1gdh Citations

Crystal structure of a NAD-dependent D-glycerate dehydrogenase at 2.4 A resolution.

J Mol Biol 236 1123-40 (1994)
Cited: 70 times
EuropePMC logo PMID: 8120891

Abstract

D-Glycerate dehydrogenase (GDH) catalyzes the NADH-linked reduction of hydroxypyruvate to D-glycerate. GDH is a member of a family of NAD-dependent dehydrogenases that is characterized by a specificity for the D-isomer of the hydroxyacid substrate. The crystal structure of the apoenzyme form of GDH from Hyphomicrobium methylovorum has been determined by the method of isomorphous replacement and refined at 2.4 A resolution using a restrained least-squares method. The crystallographic R-factor is 19.4% for all 24,553 measured reflections between 10.0 and 2.4 A resolution. The GDH molecule is a symmetrical dimer composed of subunits of molecular mass 38,000, and shares significant structural homology with another NAD-dependent enzyme, formate dehydrogenase. The GDH subunit consists of two structurally similar domains that are approximately related to each other by 2-fold symmetry. The domains are separated by a deep cleft that forms the putative NAD and substrate binding sites. One of the domains has been identified as the NAD-binding domain based on its close structural similarity to the NAD-binding domains of other NAD-dependent dehydrogenases. The topology of the second domain is different from that found in the various catalytic domains of other dehydrogenases. A model of a ternary complex of GDH has been built in which putative catalytic residues are identified based on sequence homology between the D-isomer specific dehydrogenases. A structural comparison between GDH and L-lactate dehydrogenase indicates a convergence of active site residues and geometries for these two enzymes. The reactions catalyzed are chemically equivalent but of opposing stereospecificity. A hypothesis is presented to explain how the two enzymes may exploit the same coenzyme stereochemistry and a similar spatial arrangement of catalytic residues to carry out reactions that proceed to opposite enantiomers.

Reviews - 1gdh mentioned but not cited (1)

  1. Structural genomics: a pipeline for providing structures for the biologist. Chance MR, Bresnick AR, Burley SK, Jiang JS, Lima CD, Sali A, Almo SC, Bonanno JB, Buglino JA, Boulton S, Chen H, Eswar N, He G, Huang R, Ilyin V, McMahan L, Pieper U, Ray S, Vidal M, Wang LK. Protein Sci 11 723-738 (2002)

Articles - 1gdh mentioned but not cited (4)

  1. Comparing interfacial dynamics in protein-protein complexes: an elastic network approach. Zen A, Micheletti C, Keskin O, Nussinov R. BMC Struct Biol 10 26 (2010)
  2. Crystal structures of phosphite dehydrogenase provide insights into nicotinamide cofactor regeneration. Zou Y, Zhang H, Brunzelle JS, Johannes TW, Woodyer R, Hung JE, Nair N, van der Donk WA, Zhao H, Nair SK. Biochemistry 51 4263-4270 (2012)
  3. An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera. Jia Y, Burbidge CA, Sweetman C, Schutz E, Soole K, Jenkins C, Hancock RD, Bruning JB, Ford CM. J Biol Chem 294 15932-15946 (2019)
  4. Contribution to the prediction of the fold code: application to immunoglobulin and flavodoxin cases. Banach M, Prudhomme N, Carpentier M, Duprat E, Papandreou N, Kalinowska B, Chomilier J, Roterman I. PLoS One 10 e0125098 (2015)


Reviews citing this publication (7)

