1fr8 Citations

Crystal structures of the bovine beta4galactosyltransferase catalytic domain and its complex with uridine diphosphogalactose.

EMBO J 18 3546-57 (1999)
Cited: 136 times
EuropePMC logo PMID: 10393171

Abstract

beta1,4-galactosyltransferase T1 (beta4Gal-T1, EC 2.4.1.90/38), a Golgi resident membrane-bound enzyme, transfers galactose from uridine diphosphogalactose to the terminal beta-N-acetylglucosamine residues forming the poly-N-acetyllactosamine core structures present in glycoproteins and glycosphingolipids. In mammals, beta4Gal-T1 binds to alpha-lactalbumin, a protein that is structurally homologous to lyzozyme, to produce lactose. beta4Gal-T1 is a member of a large family of homologous beta4galactosyltransferases that use different types of glycoproteins and glycolipids as substrates. Here we solved and refined the crystal structures of recombinant bovine beta4Gal-T1 to 2.4 A resolution in the presence and absence of the substrate uridine diphosphogalactose. The crystal structure of the bovine substrate-free beta4Gal-T1 catalytic domain showed a new fold consisting of a single conical domain with a large open pocket at its base. In the substrate-bound complex, the pocket encompassed residues interacting with uridine diphosphogalactose. The structure of the complex contained clear regions of electron density for the uridine diphosphate portion of the substrate, where its beta-phosphate group was stabilized by hydrogen-bonding contacts with conserved residues including the Asp252ValAsp254 motif. These results help the interpretation of engineered beta4Gal-T1 point mutations. They suggest a mechanism possibly involved in galactose transfer and enable identification of the critical amino acids involved in alpha-lactalbumin interactions.

Reviews - 1fr8 mentioned but not cited (1)

  1. Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Chang A, Singh S, Phillips GN, Thorson JS. Curr Opin Biotechnol 22 800-808 (2011)

Articles - 1fr8 mentioned but not cited (5)

  1. Bovine alpha1,3-galactosyltransferase catalytic domain structure and its relationship with ABO histo-blood group and glycosphingolipid glycosyltransferases. Gastinel LN, Bignon C, Misra AK, Hindsgaul O, Shaper JH, Joziasse DH. EMBO J 20 638-649 (2001)
  2. Iterative cluster-NMA: A tool for generating conformational transitions in proteins. Schuyler AD, Jernigan RL, Qasba PK, Ramakrishnan B, Chirikjian GS. Proteins 74 760-776 (2009)
  3. Rapid catalytic template searching as an enzyme function prediction procedure. Nilmeier JP, Kirshner DA, Wong SE, Lightstone FC. PLoS One 8 e62535 (2013)
  4. The dimeric structure of wild-type human glycosyltransferase B4GalT1. Harrus D, Khoder-Agha F, Peltoniemi M, Hassinen A, Ruddock L, Kellokumpu S, Glumoff T. PLoS One 13 e0205571 (2018)
  5. A new definition and properties of the similarity value between two protein structures. Saberi Fathi SM. J Biol Phys 42 621-636 (2016)


Reviews citing this publication (26)

  1. Glycosyltransferases: structures, functions, and mechanisms. Lairson LL, Henrissat B, Davies GJ, Withers SG. Annu Rev Biochem 77 521-555 (2008)
  2. Structures and mechanisms of glycosyltransferases. Breton C, Snajdrová L, Jeanneau C, Koca J, Imberty A. Glycobiology 16 29R-37R (2006)
  3. Glycoside hydrolases and glycosyltransferases: families and functional modules. Bourne Y, Henrissat B. Curr Opin Struct Biol 11 593-600 (2001)
  4. Glycosyltransferase structure and mechanism. Unligil UM, Rini JM. Curr Opin Struct Biol 10 510-517 (2000)
  5. Substrate-induced conformational changes in glycosyltransferases. Qasba PK, Ramakrishnan B, Boeggeman E. Trends Biochem Sci 30 53-62 (2005)
