1ga8 Citations

Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs.

Nat Struct Biol 8 166-75 (2001)
Cited: 186 times
EuropePMC logo PMID: 11175908

Abstract

Many bacterial pathogens express lipooligosaccharides that mimic human cell surface glycoconjugates, enabling them to attach to host receptors and to evade the immune response. In Neisseria meningitidis, the galactosyltransferase LgtC catalyzes a key step in the biosynthesis of lipooligosaccharide structure by transferring alpha-d-galactose from UDP-galactose to a terminal lactose. The product retains the configuration of the donor sugar glycosidic bond; LgtC is thus a retaining glycosyltranferase. We report the 2 A crystal structures of the complex of LgtC with manganese and UDP 2-deoxy-2-fluoro-galactose (a donor sugar analog) in the presence and absence of the acceptor sugar analog 4'-deoxylactose. The structures, together with results from site-directed mutagenesis and kinetic analysis, give valuable insights into the unique catalytic mechanism and, as the first structure of a glycosyltransferase in complex with both the donor and acceptor sugars, provide a starting point for inhibitor design.

Reviews - 1ga8 mentioned but not cited (2)

  1. Calnexin cycle - structural features of the ER chaperone system. Kozlov G, Gehring K. FEBS J 287 4322-4340 (2020)
  2. Fabry Disease: Molecular Basis, Pathophysiology, Diagnostics and Potential Therapeutic Directions. Kok K, Zwiers KC, Boot RG, Overkleeft HS, Aerts JMFG, Artola M. Biomolecules 11 271 (2021)

Articles - 1ga8 mentioned but not cited (12)

  1. Detecting distant homology with Meta-BASIC. Ginalski K, von Grotthuss M, Grishin NV, Rychlewski L. Nucleic Acids Res 32 W576-81 (2004)
  2. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Pesnot T, Jørgensen R, Palcic MM, Wagner GK. Nat Chem Biol 6 321-323 (2010)
  3. Mycobacterium tuberculosis glucosyl-3-phosphoglycerate synthase: structure of a key enzyme in methylglucose lipopolysaccharide biosynthesis. Pereira PJ, Empadinhas N, Albuquerque L, Sá-Moura B, da Costa MS, Macedo-Ribeiro S. PLoS One 3 e3748 (2008)
  4. Geometric attributes of retaining glycosyltransferase enzymes favor an orthogonal mechanism. Schuman B, Evans SV, Fyles TM. PLoS One 8 e71077 (2013)
  5. Identification of putative rhamnogalacturonan-II specific glycosyltransferases in Arabidopsis using a combination of bioinformatics approaches. Voxeur A, André A, Breton C, Lerouge P. PLoS One 7 e51129 (2012)
  6. Structural analysis of Thermus thermophilus HB27 mannosyl-3-phosphoglycerate synthase provides evidence for a second catalytic metal ion and new insight into the retaining mechanism of glycosyltransferases. Gonçalves S, Borges N, Esteves AM, Victor BL, Soares CM, Santos H, Matias PM. J Biol Chem 285 17857-17868 (2010)
  7. Automated protein motif generation in the structure-based protein function prediction tool ProMOL. Osipovitch M, Lambrecht M, Baker C, Madha S, Mills JL, Craig PA, Bernstein HJ. J Struct Funct Genomics 16 101-111 (2015)
  8. Identification and Modeling of a GT-A Fold in the α-Dystroglycan Glycosylating Enzyme LARGE1. Righino B, Bozzi M, Pirolli D, Sciandra F, Bigotti MG, Brancaccio A, De Rosa MC. J Chem Inf Model 60 3145-3156 (2020)
  9. Chlorovirus PBCV-1 Multidomain Protein A111/114R Has Three Glycosyltransferase Functions Involved in the Synthesis of Atypical N-Glycans. Noel E, Notaro A, Speciale I, Duncan GA, De Castro C, Van Etten JL. Viruses 13 87 (2021)
  10. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets. Uddin R, Sufian M. PLoS One 11 e0146796 (2016)
  11. Conserved residues Arg188 and Asp302 are critical for active site organization and catalysis in human ABO(H) blood group A and B glycosyltransferases. Gagnon SML, Legg MSG, Polakowski R, Letts JA, Persson M, Lin S, Zheng RB, Rempel B, Schuman B, Haji-Ghassemi O, Borisova SN, Palcic MM, Evans SV. Glycobiology 28 624-636 (2018)
  12. Enzymatic Glyco-Modification of Synthetic Membrane Systems. Jabeguero D, Siukstaite L, Wang C, Mitrovic A, Pérez S, Makshakova O, Richter RP, Römer W, Breton C. Biomolecules 13 335 (2023)


Reviews citing this publication (34)

  1. Lipopolysaccharide endotoxins. Raetz CR, Whitfield C. Annu Rev Biochem 71 635-700 (2002)
  2. Glycosyltransferases: structures, functions, and mechanisms. Lairson LL, Henrissat B, Davies GJ, Withers SG. Annu Rev Biochem 77 521-555 (2008)
  3. Structures and mechanisms of glycosyltransferases. Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A. Glycobiology 16 29R-37R (2006)
  4. Glycoside hydrolases and glycosyltransferases: families and functional modules. Bourne Y, Henrissat B. Curr Opin Struct Biol 11 593-600 (2001)
  5. Evolving views of pectin biosynthesis. Atmodjo MA, Hao Z, Mohnen D. Annu Rev Plant Biol 64 747-779 (2013)