  1. Evolution of rosmarinic acid biosynthesis. Petersen M, Abdullah Y, Benner J, Eberle D, Gehlen K, Hücherig S, Janiak V, Kim KH, Sander M, Weitzel C, Wolters S. Phytochemistry 70 1663-1679 (2009)
  2. L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Tabatabaie L, Klomp LW, Berger R, de Koning TJ. Mol Genet Metab 99 256-262 (2010)
  3. Structural trees for protein superfamilies. Efimov AV. Proteins 28 241-260 (1997)
  4. How nature deals with stereoisomers. Lamzin VS, Dauter Z, Wilson KS. Curr Opin Struct Biol 5 830-836 (1995)
  5. Mechanism and applications of phosphite dehydrogenase. Relyea HA, van der Donk WA. Bioorg Chem 33 171-189 (2005)
  6. A new family of NAD(P)H-dependent oxidoreductases distinct from conventional Rossmann-fold proteins. Muramatsu H, Mihara H, Goto M, Miyahara I, Hirotsu K, Kurihara T, Esaki N. J Biosci Bioeng 99 541-547 (2005)
  7. 3-Phosphoglycerate dehydrogenase: a potential target for cancer treatment. Li M, Wu C, Yang Y, Zheng M, Yu S, Wang J, Chen L, Li H. Cell Oncol (Dordr) 44 541-556 (2021)

Articles citing this publication (58)