  6. Carbohydrate mimetics-based glycosyltransferase inhibitors. Compain P, Martin OR. Bioorg Med Chem 9 3077-3092 (2001)
  7. Structure/function studies of glycosyltransferases. Breton C, Imberty A. Curr Opin Struct Biol 9 563-571 (1999)
  8. Fucosyltransferases: structure/function studies. de Vries T, Knegtel RM, Holmes EH, Macher BA. Glycobiology 11 119R-128R (2001)
  9. Remarkable structural similarities between diverse glycosyltransferases. Hu Y, Walker S. Chem Biol 9 1287-1296 (2002)
  10. The joys of HexNAc. The synthesis and function of N- and O-glycan branches. Schachter H. Glycoconj J 17 465-483 (2000)
  11. Biocatalytic synthesis of oligosaccharides. Palcic MM. Curr Opin Biotechnol 10 616-624 (1999)
  12. Structural and functional features of glycosyltransferases. Breton C, Mucha J, Jeanneau C. Biochimie 83 713-718 (2001)
  13. Structure and function of beta -1,4-galactosyltransferase. Qasba PK, Ramakrishnan B, Boeggeman E. Curr Drug Targets 9 292-309 (2008)
  14. Structure and catalytic cycle of beta-1,4-galactosyltransferase. Ramakrishnan B, Boeggeman E, Ramasamy V, Qasba PK. Curr Opin Struct Biol 14 593-600 (2004)
  15. Biosynthetic Machinery Involved in Aberrant Glycosylation: Promising Targets for Developing of Drugs Against Cancer. Vasconcelos-Dos-Santos A, Oliveira IA, Lucena MC, Mantuano NR, Whelan SA, Dias WB, Todeschini AR. Front Oncol 5 138 (2015)
  16. Structure--function characterization of cellulose synthase: relationship to other glycosyltransferases. Saxena IM, Brown RM, Dandekar T. Phytochemistry 57 1135-1148 (2001)
  17. Microbial toxins and the glycosylation of rho family GTPases. Busch C, Aktories K. Curr Opin Struct Biol 10 528-535 (2000)
  18. Small-molecule therapeutics for the treatment of glycolipid lysosomal storage disorders. Butters TD, Mellor HR, Narita K, Dwek RA, Platt FM. Philos Trans R Soc Lond B Biol Sci 358 927-945 (2003)
  19. Cellulose synthases and related enzymes. Saxena IM, Brown RM. Curr Opin Plant Biol 3 523-531 (2000)
  20. Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. Negishi M, Dong J, Darden TA, Pedersen LG, Pedersen LC. Biochem Biophys Res Commun 303 393-398 (2003)
  21. Lactose: the milk sugar from a biotechnological perspective. Adam AC, Rubio-Texeira M, Polaina J. Crit Rev Food Sci Nutr 44 553-557 (2004)
  22. Beta-1,4-galactosyltransferase and lactose synthase: molecular mechanical devices. Ramakrishnan B, Boeggeman E, Qasba PK. Biochem Biophys Res Commun 291 1113-1118 (2002)
  23. Glycosyltransferase engineering for carbohydrate synthesis. McArthur JB, Chen X. Biochem Soc Trans 44 129-142 (2016)
  24. The importance of disordered loops in ABO glycosyltransferases. Yazer MH, Palcic MM. Transfus Med Rev 19 210-216 (2005)
  25. Development and leading-edge application of innovative photoaffinity labeling. Hatanaka Y. Chem Pharm Bull (Tokyo) 63 1-12 (2015)
  26. Galactosyltransferase--still up and running. Berger EG, Rohrer J. Biochimie 85 261-274 (2003)

Articles citing this publication (104)

  1. An evolving hierarchical family classification for glycosyltransferases. Coutinho PM, Deleury E, Davies GJ, Henrissat B. J Mol Biol 328 307-317 (2003)
  2. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Brückner K, Perez L, Clausen H, Cohen S. Nature 406 411-415 (2000)
  3. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Shao H, He X, Achnine L, Blount JW, Dixon RA, Wang X. Plant Cell 17 3141-3154 (2005)
  4. The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Ha S, Walker D, Shi Y, Walker S. Protein Sci 9 1045-1052 (2000)