  6. Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Jank T, Aktories K. Trends Microbiol 16 222-229 (2008)
  7. Natural-product sugar biosynthesis and enzymatic glycodiversification. Thibodeaux CJ, Melançon CE, Liu HW. Angew Chem Int Ed Engl 47 9814-9859 (2008)
  8. The chemistry and biology of mucin-type O-linked glycosylation. Hang HC, Bertozzi CR. Bioorg Med Chem 13 5021-5034 (2005)
  9. Unusual sugar biosynthesis and natural product glycodiversification. Thibodeaux CJ, Melançon CE, Liu HW. Nature 446 1008-1016 (2007)
  10. The polar hydrophobicity of fluorinated compounds. Biffinger JC, Kim HW, DiMagno SG. Chembiochem 5 622-627 (2004)
  11. Substrate-induced conformational changes in glycosyltransferases. Qasba PK, Ramakrishnan B, Boeggeman E. Trends Biochem Sci 30 53-62 (2005)
  12. Carbohydrate mimetics-based glycosyltransferase inhibitors. Compain P, Martin OR. Bioorg Med Chem 9 3077-3092 (2001)
  13. The glycosyltransferases of Mycobacterium tuberculosis - roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Berg S, Kaur D, Jackson M, Brennan PJ. Glycobiology 17 35-56R (2007)
  14. Rho-glucosylating Clostridium difficile toxins A and B: new insights into structure and function. Jank T, Giesemann T, Aktories K. Glycobiology 17 15R-22R (2007)
  15. Remarkable structural similarities between diverse glycosyltransferases. Hu Y, Walker S. Chem Biol 9 1287-1296 (2002)
  16. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Chang A, Singh S, Phillips GN, Thorson JS. Curr Opin Biotechnol 22 800-808 (2011)
  17. Glycosyltransferase-catalyzed synthesis of bioactive oligosaccharides. Weijers CA, Franssen MC, Visser GM. Biotechnol Adv 26 436-456 (2008)
  18. Structural and functional features of glycosyltransferases. Breton C, Mucha J, Jeanneau C. Biochimie 83 713-718 (2001)
  19. The sweet tooth of bacteria: common themes in bacterial glycoconjugates. Tytgat HL, Lebeer S. Microbiol Mol Biol Rev 78 372-417 (2014)
  20. Vinyl sulfones: synthetic preparations and medicinal chemistry applications. Meadows DC, Gervay-Hague J. Med Res Rev 26 793-814 (2006)
  21. Structure-function relationships of membrane-associated GT-B glycosyltransferases. Albesa-Jové D, Giganti D, Jackson M, Alzari PM, Guerin ME. Glycobiology 24 108-124 (2014)
  22. Glycosyltransferases and their assays. Wagner GK, Pesnot T. Chembiochem 11 1939-1949 (2010)
  23. The conformational plasticity of glycosyltransferases. Albesa-Jové D, Guerin ME. Curr Opin Struct Biol 40 23-32 (2016)
  24. Critical Review of Plant Cell Wall Matrix Polysaccharide Glycosyltransferase Activities Verified by Heterologous Protein Expression. Amos RA, Mohnen D. Front Plant Sci 10 915 (2019)
  25. Crossroads between Bacterial and Mammalian Glycosyltransferases. Brockhausen I. Front Immunol 5 492 (2014)
  26. Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. Negishi M, Dong J, Darden TA, Pedersen LG, Pedersen LC. Biochem Biophys Res Commun 303 393-398 (2003)
  27. Complex glycosylation of Skp1 in Dictyostelium: implications for the modification of other eukaryotic cytoplasmic and nuclear proteins. West CM, van der Wel H, Gaucher EA. Glycobiology 12 17R-27R (2002)
  28. Atomistic insight into the catalytic mechanism of glycosyltransferases by combined quantum mechanics/molecular mechanics (QM/MM) methods. Tvaroška I. Carbohydr Res 403 38-47 (2015)
  29. Enzymatic synthesis of glycosides: from natural O- and N-glycosides to rare C- and S-glycosides. Ati J, Lafite P, Daniellou R. Beilstein J Org Chem 13 1857-1865 (2017)
  30. Family 6 glycosyltransferases in vertebrates and bacteria: inactivation and horizontal gene transfer may enhance mutualism between vertebrates and bacteria. Brew K, Tumbale P, Acharya KR. J Biol Chem 285 37121-37127 (2010)
  31. Nucleotide Sugars in Chemistry and Biology. Mikkola S. Molecules 25 E5755 (2020)
  32. The importance of disordered loops in ABO glycosyltransferases. Yazer MH, Palcic MM. Transfus Med Rev 19 210-216 (2005)
  33. One step closer to a sweet conclusion. Withers SG, Wakarchuk WW, Strynadka NC. Chem Biol 9 1270-1273 (2002)
  34. Acclimation to Nutritional Immunity and Metal Intoxication Requires Zinc, Manganese, and Copper Homeostasis in the Pathogenic Neisseriae. Branch AH, Stoudenmire JL, Seib KL, Cornelissen CN. Front Cell Infect Microbiol 12 909888 (2022)

Articles citing this publication (138)

  1. An evolving hierarchical family classification for glycosyltransferases. Coutinho PM, Deleury E, Davies GJ, Henrissat B. J Mol Biol 328 307-317 (2003)
  2. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X. Plant Cell 17 3141-3154 (2005)
  3. Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M, Walker S. Proc Natl Acad Sci U S A 100 845-849 (2003)