  1. RIBEYE, a component of synaptic ribbons: a protein's journey through evolution provides insight into synaptic ribbon function. Schmitz F, Königstorfer A, Südhof TC. Neuron 28 857-872 (2000)
  2. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Schaeper U, Boyd JM, Verma S, Uhlmann E, Subramanian T, Chinnadurai G. Proc Natl Acad Sci U S A 92 10467-10471 (1995)
  3. Cloning and characterization of mCtBP2, a co-repressor that associates with basic Krüppel-like factor and other mammalian transcriptional regulators. Turner J, Crossley M. EMBO J 17 5129-5140 (1998)
  4. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Kumar V, Carlson JE, Ohgi KA, Edwards TA, Rose DW, Escalante CR, Rosenfeld MG, Aggarwal AK. Mol Cell 10 857-869 (2002)
  5. The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase. Schuller DJ, Grant GA, Banaszak LJ. Nat Struct Biol 2 69-76 (1995)
  6. CtBP/BARS: a dual-function protein involved in transcription co-repression and Golgi membrane fission. Nardini M, Spanò S, Cericola C, Pesce A, Massaro A, Millo E, Luini A, Corda D, Bolognesi M. EMBO J 22 3122-3130 (2003)
  7. Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength. Turner MA, Yuan CS, Borchardt RT, Hershfield MS, Smith GD, Howell PL. Nat Struct Biol 5 369-376 (1998)
  8. Crystal structure of human mitochondrial NAD(P)(+)-dependent malic enzyme: a new class of oxidative decarboxylases. Xu Y, Bhargava G, Wu H, Loeber G, Tong L. Structure 7 877-889 (1999)
  9. A novel C-terminal binding protein (CTBP2) is closely related to CTBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Katsanis N, Fisher EM. Genomics 47 294-299 (1998)
  10. Crystal structure of a ternary complex of D-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei, NAD+ and 2-oxoisocaproate at 1.9 A resolution. Dengler U, Niefind K, Kiess M, Schomburg D. J Mol Biol 267 640-660 (1997)
  11. Analysis of the structure and substrate binding of Phormidium lapideum alanine dehydrogenase. Baker PJ, Sawa Y, Shibata H, Sedelnikova SE, Rice DW. Nat Struct Biol 5 561-567 (1998)
  12. A model for the regulation of D-3-phosphoglycerate dehydrogenase, a Vmax-type allosteric enzyme. Grant GA, Schuller DJ, Banaszak LJ. Protein Sci 5 34-41 (1996)
  13. Letter Did tRNA synthetase classes arise on opposite strands of the same gene? Carter CW, Duax WL. Mol Cell 10 705-708 (2002)
  14. The synaptic ribbon is a site of phosphatidic acid generation in ribbon synapses. Schwarz K, Natarajan S, Kassas N, Vitale N, Schmitz F. J Neurosci 31 15996-16011 (2011)
  15. Use of conserved randomly amplified polymorphic DNA (RAPD) fragments and RAPD pattern for characterization of Lactobacillus fermentum in Ghanaian fermented maize dough. Hayford AE, Petersen A, Vogensen FK, Jakobsen M. Appl Environ Microbiol 65 3213-3221 (1999)
  16. Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. Booth MP, Conners R, Rumsby G, Brady RL. J Mol Biol 360 178-189 (2006)
  17. Conversion of Lactobacillus pentosus D-lactate dehydrogenase to a D-hydroxyisocaproate dehydrogenase through a single amino acid replacement. Tokuda C, Ishikura Y, Shigematsu M, Mutoh H, Tsuzuki S, Nakahira Y, Tamura Y, Shinoda T, Arai K, Takahashi O, Taguchi H. J Bacteriol 185 5023-5026 (2003)
  18. Insights into substrate binding by D-2-ketoacid dehydrogenases from the structure of Lactobacillus pentosus D-lactate dehydrogenase. Stoll VS, Kimber MS, Pai EF. Structure 4 437-447 (1996)
  19. Site-directed mutagenesis of the formate dehydrogenase active centre: role of the His332-Gln313 pair in enzyme catalysis. Tishkov VI, Matorin AD, Rojkova AM, Fedorchuk VV, Savitsky PA, Dementieva LA, Lamzin VS, Mezentzev AV, Popov VO. FEBS Lett 390 104-108 (1996)
  20. Molecular and biochemical characterization of D-phosphoglycerate dehydrogenase from Entamoeba histolytica. A unique enteric protozoan parasite that possesses both phosphorylated and nonphosphorylated serine metabolic pathways. Ali V, Hashimoto T, Shigeta Y, Nozaki T. Eur J Biochem 271 2670-2681 (2004)