  5. X-ray crystal structure of rabbit N-acetylglucosaminyltransferase I: catalytic mechanism and a new protein superfamily. Unligil UM, Zhou S, Yuwaraj S, Sarkar M, Schachter H, Rini JM. EMBO J 19 5269-5280 (2000)
  6. A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Henrissat B, Coutinho PM, Davies GJ. Plant Mol Biol 47 55-72 (2001)
  7. Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M, Walker S. Proc Natl Acad Sci U S A 100 845-849 (2003)
  8. The notch signalling regulator fringe acts in the Golgi apparatus and requires the glycosyltransferase signature motif DXD. Munro S, Freeman M. Curr Biol 10 813-820 (2000)
  9. Structure of the UDP-glucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. Mulichak AM, Losey HC, Walsh CT, Garavito RM. Structure 9 547-557 (2001)
  10. Crystal structure of lactose synthase reveals a large conformational change in its catalytic component, the beta1,4-galactosyltransferase-I. Ramakrishnan B, Qasba PK. J Mol Biol 310 205-218 (2001)
  11. The lectin domain of UDP-N-acetyl-D-galactosamine: polypeptide N-acetylgalactosaminyltransferase-T4 directs its glycopeptide specificities. Hassan H, Reis CA, Bennett EP, Mirgorodskaya E, Roepstorff P, Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H. J Biol Chem 275 38197-38205 (2000)
  12. PIG-M transfers the first mannose to glycosylphosphatidylinositol on the lumenal side of the ER. Maeda Y, Watanabe R, Harris CL, Hong Y, Ohishi K, Kinoshita K, Kinoshita T. EMBO J 20 250-261 (2001)
  13. Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). Kubota T, Shiba T, Sugioka S, Furukawa S, Sawaki H, Kato R, Wakatsuki S, Narimatsu H. J Mol Biol 359 708-727 (2006)
  14. Three-dimensional structures of the Mn and Mg dTDP complexes of the family GT-2 glycosyltransferase SpsA: a comparison with related NDP-sugar glycosyltransferases. Tarbouriech N, Charnock SJ, Davies GJ. J Mol Biol 314 655-661 (2001)
  15. Molecular cloning and characterization of UDP-GlcNAc:lactosylceramide beta 1,3-N-acetylglucosaminyltransferase (beta 3Gn-T5), an essential enzyme for the expression of HNK-1 and Lewis X epitopes on glycolipids. Togayachi A, Akashima T, Ookubo R, Kudo T, Nishihara S, Iwasaki H, Natsume A, Mio H, Inokuchi J, Irimura T, Sasaki K, Narimatsu H. J Biol Chem 276 22032-22040 (2001)
  16. Chemo-enzymatic synthesis of fluorinated sugar nucleotide: useful mechanistic probes for glycosyltransferases. Burkart MD, Vincent SP, Düffels A, Murray BW, Ley SV, Wong CH. Bioorg Med Chem 8 1937-1946 (2000)
  17. Beta-D-glycan synthases and the CesA gene family: lessons to be learned from the mixed-linkage (1-->3),(1-->4)beta-D-glucan synthase. Vergara CE, Carpita NC. Plant Mol Biol 47 145-160 (2001)
  18. A novel beta1,3-N-acetylglucosaminyltransferase (beta3Gn-T8), which synthesizes poly-N-acetyllactosamine, is dramatically upregulated in colon cancer. Ishida H, Togayachi A, Sakai T, Iwai T, Hiruma T, Sato T, Okubo R, Inaba N, Kudo T, Gotoh M, Shoda J, Tanaka N, Narimatsu H. FEBS Lett 579 71-78 (2005)
  19. Crystal structure of mammalian alpha1,6-fucosyltransferase, FUT8. Ihara H, Ikeda Y, Toma S, Wang X, Suzuki T, Gu J, Miyoshi E, Tsukihara T, Honke K, Matsumoto A, Nakagawa A, Taniguchi N. Glycobiology 17 455-466 (2007)
  20. Two sequence elements of glycosyltransferases involved in urdamycin biosynthesis are responsible for substrate specificity and enzymatic activity. Hoffmeister D, Ichinose K, Bechthold A. Chem Biol 8 557-567 (2001)