  4. Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Sparrow DB, Chapman G, Wouters MA, Whittock NV, Ellard S, Fatkin D, Turnpenny PD, Kusumi K, Sillence D, Dunwoodie SL. Am J Hum Genet 78 28-37 (2006)
  5. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Liu J, Mushegian A. Protein Sci 12 1418-1431 (2003)
  6. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Mulichak AM, Losey HC, Walsh CT, Garavito RM. Structure 9 547-557 (2001)
  7. Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davies GJ. Chem Biol 9 1337-1346 (2002)
  8. Structural analysis of the sialyltransferase CstII from Campylobacter jejuni in complex with a substrate analog. Chiu CP, Watts AG, Lairson LL, Gilbert M, Lim D, Wakarchuk WW, Withers SG, Strynadka NC. Nat Struct Mol Biol 11 163-170 (2004)
  9. Structural basis for the function of Clostridium difficile toxin B. Reinert DJ, Jank T, Aktories K, Schulz GE. J Mol Biol 351 973-981 (2005)
  10. Dynamic association between the catalytic and lectin domains of human UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-2. Fritz TA, Raman J, Tabak LA. J Biol Chem 281 8613-8619 (2006)
  11. The beginnings of mucin biosynthesis: the crystal structure of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferase-T1. Fritz TA, Hurley JH, Trinh LB, Shiloach J, Tabak LA. Proc Natl Acad Sci U S A 101 15307-15312 (2004)
  12. Structural and enzymatic analysis of MshA from Corynebacterium glutamicum: substrate-assisted catalysis. Vetting MW, Frantom PA, Blanchard JS. J Biol Chem 283 15834-15844 (2008)
  13. Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Lazarus MB, Jiang J, Gloster TM, Zandberg WF, Whitworth GE, Vocadlo DJ, Walker S. Nat Chem Biol 8 966-968 (2012)
  14. Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase. Lee SS, Hong SY, Errey JC, Izumi A, Davies GJ, Davis BG. Nat Chem Biol 7 631-638 (2011)
  15. Three members of the Arabidopsis glycosyltransferase family 8 are xylan glucuronosyltransferases. Rennie EA, Hansen SF, Baidoo EE, Hadi MZ, Keasling JD, Scheller HV. Plant Physiol 159 1408-1417 (2012)
  16. Homology between O-linked GlcNAc transferases and proteins of the glycogen phosphorylase superfamily. Wrabl JO, Grishin NV. J Mol Biol 314 365-374 (2001)
  17. Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). Kubota T, Shiba T, Sugioka S, Furukawa S, Sawaki H, Kato R, Wakatsuki S, Narimatsu H. J Mol Biol 359 708-727 (2006)
  18. Evolution and function of the plant cell wall synthesis-related glycosyltransferase family 8. Yin Y, Chen H, Hahn MG, Mohnen D, Xu Y. Plant Physiol 153 1729-1746 (2010)
  19. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. Tarbouriech N, Charnock SJ, Davies GJ. J Mol Biol 314 655-661 (2001)
  20. Crystal structure of an alpha 1,4-N-acetylhexosaminyltransferase (EXTL2), a member of the exostosin gene family involved in heparan sulfate biosynthesis. Pedersen LC, Dong J, Taniguchi F, Kitagawa H, Krahn JM, Pedersen LG, Sugahara K, Negishi M. J Biol Chem 278 14420-14428 (2003)
  21. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose. Grizot S, Salem M, Vongsouthi V, Durand L, Moreau F, Dohi H, Vincent S, Escaich S, Ducruix A. J Mol Biol 363 383-394 (2006)
  22. Discovery of Streptococcus pneumoniae serotype 6 variants with glycosyltransferases synthesizing two differing repeating units. Oliver MB, van der Linden MPG, Küntzel SA, Saad JS, Nahm MH. J Biol Chem 288 25976-25985 (2013)
  23. Mechanistic insight into enzymatic glycosyl transfer with retention of configuration through analysis of glycomimetic inhibitors. Errey JC, Lee SS, Gibson RP, Martinez Fleites C, Barry CS, Jung PM, O'Sullivan AC, Davis BG, Davies GJ. Angew Chem Int Ed Engl 49 1234-1237 (2010)
  24. Structural dissection and high-throughput screening of mannosylglycerate synthase. Flint J, Taylor E, Yang M, Bolam DN, Tailford LE, Martinez-Fleites C, Dodson EJ, Davis BG, Gilbert HJ, Davies GJ. Nat Struct Mol Biol 12 608-614 (2005)
  25. A complementary bioinformatics approach to identify potential plant cell wall glycosyltransferase-encoding genes. Egelund J, Skjøt M, Geshi N, Ulvskov P, Petersen BL. Plant Physiol 136 2609-2620 (2004)
  26. High resolution crystal structures of T4 phage beta-glucosyltransferase: induced fit and effect of substrate and metal binding. Moréra S, Larivière L, Kurzeck J, Aschke-Sonnenborn U, Freemont PS, Janin J, Rüger W. J Mol Biol 311 569-577 (2001)
  27. Conformational changes and reaction of clostridial glycosylating toxins. Ziegler MO, Jank T, Aktories K, Schulz GE. J Mol Biol 377 1346-1356 (2008)
  28. Notch-modifying xylosyltransferase structures support an SNi-like retaining mechanism. Yu H, Takeuchi M, LeBarron J, Kantharia J, London E, Bakker H, Haltiwanger RS, Li H, Takeuchi H. Nat Chem Biol 11 847-854 (2015)