  21. Purification, cloning and functional expression of hydroxyphenylpyruvate reductase involved in rosmarinic acid biosynthesis in cell cultures of Coleus blumei. Kim KH, Janiak V, Petersen M. Plant Mol Biol 54 311-323 (2004)
  22. Nicotinamide adenine dinucleotide-dependent binding of the neuronal Ca2+ sensor protein GCAP2 to photoreceptor synaptic ribbons. Venkatesan JK, Natarajan S, Schwarz K, Mayer SI, Alpadi K, Magupalli VG, Sung CH, Schmitz F. J Neurosci 30 6559-6576 (2010)
  23. Crystal structure and active site location of N-(1-D-carboxylethyl)-L-norvaline dehydrogenase. Britton KL, Asano Y, Rice DW. Nat Struct Biol 5 593-601 (1998)
  24. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes. Fan F, Plapp BV. Arch Biochem Biophys 367 240-249 (1999)
  25. Two forms of NAD-dependent D-mandelate dehydrogenase in Enterococcus faecalis IAM 10071. Tamura Y, Ohkubo A, Iwai S, Wada Y, Shinoda T, Arai K, Mineki S, Iida M, Taguchi H. Appl Environ Microbiol 68 947-951 (2002)
  26. Knowledge-based modeling of the D-lactate dehydrogenase three-dimensional structure. Vinals C, De Bolle X, Depiereux E, Feytmans E. Proteins 21 307-318 (1995)
  27. Conserved supersecondary structural motif in NAD-dependent dehydrogenases. Kutzenko AS, Lamzin VS, Popov VO. FEBS Lett 423 105-109 (1998)
  28. A new family of D-2-hydroxyacid dehydrogenases that comprises D-mandelate dehydrogenases and 2-ketopantoate reductases. Wada Y, Iwai S, Tamura Y, Ando T, Shinoda T, Arai K, Taguchi H. Biosci Biotechnol Biochem 72 1087-1094 (2008)
  29. A thioredoxin fusion protein of VanH, a D-lactate dehydrogenase from Enterococcus faecium: cloning, expression, purification, kinetic analysis, and crystallization. Stoll VS, Manohar AV, Gillon W, MacFarlane EL, Hynes RC, Pai EF. Protein Sci 7 1147-1155 (1998)
  30. Effect of pH on kinetic parameters of NAD+-dependent formate dehydrogenase. Mesentsev AV, Lamzin VS, Tishkov VI, Ustinnikova TB, Popov VO. Biochem J 321 ( Pt 2) 475-480 (1997)
  31. Prediction of protein-protein interaction sites from weakly homologous template structures using meta-threading and machine learning. Maheshwari S, Brylinski M. J Mol Recognit 28 35-48 (2015)
  32. Evolutionary history of D-lactate dehydrogenases: a phylogenomic perspective on functional diversity in the FAD binding oxidoreductase/transferase type 4 family. Cristescu ME, Egbosimba EE. J Mol Evol 69 276-287 (2009)
  33. Structural basis for stereo-specific catalysis in NAD(+)-dependent (R)-2-hydroxyglutarate dehydrogenase from Acidaminococcus fermentans. Martins BM, Macedo-Ribeiro S, Bresser J, Buckel W, Messerschmidt A. FEBS J 272 269-281 (2005)
  34. D-2-hydroxy-4-methylvalerate dehydrogenase from Lactobacillus delbrueckii subsp. bulgaricus. II. Mutagenic analysis of catalytically important residues. Bernard N, Johnsen K, Gelpi JL, Alvarez JA, Ferain T, Garmyn D, Hols P, Cortes A, Clarke AR, Holbrook JJ, Delcour J. Eur J Biochem 244 213-219 (1997)
  35. Distinct conformation-mediated functions of an active site loop in the catalytic reactions of NAD-dependent D-lactate dehydrogenase and formate dehydrogenase. Shinoda T, Arai K, Shigematsu-Iida M, Ishikura Y, Tanaka S, Yamada T, Kimber MS, Pai EF, Fushinobu S, Taguchi H. J Biol Chem 280 17068-17075 (2005)
  36. Recognition site for the side chain of 2-ketoacid substrate in d-lactate dehydrogenase. Ishikura Y, Tsuzuki S, Takahashi O, Tokuda C, Nakanishi R, Shinoda T, Taguchi H. J Biochem 138 741-749 (2005)
  37. Molecular and structural characterization of NADPH-dependent d-glycerate dehydrogenase from the enteric parasitic protist Entamoeba histolytica. Ali V, Shigeta Y, Nozaki T. Biochem J 375 729-736 (2003)
  38. Pediococcus acidilactici ldhD gene: cloning, nucleotide sequence, and transcriptional analysis. Garmyn D, Ferain T, Bernard N, Hols P, Delplace B, Delcour J. J Bacteriol 177 3427-3437 (1995)
  39. Cloning and expression of the gene for hydroxypyruvate reductase (D-glycerate dehydrogenase from an obligate methylotroph Hyphomicrobium methylovorum GM2. Yoshida T, Yamaguchi K, Hagishita T, Mitsunaga T, Miyata A, Tanabe T, Toh H, Ohshiro T, Shimao M, Izumi Y. Eur J Biochem 223 727-732 (1994)