  21. Molecular cloning, gene organization and expression of the human UDP-GalNAc:Neu5Acalpha2-3Galbeta-R beta1,4-N-acetylgalactosaminyltransferase responsible for the biosynthesis of the blood group Sda/Cad antigen: evidence for an unusual extended cytoplasmic domain. Montiel MD, Krzewinski-Recchi MA, Delannoy P, Harduin-Lepers A. Biochem J 373 369-379 (2003)
  22. Highly efficient chemoenzymatic synthesis of beta1-4-linked galactosides with promiscuous bacterial beta1-4-galactosyltransferases. Lau K, Thon V, Yu H, Ding L, Chen Y, Muthana MM, Wong D, Huang R, Chen X. Chem Commun (Camb) 46 6066-6068 (2010)
  23. Functional analysis of Drosophila beta1,4-N-acetlygalactosaminyltransferases. Haines N, Irvine KD. Glycobiology 15 335-346 (2005)
  24. Structural and mechanistic basis for a new mode of glycosyltransferase inhibition. Pesnot T, Jørgensen R, Palcic MM, Wagner GK. Nat Chem Biol 6 321-323 (2010)
  25. Structure of A197 from Sulfolobus turreted icosahedral virus: a crenarchaeal viral glycosyltransferase exhibiting the GT-A fold. Larson ET, Reiter D, Young M, Lawrence CM. J Virol 80 7636-7644 (2006)
  26. Structural snapshots of beta-1,4-galactosyltransferase-I along the kinetic pathway. Ramakrishnan B, Ramasamy V, Qasba PK. J Mol Biol 357 1619-1633 (2006)
  27. On-chip synthesis and label-free assays of oligosaccharide arrays. Ban L, Mrksich M. Angew Chem Int Ed Engl 47 3396-3399 (2008)
  28. Characterization of cysteine residues and disulfide bonds in proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. Yen TY, Joshi RK, Yan H, Seto NO, Palcic MM, Macher BA. J Mass Spectrom 35 990-1002 (2000)
  29. Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era. Perrin R, Wilkerson C, Keegstra K. Plant Mol Biol 47 115-130 (2001)
  30. Molecular genetic analysis of the glycosyltransferase Fringe in Drosophila. Correia T, Papayannopoulos V, Panin V, Woronoff P, Jiang J, Vogt TF, Irvine KD. Proc Natl Acad Sci U S A 100 6404-6409 (2003)
  31. Studies on the metal binding sites in the catalytic domain of beta1,4-galactosyltransferase. Boeggeman E, Qasba PK. Glycobiology 12 395-407 (2002)
  32. Novel mixed-linkage β-glucan activated by c-di-GMP in Sinorhizobium meliloti. Pérez-Mendoza D, Rodríguez-Carvajal MÁ, Romero-Jiménez L, Farias Gde A, Lloret J, Gallegos MT, Sanjuán J. Proc Natl Acad Sci U S A 112 E757-65 (2015)
  33. Specificity and mechanism of metal ion activation in UDP-galactose:beta -galactoside-alpha -1,3-galactosyltransferase. Zhang Y, Wang PG, Brew K. J Biol Chem 276 11567-11574 (2001)
  34. Conformational states and thermodynamics of alpha-lactalbumin bound to membranes: a case study of the effects of pH, calcium, lipid membrane curvature and charge. Chenal A, Vernier G, Savarin P, Bushmarina NA, Gèze A, Guillain F, Gillet D, Forge V. J Mol Biol 349 890-905 (2005)
  35. Minimal structural and glycosylation requirements for ST6Gal I activity and trafficking. Chen C, Colley KJ. Glycobiology 10 531-583 (2000)
  36. Synthesis of novel ammonium and selenonium ions and their evaluation as inhibitors of UDP-galactopyranose mutase. Veerapen N, Yuan Y, Sanders DA, Pinto BM. Carbohydr Res 339 2205-2217 (2004)
  37. Triggering loops and enzyme function: identification of loops that trigger and modulate movements. Gunasekaran K, Ma B, Nussinov R. J Mol Biol 332 143-159 (2003)
  38. Deoxygenated disaccharide analogs as specific inhibitors of beta1-4-galactosyltransferase 1 and selectin-mediated tumor metastasis. Brown JR, Yang F, Sinha A, Ramakrishnan B, Tor Y, Qasba PK, Esko JD. J Biol Chem 284 4952-4959 (2009)
  39. Functional roles for beta1,4-N-acetlygalactosaminyltransferase-A in Drosophila larval neurons and muscles. Haines N, Stewart BA. Genetics 175 671-679 (2007)