  29. Substrate-guided front-face reaction revealed by combined structural snapshots and metadynamics for the polypeptide N-acetylgalactosaminyltransferase 2. Lira-Navarrete E, Iglesias-Fernández J, Zandberg WF, Compañón I, Kong Y, Corzana F, Pinto BM, Clausen H, Peregrina JM, Vocadlo DJ, Rovira C, Hurtado-Guerrero R. Angew Chem Int Ed Engl 53 8206-8210 (2014)
  30. Trapping and characterization of covalent intermediates of mutant retaining glycosyltransferases. Soya N, Fang Y, Palcic MM, Klassen JS. Glycobiology 21 547-552 (2011)
  31. The molecular mechanism of enzymatic glycosyl transfer with retention of configuration: evidence for a short-lived oxocarbenium-like species. Ardèvol A, Rovira C. Angew Chem Int Ed Engl 50 10897-10901 (2011)
  32. Bacterial Glycosyltransferases: Challenges and Opportunities of a Highly Diverse Enzyme Class Toward Tailoring Natural Products. Schmid J, Heider D, Wendel NJ, Sperl N, Sieber V. Front Microbiol 7 182 (2016)
  33. The highly conserved domain of unknown function 1792 has a distinct glycosyltransferase fold. Zhang H, Zhu F, Yang T, Ding L, Zhou M, Li J, Haslam SM, Dell A, Erlandsen H, Wu H. Nat Commun 5 4339 (2014)
  34. X-ray crystal structures of rabbit N-acetylglucosaminyltransferase I (GnT I) in complex with donor substrate analogues. Gordon RD, Sivarajah P, Satkunarajah M, Ma D, Tarling CA, Vizitiu D, Withers SG, Rini JM. J Mol Biol 360 67-79 (2006)
  35. Letter Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis. Lairson LL, Watts AG, Wakarchuk WW, Withers SG. Nat Chem Biol 2 724-728 (2006)
  36. Conformational changes induced by binding UDP-2F-galactose to alpha-1,3 galactosyltransferase- implications for catalysis. Jamaluddin H, Tumbale P, Withers SG, Acharya KR, Brew K. J Mol Biol 369 1270-1281 (2007)
  37. Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Logan SM, Altman E, Mykytczuk O, Brisson JR, Chandan V, Schur MJ, St Michael F, Masson A, Leclerc S, Hiratsuka K, Smirnova N, Li J, Wu Y, Wakarchuk WW. Glycobiology 15 721-733 (2005)
  38. Mutations in the Glycosyltransferase Domain of GLT8D1 Are Associated with Familial Amyotrophic Lateral Sclerosis. Cooper-Knock J, Moll T, Ramesh T, Castelli L, Beer A, Robins H, Fox I, Niedermoser I, Van Damme P, Moisse M, Robberecht W, Hardiman O, Panades MP, Assialioui A, Mora JS, Basak AN, Morrison KE, Shaw CE, Al-Chalabi A, Landers JE, Wyles M, Heath PR, Higginbottom A, Walsh T, Kazoka M, McDermott CJ, Hautbergue GM, Kirby J, Shaw PJ. Cell Rep 26 2298-2306.e5 (2019)
  39. Structural basis of substrate binding to UDP-galactopyranose mutase: crystal structures in the reduced and oxidized state complexed with UDP-galactopyranose and UDP. Partha SK, van Straaten KE, Sanders DA. J Mol Biol 394 864-877 (2009)
  40. Conformational plasticity of glycogenin and its maltosaccharide substrate during glycogen biogenesis. Chaikuad A, Froese DS, Berridge G, von Delft F, Oppermann U, Yue WW. Proc Natl Acad Sci U S A 108 21028-21033 (2011)
  41. Deep evolutionary analysis reveals the design principles of fold A glycosyltransferases. Taujale R, Venkat A, Huang LC, Zhou Z, Yeung W, Rasheed KM, Li S, Edison AS, Moremen KW, Kannan N. Elife 9 e54532 (2020)
  42. Mutational analysis of the catalytic domain of O-linked N-acetylglucosaminyl transferase. Lazarus BD, Roos MD, Hanover JA. J Biol Chem 280 35537-35544 (2005)
  43. Crystal structures of β-1,4-galactosyltransferase 7 enzyme reveal conformational changes and substrate binding. Tsutsui Y, Ramakrishnan B, Qasba PK. J Biol Chem 288 31963-31970 (2013)
  44. Pasteurella multocida Heddleston serovar 3 and 4 strains share a common lipopolysaccharide biosynthesis locus but display both inter- and intrastrain lipopolysaccharide heterogeneity. Harper M, St Michael F, John M, Vinogradov E, Steen JA, van Dorsten L, Steen JA, Turni C, Blackall PJ, Adler B, Cox AD, Boyce JD. J Bacteriol 195 4854-4864 (2013)
  45. Structural insight into how Streptomyces coelicolor maltosyl transferase GlgE binds α-maltose 1-phosphate and forms a maltosyl-enzyme intermediate. Syson K, Stevenson CE, Rashid AM, Saalbach G, Tang M, Tuukkanen A, Svergun DI, Withers SG, Lawson DM, Bornemann S. Biochemistry 53 2494-2504 (2014)
  46. Molecular mechanism of elongation factor 1A inhibition by a Legionella pneumophila glycosyltransferase. Hurtado-Guerrero R, Zusman T, Pathak S, Ibrahim AF, Shepherd S, Prescott A, Segal G, van Aalten DM. Biochem J 426 281-292 (2010)
  47. Substrate-induced conformational changes and dynamics of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase-2. Milac AL, Buchete NV, Fritz TA, Hummer G, Tabak LA. J Mol Biol 373 439-451 (2007)
  48. A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. Amos RA, Pattathil S, Yang JY, Atmodjo MA, Urbanowicz BR, Moremen KW, Mohnen D. J Biol Chem 293 19047-19063 (2018)