  40. Crystal structure of D-erythronate-4-phosphate dehydrogenase complexed with NAD. Ha JY, Lee JH, Kim KH, Kim DJ, Lee HH, Kim HK, Yoon HJ, Suh SW. J Mol Biol 366 1294-1304 (2007)
  41. A molecular model for human Big-Endothelin-1 (Big ET-1). Peto H, Corder R, Janes RW, Wallace BA. FEBS Lett 394 191-195 (1996)
  42. De-regulation of D-3-phosphoglycerate dehydrogenase by domain removal. Bell JK, Pease PJ, Bell JE, Grant GA, Banaszak LJ. Eur J Biochem 269 4176-4184 (2002)
  43. New insights into the mechanism of substrates trafficking in Glyoxylate/Hydroxypyruvate reductases. Lassalle L, Engilberge S, Madern D, Vauclare P, Franzetti B, Girard E. Sci Rep 6 20629 (2016)
  44. Roles of his205, his296, his303 and Asp259 in catalysis by NAD+-specific D-lactate dehydrogenase. Kochhar S, Lamzin VS, Razeto A, Delley M, Hottinger H, Germond JE. Eur J Biochem 267 1633-1639 (2000)
  45. Diverse allosteric and catalytic functions of tetrameric d-lactate dehydrogenases from three Gram-negative bacteria. Furukawa N, Miyanaga A, Togawa M, Nakajima M, Taguchi H. AMB Express 4 76 (2014)
  46. The D-Lactate Dehydrogenase from Sporolactobacillus inulinus Also Possessing Reversible Deamination Activity. Zhu L, Xu X, Wang L, Dong H, Yu B. PLoS One 10 e0139066 (2015)
  47. Crystal structure and thermodynamic properties of d-lactate dehydrogenase from Lactobacillus jensenii. Kim S, Gu SA, Kim YH, Kim KJ. Int J Biol Macromol 68 151-157 (2014)
  48. Structure and substrate docking of a hydroxy(phenyl)pyruvate reductase from the higher plant Coleus blumei Benth. Janiak V, Petersen M, Zentgraf M, Klebe G, Heine A. Acta Crystallogr D Biol Crystallogr 66 593-603 (2010)
  49. 2-Hydroxyacid dehydrogenase from Haloferax mediterranei, a D-isomer-specific member of the 2-hydroxyacid dehydrogenase family. Bonete MJ, Ferrer J, Pire C, Penades M, Ruiz JL. Biochimie 82 1143-1150 (2000)
  50. A highly specific glyoxylate reductase derived from a formate dehydrogenase. Shinoda T, Arai K, Taguchi H. Biochem Biophys Res Commun 355 782-787 (2007)
  51. Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Xu Y, Bhargava G, Wu H, Loeber G, Tong L. Structure 7 R877-89 (1999)
  52. RIBEYE B-Domain Is Essential for RIBEYE A-Domain Stability and Assembly of Synaptic Ribbons. Shankhwar S, Schwarz K, Katiyar R, Jung M, Maxeiner S, Südhof TC, Schmitz F. Front Mol Neurosci 15 838311 (2022)
  53. The crystal structure of D-mandelate dehydrogenase reveals its distinct substrate and coenzyme recognition mechanisms from those of 2-ketopantoate reductase. Miyanaga A, Fujisawa S, Furukawa N, Arai K, Nakajima M, Taguchi H. Biochem Biophys Res Commun 439 109-114 (2013)
  54. Novel 4-methyl-2-oxopentanoate reductase involved in synthesis of the Japanese sake flavor, ethyl leucate. Shimizu M, Yamamoto T, Okabe N, Sakai K, Koide E, Miyachi Y, Kurimoto M, Mochizuki M, Yoshino-Yasuda S, Mitsui S, Ito A, Murano H, Takaya N, Kato M. Appl Microbiol Biotechnol 100 3137-3145 (2016)
  55. Characterization and crystal structure of a first fungal glyoxylate reductase from Paecilomyes thermophila. Duan X, Hu S, Zhou P, Zhou Y, Liu Y, Jiang Z. Enzyme Microb Technol 60 72-79 (2014)
  56. Crystallization and preliminary X-ray analysis of D-2-hydroxyacid dehydrogenase from Haloferax mediterranei. Domenech J, Baker PJ, Sedelnikova SE, Rodgers HF, Rice DW, Ferrer J. Acta Crystallogr Sect F Struct Biol Cryst Commun 65 415-418 (2009)
  57. Rabconnectin-3α/DMXL2 Is Locally Enriched at the Synaptic Ribbon of Rod Photoreceptor Synapses. Dittrich A, Ramesh G, Jung M, Schmitz F. Cells 12 1665 (2023)
  58. Severe child form of primary hyperoxaluria type 2 - a case report revealing consequence of GRHPR deficiency on metabolism. Konkoľová J, Chandoga J, Kováčik J, Repiský M, Kramarová V, Paučinová I, Böhmer D. BMC Med Genet 18 59 (2017)


Related citations provided by authors (1)

  1. Crystallization and Preliminary Diffraction Studies of Hydroxypyruvate Reductase (D-Glycerate Dehydrogenase) from Hyphomicrobium Methylovorum. Goldberg JD, Brick P, Yoshida T, Mitsunaga T, Oshiro T, Shimao M, Izumi Y J. Mol. Biol. 225 909- (1992)