  40. Substrate-induced conformational changes and dynamics of UDP-N-acetylgalactosamine:polypeptide N-acetylgalactosaminyltransferase-2. Milac AL, Buchete NV, Fritz TA, Hummer G, Tabak LA. J Mol Biol 373 439-451 (2007)
  41. Oligosaccharide preferences of beta1,4-galactosyltransferase-I: crystal structures of Met340His mutant of human beta1,4-galactosyltransferase-I with a pentasaccharide and trisaccharides of the N-glycan moiety. Ramasamy V, Ramakrishnan B, Boeggeman E, Ratner DM, Seeberger PH, Qasba PK. J Mol Biol 353 53-67 (2005)
  42. Comparison of glycosyltransferase families using the profile hidden Markov model. Kikuchi N, Kwon YD, Gotoh M, Narimatsu H. Biochem Biophys Res Commun 310 574-579 (2003)
  43. Molecular dissection of the ST8Sia IV polysialyltransferase. Distinct domains are required for neural cell adhesion molecule recognition and polysialylation. Angata K, Chan D, Thibault J, Fukuda M. J Biol Chem 279 25883-25890 (2004)
  44. Biochemical characterization of the beta-1,4-glucuronosyltransferase GelK in the gellan gum-producing strain Sphingomonas paucimobilis A.T.C.C. 31461. Videira P, Fialho A, Geremia RA, Breton C, Sá-Correia I. Biochem J 358 457-464 (2001)
  45. Evolution of the genetic code by incorporation of amino acids that improved or changed protein function. Francis BR. J Mol Evol 77 134-158 (2013)
  46. Glycosyl fluorides can function as substrates for nucleotide phosphosugar-dependent glycosyltransferases. Lougheed B, Ly HD, Wakarchuk WW, Withers SG. J Biol Chem 274 37717-37722 (1999)
  47. Requirements for catalysis in mammalian glycogenin. Hurley TD, Stout S, Miner E, Zhou J, Roach PJ. J Biol Chem 280 23892-23899 (2005)
  48. Specific amino acids of the glycosyltransferase LpsA direct the addition of glucose or galactose to the terminal inner core heptose of Haemophilus influenzae lipopolysaccharide via alternative linkages. Deadman ME, Lundström SL, Schweda EK, Moxon ER, Hood DW. J Biol Chem 281 29455-29467 (2006)
  49. Cloning and expression of beta1,4-galactosyltransferase gene from Helicobacter pylori. Endo T, Koizumi S, Tabata K, Ozaki A. Glycobiology 10 809-813 (2000)
  50. Combinatorial library of five-membered iminocyclitol and the inhibitory activities against glyco-enzymes. Saotome C, Wong CH, Kanie O. Chem Biol 8 1061-1070 (2001)
  51. Identification of residues involved in catalytic activity of the inverting glycosyl transferase WbbE from Salmonella enterica serovar borreze. Keenleyside WJ, Clarke AJ, Whitfield C. J Bacteriol 183 77-85 (2001)
  52. Photochemical fishing approaches for identifying target proteins and elucidating the structure of a ligand-binding region using carbene-generating photoreactive probes. Sadakane Y, Hatanaka Y. Anal Sci 22 209-218 (2006)
  53. The DXD motif is required for GM2 synthase activity but is not critical for nucleotide binding. Li J, Rancour DM, Allende ML, Worth CA, Darling DS, Gilbert JB, Menon AK, Young WW. Glycobiology 11 217-229 (2001)
  54. The role of tryptophan 314 in the conformational changes of beta1,4-galactosyltransferase-I. Ramasamy V, Ramakrishnan B, Boeggeman E, Qasba PK. J Mol Biol 331 1065-1076 (2003)
  55. Identification of key functional residues in the active site of human {beta}1,4-galactosyltransferase 7: a major enzyme in the glycosaminoglycan synthesis pathway. Talhaoui I, Bui C, Oriol R, Mulliert G, Gulberti S, Netter P, Coughtrie MW, Ouzzine M, Fournel-Gigleux S. J Biol Chem 285 37342-37358 (2010)
  56. Improving solubility of catalytic domain of human beta-1,4-galactosyltransferase 1 through rationally designed amino acid replacements. Malissard M, Berger EG. Eur J Biochem 268 4352-4358 (2001)