  49. Structure of xyloglucan xylosyltransferase 1 reveals simple steric rules that define biological patterns of xyloglucan polymers. Culbertson AT, Ehrlich JJ, Choe JY, Honzatko RB, Zabotina OA. Proc Natl Acad Sci U S A 115 6064-6069 (2018)
  50. Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461. Videira P, Fialho A, Geremia RA, Breton C, Sá-Correia I. Biochem J 358 457-464 (2001)
  51. Potent fluoro-oligosaccharide probes of adhesion in Toxoplasmosis. Allman SA, Jensen HH, Vijayakrishnan B, Garnett JA, Leon E, Liu Y, Anthony DC, Sibson NR, Feizi T, Matthews S, Davis BG. Chembiochem 10 2522-2529 (2009)
  52. Requirements for catalysis in mammalian glycogenin. Hurley TD, Stout S, Miner E, Zhou J, Roach PJ. J Biol Chem 280 23892-23899 (2005)
  53. Substrate and metal ion promiscuity in mannosylglycerate synthase. Nielsen MM, Suits MD, Yang M, Barry CS, Martinez-Fleites C, Tailford LE, Flint JE, Dumon C, Davis BG, Gilbert HJ, Davies GJ. J Biol Chem 286 15155-15164 (2011)
  54. Visualisation of a flexible modular structure of the ER folding-sensor enzyme UGGT. Satoh T, Song C, Zhu T, Toshimori T, Murata K, Hayashi Y, Kamikubo H, Uchihashi T, Kato K. Sci Rep 7 12142 (2017)
  55. Molecular characterization of Alg8, a putative glycosyltransferase, involved in alginate polymerisation. Remminghorst U, Hay ID, Rehm BH. J Biotechnol 140 176-183 (2009)
  56. Structure and Mechanism of Staphylococcus aureus TarS, the Wall Teichoic Acid β-glycosyltransferase Involved in Methicillin Resistance. Sobhanifar S, Worrall LJ, King DT, Wasney GA, Baumann L, Gale RT, Nosella M, Brown ED, Withers SG, Strynadka NC. PLoS Pathog 12 e1006067 (2016)
  57. Sucrose phosphorylase harbouring a redesigned, glycosyltransferase-like active site exhibits retaining glucosyl transfer in the absence of a covalent intermediate. Goedl C, Nidetzky B. Chembiochem 10 2333-2337 (2009)
  58. A catalytically inactive beta 1,4-N-acetylglucosaminyltransferase III (GnT-III) behaves as a dominant negative GnT-III inhibitor. Ihara H, Ikeda Y, Koyota S, Endo T, Honke K, Taniguchi N. Eur J Biochem 269 193-201 (2002)
  59. Stereoselective glycal fluorophosphorylation: synthesis of ADP-2-fluoroheptose, an inhibitor of the LPS biosynthesis. Dohi H, Périon R, Durka M, Bosco M, Roué Y, Moreau F, Grizot S, Ducruix A, Escaich S, Vincent SP. Chemistry 14 9530-9539 (2008)
  60. Structural basis for red cell phenotypic changes in newly identified, naturally occurring subgroup mutants of the human blood group B glycosyltransferase. Hosseini-Maaf B, Letts JA, Persson M, Smart E, LePennec PY, Hustinx H, Zhao Z, Palcic MM, Evans SV, Chester MA, Olsson ML. Transfusion 47 864-875 (2007)
  61. Synthesis of sugar-amino acid-nucleosides as potential glycosyltransferase inhibitors. Vembaiyan K, Pearcey JA, Bhasin M, Lowary TL, Zou W. Bioorg Med Chem 19 58-66 (2011)
  62. Golgi manganese transport is required for rapamycin signaling in Saccharomyces cerevisiae. Devasahayam G, Burke DJ, Sturgill TW. Genetics 177 231-238 (2007)
  63. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation. Villalobos JA, Yi BR, Wallace IS. PLoS One 10 e0139091 (2015)
  64. A Native Ternary Complex Trapped in a Crystal Reveals the Catalytic Mechanism of a Retaining Glycosyltransferase. Albesa-Jové D, Mendoza F, Rodrigo-Unzueta A, Gomollón-Bel F, Cifuente JO, Urresti S, Comino N, Gómez H, Romero-García J, Lluch JM, Sancho-Vaello E, Biarnés X, Planas A, Merino P, Masgrau L, Guerin ME. Angew Chem Int Ed Engl 54 9898-9902 (2015)
  65. A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family. Clarke BR, Ovchinnikova OG, Sweeney RP, Kamski-Hennekam ER, Gitalis R, Mallette E, Kelly SD, Lowary TL, Kimber MS, Whitfield C. Nat Chem Biol 16 450-457 (2020)
  66. Alternative donor substrates for inverting and retaining glycosyltransferases. Lairson LL, Wakarchuk WW, Withers SG. Chem Commun (Camb) 365-367 (2007)
  67. Biochemical characterization of WbdN, a β1,3-glucosyltransferase involved in O-antigen synthesis in enterohemorrhagic Escherichia coli O157. Gao Y, Liu B, Strum S, Schutzbach JS, Druzhinina TN, Utkina NS, Torgov VI, Danilov LL, Veselovsky VV, Vlahakis JZ, Szarek WA, Wang L, Brockhausen I. Glycobiology 22 1092-1102 (2012)
  68. Cardiomyopathy as presenting sign of glycogenin-1 deficiency-report of three cases and review of the literature. Hedberg-Oldfors C, Glamuzina E, Ruygrok P, Anderson LJ, Elliott P, Watkinson O, Occleshaw C, Abernathy M, Turner C, Kingston N, Murphy E, Oldfors A. J Inherit Metab Dis 40 139-149 (2017)
  69. Fungal trehalose phosphorylase: kinetic mechanism, pH-dependence of the reaction and some structural properties of the enzyme from Schizophyllum commune. Eis C, Watkins M, Prohaska T, Nidetzky B. Biochem J 356 757-767 (2001)
