Protein Folding at Residual Level: A Simulation Study of Homologous Immunoglobulin-like β-Sandwich Proteins. Sun Y, Ding F, Ming D. Int J Mol Sci 19 (2018)
  21. Protein-Protein Docking Using EMAP in CHARMM and Support Vector Machine: Application to Ab/Ag Complexes. Wright JD, Sargsyan K, Wu X, Brooks BR, Lim C. J Chem Theory Comput 9 4186-4194 (2013)
  22. The electrostatic profile of consecutive Cβ atoms applied to protein structure quality assessment. Chakraborty S, Venkatramani R, Rao BJ, Asgeirsson B, Dandekar AM. F1000Res 2 243 (2013)


Reviews citing this publication (1)

  1. Structural basis of influenza virus neutralization. Han T, Marasco WA. Ann. N. Y. Acad. Sci. 1217 178-190 (2011)

Articles citing this publication (16)

  1. Standard conformations for the canonical structures of immunoglobulins. Al-Lazikani B, Lesk AM, Chothia C. J. Mol. Biol. 273 927-948 (1997)
  2. Conformations of the third hypervariable region in the VH domain of immunoglobulins. Morea V, Tramontano A, Rustici M, Chothia C, Lesk AM. J. Mol. Biol. 275 269-294 (1998)
  3. Mechanism of neutralization of influenza virus infectivity by antibodies. Knossow M, Gaudier M, Douglas A, Barrère B, Bizebard T, Barbey C, Gigant B, Skehel JJ. Virology 302 294-298 (2002)
  4. Antigen distortion allows influenza virus to escape neutralization. Fleury D, Wharton SA, Skehel JJ, Knossow M, Bizebard T. Nat. Struct. Biol. 5 119-123 (1998)
  5. The structure of an entire noncovalent immunoglobulin kappa light-chain dimer (Bence-Jones protein) reveals a weak and unusual constant domains association. Roussel A, Spinelli S, Déret S, Navaza J, Aucouturier P, Cambillau C. Eur. J. Biochem. 260 192-199 (1999)
  6. Highly specific anti-estradiol antibodies: structural characterisation and binding diversity. Monnet C, Bettsworth F, Stura EA, Le Du MH, Ménez R, Derrien L, Zinn-Justin S, Gilquin B, Sibaï G, Battail-Poirot N, Jolivet M, Ménez A, Arnaud M, Ducancel F, Charbonnier JB. J. Mol. Biol. 315 699-712 (2002)
  7. Human monoclonal antibody stability and activity at vaginal pH. Castle PE, Karp DA, Zeitlin L, García-Moreno E B, Moench TR, Whaley KJ, Cone RA. J. Reprod. Immunol. 56 61-76 (2002)
  8. Functional humanization of an anti-CD16 Fab fragment: obstacles of switching from murine {lambda} to human {lambda} or {kappa} light chains. Schlapschy M, Fogarasi M, Gruber H, Gresch O, Schäfer C, Aguib Y, Skerra A. Protein Eng. Des. Sel. 22 175-188 (2009)
  9. Structural insight into how an anti-idiotypic antibody against D3H44 (anti-tissue factor antibody) restores normal coagulation. Eigenbrot C, Meng YG, Krishnamurthy R, Lipari MT, Presta L, Devaux B, Wong T, Moran P, Bullens S, Kirchhofer D. J. Mol. Biol. 331 433-446 (2003)
  10. Anti-Hemagglutinin Antibody Derived Lead Peptides for Inhibitors of Influenza Virus Binding. Memczak H, Lauster D, Kar P, Di Lella S, Volkmer R, Knecht V, Herrmann A, Ehrentreich-Förster E, Bier FF, Stöcklein WF. PLoS ONE 11 e0159074 (2016)
  11. Near-native protein loop sampling using nonparametric density estimation accommodating sparcity. Joo H, Chavan AG, Day R, Lennox KP, Sukhanov P, Dahl DB, Vannucci M, Tsai J. PLoS Comput. Biol. 7 e1002234 (2011)
  12. Dissection of Epitope-Specific Mechanisms of Neutralization of Influenza Virus by Intact IgG and Fab Fragments. Williams JA, Gui L, Hom N, Mileant A, Lee KK. J. Virol. 92 (2018)
  13. Altering the Immunogenicity of Hemagglutinin Immunogens by Hyperglycosylation and Disulfide Stabilization. Thornlow DN, Macintyre AN, Oguin TH, Karlsson AB, Stover EL, Lynch HE, Sempowski GD, Schmidt AG. Front Immunol 12 737973 (2021)
  14. Recombinant shark natural antibodies to thyroglobulin. Schluter SF, Jensen I, Ramsland PA, Marchalonis JJ. J. Mol. Recognit. 18 404-412 (2005)
  15. Functional characterization of two anti-estradiol antibodies as deduced from modelling and site-directed mutagenesis experiments. Bettsworth F, Monnet C, Watelet B, Battail-Poirot N, Gilquin B, Jolivet M, Menez A, Arnaud M, Ducancel F. J. Mol. Recognit. 14 99-109 (2001)
  16. A cell-based multiplex immunoassay platform using fluorescent protein-barcoded reporter cell lines. Song S, Manook M, Kwun J, Jackson AM, Knechtle SJ, Kelsoe G. Commun Biol 4 1338 (2021)