  57. The N-terminal stem region of bovine and human beta1,4-galactosyltransferase I increases the in vitro folding efficiency of their catalytic domain from inclusion bodies. Boeggeman EE, Ramakrishnan B, Qasba PK. Protein Expr Purif 30 219-229 (2003)
  58. The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogs. Jelakovic S, Schulz GE. J Mol Biol 312 143-155 (2001)
  59. Ancestral exonic organization of FUT8, the gene encoding the alpha6-fucosyltransferase, reveals successive peptide domains which suggest a particular three-dimensional core structure for the alpha6-fucosyltransferase family. Javaud C, Dupuy F, Maftah A, Michalski JC, Oriol R, Petit JM, Julien R. Mol Biol Evol 17 1661-1672 (2000)
  60. Identification of two cysteine residues involved in the binding of UDP-GalNAc to UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase 1 (GalNAc-T1). Tenno M, Toba S, Kézdy FJ, Elhammer AP, Kurosaka A. Eur J Biochem 269 4308-4316 (2002)
  61. A motif rich in charged residues determines product specificity in isomaltulose synthase. Zhang D, Li N, Swaminathan K, Zhang LH. FEBS Lett 534 151-155 (2003)
  62. Comparison of the closed conformation of the beta 1,4-galactosyltransferase-1 (beta 4Gal-T1) in the presence and absence of alpha-lactalbumin (LA). Ramakrishnan B, Qasba PK. J Biomol Struct Dyn 21 1-8 (2003)
  63. Modulating functional loop movements: the role of highly conserved residues in the correlated loop motions. Gunasekaran K, Nussinov R. Chembiochem 5 224-230 (2004)
  64. Molecular modeling insights into the catalytic mechanism of the retaining galactosyltransferase LgtC. Tvaroska I. Carbohydr Res 339 1007-1014 (2004)
  65. A novel human glycosyltransferase: primary structure and characterization of the gene and transcripts. Heinonen TY, Pasternack L, Lindfors K, Breton C, Gastinel LN, Mäki M, Kainulainen H. Biochem Biophys Res Commun 309 166-174 (2003)
  66. Characterization of the catalytic domain of Clostridium novyi alpha-toxin. Busch C, Schömig K, Hofmann F, Aktories K. Infect Immun 68 6378-6383 (2000)
  67. Alpha-retaining glucosyl transfer catalysed by trehalose phosphorylase from Schizophyllum commune: mechanistic evidence obtained from steady-state kinetic studies with substrate analogues and inhibitors. Nidetzky B, Eis C. Biochem J 360 727-736 (2001)
  68. Functional assignment of motifs conserved in beta 1,3-glycosyltransferases. Malissard M, Dinter A, Berger EG, Hennet T. Eur J Biochem 269 233-239 (2002)
  69. Identification of essential amino acids in the Azorhizobium caulinodans fucosyltransferase NodZ. Chazalet V, Uehara K, Geremia RA, Breton C. J Bacteriol 183 7067-7075 (2001)
  70. Mutagenesis and Functional Analysis of the Bacterial Arginine Glycosyltransferase Effector NleB1 from Enteropathogenic Escherichia coli. Wong Fok Lung T, Giogha C, Creuzburg K, Ong SY, Pollock GL, Zhang Y, Fung KY, Pearson JS, Hartland EL. Infect Immun 84 1346-1360 (2016)
  71. Glycosyl transfer: a history of the concept's development and view of its major contributions to biochemistry. Hehre EJ. Carbohydr Res 331 347-368 (2001)
  72. Molecular Recognition of UDP-Gal by β-1,4-Galactosyltransferase T1. Biet T, Peters T. Angew Chem Int Ed Engl 40 4189-4192 (2001)
  73. Phylogenetic and mutational analyses reveal key residues for UDP-glucuronic acid binding and activity of beta1,3-glucuronosyltransferase I (GlcAT-I). Fondeur-Gelinotte M, Lattard V, Oriol R, Mollicone R, Jacquinet JC, Mulliert G, Gulberti S, Netter P, Magdalou J, Ouzzine M, Fournel-Gigleux S. Protein Sci 15 1667-1678 (2006)