  70. In vitro assembly of the outer core of the lipopolysaccharide from Escherichia coli K-12 and Salmonella typhimurium. Qian J, Garrett TA, Raetz CR. Biochemistry 53 1250-1262 (2014)
  71. Mutagenesis and Functional Analysis of the Bacterial Arginine Glycosyltransferase Effector NleB1 from Enteropathogenic Escherichia coli. Wong Fok Lung T, Giogha C, Creuzburg K, Ong SY, Pollock GL, Zhang Y, Fung KY, Pearson JS, Hartland EL. Infect Immun 84 1346-1360 (2016)
  72. Structure and function of a chlorella virus-encoded glycosyltransferase. Zhang Y, Xiang Y, Van Etten JL, Rossmann MG. Structure 15 1031-1039 (2007)
  73. The Vaccinia Virus H3 Envelope Protein, a Major Target of Neutralizing Antibodies, Exhibits a Glycosyltransferase Fold and Binds UDP-Glucose. Singh K, Gittis AG, Gitti RK, Ostazeski SA, Su HP, Garboczi DN. J Virol 90 5020-5030 (2016)
  74. Defining the enzymatic pathway for polymorphic O-glycosylation of the pneumococcal serine-rich repeat protein PsrP. Jiang YL, Jin H, Yang HB, Zhao RL, Wang S, Chen Y, Zhou CZ. J Biol Chem 292 6213-6224 (2017)
  75. Group A, B, C, and G Streptococcus Lancefield antigen biosynthesis is initiated by a conserved α-d-GlcNAc-β-1,4-l-rhamnosyltransferase. Zorzoli A, Meyer BH, Adair E, Torgov VI, Veselovsky VV, Danilov LL, Uhrin D, Dorfmueller HC. J Biol Chem 294 15237-15256 (2019)
  76. Mechanistic insights into the retaining glucosyl-3-phosphoglycerate synthase from mycobacteria. Urresti S, Albesa-Jové D, Schaeffer F, Pham HT, Kaur D, Gest P, van der Woerd MJ, Carreras-González A, López-Fernández S, Alzari PM, Brennan PJ, Jackson M, Guerin ME. J Biol Chem 287 24649-24661 (2012)
  77. Molecular genetic analysis for the B subgroup revealing two novel alleles in the ABO gene. Cai XH, Jin S, Liu X, Shen W, Lu Q, Wang JL, Fan LF, Sun JL, Liu DZ, Xiang D. Transfusion 48 2442-2447 (2008)
  78. Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC. Tvaroska I. Carbohydr Res 339 1007-1014 (2004)
  79. Segmentally variable genes: a new perspective on adaptation. Zheng Y, Roberts RJ, Kasif S. PLoS Biol 2 E81 (2004)
  80. Structure-function relationships for Schizophyllum commune trehalose phosphorylase and their implications for the catalytic mechanism of family GT-4 glycosyltransferases. Goedl C, Griessler R, Schwarz A, Nidetzky B. Biochem J 397 491-500 (2006)
  81. Thermodynamics of binding of divalent magnesium and manganese to uridine phosphates: implications for diabetes-related hypomagnesaemia and carbohydrate biocatalysis. Zea CJ, Camci-Unal G, Pohl NL. Chem Cent J 2 15 (2008)
  82. Catalytic mechanism of alpha-retaining glucosyl transfer by Corynebacterium callunae starch phosphorylase: the role of histidine-334 examined through kinetic characterization of site-directed mutants. Schwarz A, Pierfederici FM, Nidetzky B. Biochem J 387 437-445 (2005)
  83. Identification of essential amino acids in the Azorhizobium caulinodans fucosyltransferase NodZ. Chazalet V, Uehara K, Geremia RA, Breton C. J Bacteriol 183 7067-7075 (2001)
  84. A theoretical study on the catalytic mechanism of the retaining α-1,2-mannosyltransferase Kre2p/Mnt1p: the impact of different metal ions on catalysis. Bobovská A, Tvaroška I, Kóňa J. Org Biomol Chem 12 4201-4210 (2014)
  85. Alpha-retaining glucosyl transfer catalysed by trehalose phosphorylase from Schizophyllum commune: mechanistic evidence obtained from steady-state kinetic studies with substrate analogues and inhibitors. Nidetzky B, Eis C. Biochem J 360 727-736 (2001)
  86. Cysteine-to-serine mutants dramatically reorder the active site of human ABO(H) blood group B glycosyltransferase without affecting activity: structural insights into cooperative substrate binding. Schuman B, Persson M, Landry RC, Polakowski R, Weadge JT, Seto NO, Borisova SN, Palcic MM, Evans SV. J Mol Biol 402 399-411 (2010)
  87. Design of glycosyltransferase inhibitors: pyridine as a pyrophosphate surrogate. Wang S, Cuesta-Seijo JA, Lafont D, Palcic MM, Vidal S. Chemistry 19 15346-15357 (2013)
  88. Molecular diversity of the genetic loci responsible for lipopolysaccharide core oligosaccharide assembly within the genus Salmonella. Kaniuk NA, Monteiro MA, Parker CT, Whitfield C. Mol Microbiol 46 1305-1318 (2002)
  89. The phosphate site of trehalose phosphorylase from Schizophyllum commune probed by site-directed mutagenesis and chemical rescue studies. Goedl C, Nidetzky B. FEBS J 275 903-913 (2008)
  90. 2'-Fluoro substituents can mimic native 2'-hydroxyls within structured RNA. Forconi M, Schwans JP, Porecha RH, Sengupta RN, Piccirilli JA, Herschlag D. Chem Biol 18 949-954 (2011)
  91. Expansion and Evolutionary Patterns of Glycosyltransferase Family 8 in Gramineae Crop Genomes and Their Expression under Salt and Cold Stresses in Oryza sativa ssp. japonica. Kong W, Gong Z, Zhong H, Zhang Y, Zhao G, Gautam M, Deng X, Liu C, Zhang C, Li Y. Biomolecules 9 E188 (2019)
  92. Genome-Wide Identification, Evolutionary and Expression Analyses of the GALACTINOL SYNTHASE Gene Family in Rapeseed and Tobacco. Fan Y, Yu M, Liu M, Zhang R, Sun W, Qian M, Duan H, Chang W, Ma J, Qu C, Zhang K, Lei B, Lu K. Int J Mol Sci 18 E2768 (2017)
  93. Mechanistic study of CMP-Neu5Ac hydrolysis by α2,3-sialyltransferase from Pasteurella dagmatis. Schmölzer K, Luley-Goedl C, Czabany T, Ribitsch D, Schwab H, Weber H, Nidetzky B. FEBS Lett 588 2978-2984 (2014)
  94. Biochemical properties of Neisseria gonorrhoeae LgtE. Piekarowicz A, Stein DC. J Bacteriol 184 6410-6416 (2002)
  95. Glycosyltransferases involved in biosynthesis of the outer core region of Escherichia coli lipopolysaccharides exhibit broader substrate specificities than is predicted from lipopolysaccharide structures. Leipold MD, Vinogradov E, Whitfield C. J Biol Chem 282 26786-26792 (2007)
  96. On the reaction pathways and determination of transition-state structures for retaining alpha-galactosyltransferases. André I, Tvaroska I, Carver JP. Carbohydr Res 338 865-877 (2003)
  97. Structural determinants allowing transferase activity in SENSITIVE TO FREEZING 2, classified as a family I glycosyl hydrolase. Roston RL, Wang K, Kuhn LA, Benning C. J Biol Chem 289 26089-26106 (2014)
  98. Development of a multifunctional aminoxy-based fluorescent linker for glycan immobilization and analysis. Jiménez-Castells C, Stanton R, Yan S, Kosma P, Wilson IB. Glycobiology 26 1297-1307 (2016)
  99. Exploring the sequence-structure protein landscape in the glycosyltransferase family. Zhang Z, Kochhar S, Grigorov M. Protein Sci 12 2291-2302 (2003)
  100. Highly conserved cysteines of mouse core 2 beta1,6-N-acetylglucosaminyltransferase I form a network of disulfide bonds and include a thiol that affects enzyme activity. Yen TY, Macher BA, Bryson S, Chang X, Tvaroska I, Tse R, Takeshita S, Lew AM, Datti A. J Biol Chem 278 45864-45881 (2003)
  101. A front-face 'SNi synthase' engineered from a retaining 'double-SN2' hydrolase. Iglesias-Fernández J, Hancock SM, Lee SS, Khan M, Kirkpatrick J, Oldham NJ, McAuley K, Fordham-Skelton A, Rovira C, Davis BG. Nat Chem Biol 13 874-881 (2017)
  102. A novel fluorescent probe for retaining galactosyltransferases. Pesnot T, Palcic MM, Wagner GK. Chembiochem 11 1392-1398 (2010)
  103. Accurate Lipophilicity (log P) Measurements Inform on Subtle Stereoelectronic Effects in Fluorine Chemistry. O'Hagan D, Young RJ. Angew Chem Int Ed Engl 55 3858-3860 (2016)
  104. Characterization of α2,3- and α2,6-sialyltransferases from Helicobacter acinonychis. Schur MJ, Lameignere E, Strynadka NC, Wakarchuk WW. Glycobiology 22 997-1006 (2012)
  105. Fluorescent analogs of UDP-glucose and their use in characterizing substrate binding by toxin A from Clostridium difficile. Bhattacharyya S, Kerzmann A, Feig AL. Eur J Biochem 269 3425-3432 (2002)
  106. Molecular dynamics simulations of solvated UDP-glucose in interaction with Mg2+ cations. Petrová P, Koca J, Imberty A. Eur J Biochem 268 5365-5374 (2001)
  107. Stepwise catalytic mechanism via short-lived intermediate inferred from combined QM/MM MERP and PES calculations on retaining glycosyltransferase ppGalNAcT2. Trnka T, Kozmon S, Tvaroška I, Koča J. PLoS Comput Biol 11 e1004061 (2015)
  108. The first C-glycosidic analogue of a novel galactosyltransferase inhibitor. Descroix K, Wagner GK. Org Biomol Chem 9 1855-1863 (2011)
  109. Amino-acid substitution in the disordered loop of blood group B-glycosyltransferase enzyme causes weak B phenotype. Yazer MH, Denomme GA, Rose NL, Palcic MM. Transfusion 45 1178-1182 (2005)
  110. Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue. Alvin JW, Lacy DB. J Struct Biol 198 203-209 (2017)
  111. Engineer P. multocida Heparosan Synthase 2 (PmHS2) for Size-Controlled Synthesis of Longer Heparosan Oligosaccharides. Na L, Yu H, McArthur JB, Ghosh T, Asbell T, Chen X. ACS Catal 10 6113-6118 (2020)
  112. Kinetic analysis of a Golgi UDP-GlcNAc:polypeptide-Thr/Ser N-acetyl-alpha-glucosaminyltransferase from Dictyostelium. Ercan A, West CM. Glycobiology 15 489-500 (2005)
  113. Lyase activity of glycogen synthase: Is an elimination/addition mechanism a possible reaction pathway for retaining glycosyltransferases? Díaz A, Díaz-Lobo M, Grados E, Guinovart JJ, Fita I, Ferrer JC. IUBMB Life 64 649-658 (2012)
  114. Molecular dynamics simulations of glycosyltransferase LgtC. Snajdrová L, Kulhánek P, Imberty A, Koca J. Carbohydr Res 339 995-1006 (2004)
  115. Site-directed mutagenesis of glutamate 317 of bovine alpha-1,3Galactosyltransferase and its effect on enzyme activity: implications for reaction mechanism. Molina P, Knegtel RM, Macher BA. Biochim Biophys Acta 1770 1266-1273 (2007)
  116. Carbon-Source Dependent Interplay of Copper and Manganese Ions Modulates the Morphology and Itaconic Acid Production in Aspergillus terreus. Sándor E, Kolláth IS, Fekete E, Bíró V, Flipphi M, Kovács B, Kubicek CP, Karaffa L. Front Microbiol 12 680420 (2021)
  117. Cdi gene is required for pollen germination and tube growth in Arabidopsis. Li HM, Chen H, Yang ZN, Gong JM. FEBS Lett 586 1027-1031 (2012)
  118. Uncharged nucleoside inhibitors of β-1,4-galactosyltransferase with activity in cells. Jiang J, Kanabar V, Padilla B, Man F, Pitchford SC, Page CP, Wagner GK. Chem Commun (Camb) 52 3955-3958 (2016)
  119. Computational insights into active site shaping for substrate specificity and reaction regioselectivity in the EXTL2 retaining glycosyltransferase. Mendoza F, Lluch JM, Masgrau L. Org Biomol Chem 15 9095-9107 (2017)
  120. Covalent inhibitors of LgtC: A blueprint for the discovery of non-substrate-like inhibitors for bacterial glycosyltransferases. Xu Y, Smith R, Vivoli M, Ema M, Goos N, Gehrke S, Harmer NJ, Wagner GK. Bioorg Med Chem 25 3182-3194 (2017)
  121. Novel UDP-GalNAc Derivative Structures Provide Insight into the Donor Specificity of Human Blood Group Glycosyltransferase. Wagner GK, Pesnot T, Palcic MM, Jørgensen R. J Biol Chem 290 31162-31172 (2015)
  122. Sequence-based predictions of lipooligosaccharide diversity in the Neisseriaceae and their implication in pathogenicity. Stein DC, Miller CJ, Bhoopalan SV, Sommer DD. PLoS One 6 e18923 (2011)
  123. Structure of the Glycosyltransferase Ktr4p from Saccharomyces cerevisiae. Possner DD, Claesson M, Guy JE. PLoS One 10 e0136239 (2015)
  124. Unusual sugar nucleotide recognition elements of mesophilic vs. thermophilic glycogen synthases. Zea CJ, Pohl NL. Biopolymers 79 106-113 (2005)
  125. A one-pot approach to bio-synthesize globotriose and its derivatives from simpler substrates. Zhao X, Zou Y, Xue M, Ma Z, Wang S, Wang PG, Chen M. Eur J Med Chem 80 423-427 (2014)
  126. Biochemical characterization of the retaining glycosyltransferase glucosyl-3-phosphoglycerate synthase from Mycobacterium tuberculosis. Kumar G, Guan S, Frantom PA. Arch Biochem Biophys 564 120-127 (2014)
  127. Chemoenzymatic synthesis of 6-phospho-cyclophellitol as a novel probe of 6-phospho-β-glucosidases. Kwan DH, Jin Y, Jiang J, Chen HM, Kötzler MP, Overkleeft HS, Davies GJ, Withers SG. FEBS Lett 590 461-468 (2016)
  128. Mechanisms of glycosyltransferases: the in and the out. Jakeman DL. Chembiochem 12 2540-2542 (2011)
  129. One-step synthesis of novel glycosyltransferase inhibitors. Evitt A, Tedaldi LM, Wagner GK. Chem Commun (Camb) 48 11856-11858 (2012)
  130. Polar Flagella Glycosylation in Aeromonas: Genomic Characterization and Involvement of a Specific Glycosyltransferase (Fgi-1) in Heterogeneous Flagella Glycosylation. Forn-Cuní G, Fulton KM, Smith JC, Twine SM, Mendoza-Barberà E, Tomás JM, Merino S. Front Microbiol 11 595697 (2020)
  131. Structural and enzymatic analyses of a glucosyltransferase Alr3699/HepE involved in Anabaena heterocyst envelop polysaccharide biosynthesis. Wang XP, Jiang YL, Dai YN, Cheng W, Chen Y, Zhou CZ. Glycobiology 26 520-531 (2016)
  132. Synthesis of 2-fluoro and 4-fluoro galactopyranosyl phosphonate analogues of UDP-Gal. Jambal I, Kefurt K, Hlaváčková M, Moravcová J. Carbohydr Res 360 31-39 (2012)
  133. Clostridioides difficile TcdB Toxin Glucosylates Rho GTPase by an SNi Mechanism and Ion Pair Transition State. Paparella AS, Cahill SM, Aboulache BL, Schramm VL. ACS Chem Biol 17 2507-2518 (2022)
  134. Identification of non-substrate-like glycosyltransferase inhibitors from library screening: pitfalls & hits. Ema M, Xu Y, Gehrke S, Wagner GK. Medchemcomm 9 131-137 (2018)
  135. A cell-permeable probe for the labelling of a bacterial glycosyltransferase and virulence factor. Xu Y, Wagner GK. RSC Chem Biol 5 55-62 (2024)
  136. Biochemical Characterization and Synthetic Application of WciN and Its Mutants From Streptococcus pneumoniae Serotype 6B. Gong W, Liang M, Zhao J, Wang H, Chen Z, Wang F, Gu G. Front Chem 10 914698 (2022)
  137. Identification and expression analysis of the PtGATL genes under different nitrogen and carbon dioxide treatments in Populus trichocarpa. Suo J, Zhang S, Xu C, Chang R, Xu X, Liu G, Yang C, Xu Z, Qu C. 3 Biotech 12 67 (2022)
  138. Identification of lthB, a Gene Encoding a Putative Glycosyltransferase Family 8 Protein Required for Leptothrix Sheath Formation. Kunoh T, Yamamoto T, Ono E, Sugimoto S, Takabe K, Takeda M, Utada AS, Nomura N. Appl Environ Microbiol 89 e0191922 (2023)