  74. Structural and mechanistic insights into lunatic fringe from a kinetic analysis of enzyme mutants. Luther KB, Schindelin H, Haltiwanger RS. J Biol Chem 284 3294-3305 (2009)
  75. Thermodynamics of binding of divalent magnesium and manganese to uridine phosphates: implications for diabetes-related hypomagnesaemia and carbohydrate biocatalysis. Zea CJ, Camci-Unal G, Pohl NL. Chem Cent J 2 15 (2008)
  76. A novel member of the glycosyltransferase family, beta 3 Gn-T2, highly downregulated in invasive human bladder transitional cell carcinomas. Gromova I, Gromov P, Celis JE. Mol Carcinog 32 61-72 (2001)
  77. Identification of active site residues of the inverting glycosyltransferase Cgs required for the synthesis of cyclic beta-1,2-glucan, a Brucella abortus virulence factor. Ciocchini AE, Roset MS, Briones G, Iñón de Iannino N, Ugalde RA. Glycobiology 16 679-691 (2006)
  78. On the reaction pathways and determination of transition-state structures for retaining alpha-galactosyltransferases. André I, Tvaroska I, Carver JP. Carbohydr Res 338 865-877 (2003)
  79. Overexpression, purification, biochemical characterization, and molecular modeling of recombinant GDP-mannosyltransferase (GumH) from Xylella fastidiosa. Muniz JR, Alves CA, de Pieri C, Beltramini LM, Selistre-de-Araújo HS, Vettore AL, da Silva FR, Arruda P, Garratt RC, Oliva G, Souza DH. Biochem Biophys Res Commun 315 485-492 (2004)
  80. Cross-talks of glycosylphosphatidylinositol biosynthesis with glycosphingolipid biosynthesis and ER-associated degradation. Wang Y, Maeda Y, Liu YS, Takada Y, Ninomiya A, Hirata T, Fujita M, Murakami Y, Kinoshita T. Nat Commun 11 860 (2020)
  81. Highly conserved cysteines of mouse core 2 beta1,6-N-acetylglucosaminyltransferase I form a network of disulfide bonds and include a thiol that affects enzyme activity. Yen TY, Macher BA, Bryson S, Chang X, Tvaroska I, Tse R, Takeshita S, Lew AM, Datti A. J Biol Chem 278 45864-45881 (2003)
  82. Neighboring cysteine residues in human fucosyltransferase VII are engaged in disulfide bridges, forming small loop structures. de Vries T, Yen TY, Joshi RK, Storm J, van Den Eijnden DH, Knegtel RM, Bunschoten H, Joziasse DH, Macher BA. Glycobiology 11 423-432 (2001)
  83. Characterization of sialyltransferase mutants using surface plasmon resonance. Laroy W, Ameloot P, Contreras R. Glycobiology 11 175-182 (2001)
  84. Synthesis of uridine 5'-[2-S-pyridyl-3-thio-alpha-D-galactopyranosyl diphosphate]: precursor of UDP-thiogal sugar nucleotide donor substrate for beta-1,4-galactosyltransferase. Elhalabi J, Rice KG. Nucleosides Nucleotides Nucleic Acids 23 195-205 (2004)
  85. Thiosugar nucleotide analogs: synthesis of 5'-(2,3,4-tri-O-acetyl-6-S-acetyl-6-thio-alpha-D-galactopyranosyl diphosphate). Elhalabi J, Rice KG. Carbohydr Res 337 1935-1940 (2002)
  86. Amino-acid substitution in the disordered loop of blood group B-glycosyltransferase enzyme causes weak B phenotype. Yazer MH, Denomme GA, Rose NL, Palcic MM. Transfusion 45 1178-1182 (2005)
  87. Conformational behavior of nucleotide-sugar in solution: molecular dynamics and NMR study of solvated uridine diphosphate-glucose in the presence of monovalent cations. Petrová P, Monteiro C, Hervé du Penhoat C, Koca J, Imberty A. Biopolymers 58 617-635 (2001)
  88. Synthesis of 2-deoxy-hexopyranosyl derivatives of uridine as donor substrate analogues for glycosyltransferases. Wandzik I, Bieg T, Czaplicka M. Bioorg Chem 37 211-216 (2009)
  89. A model of photoprobe docking with beta1,4-galactosyltransferase identifies a possible carboxylate involved in glycosylation steps. Hatanaka Y, Ishiguro M, Hashimoto M, Gastinel LN, Nakagomi K. Bioorg Med Chem Lett 11 411-413 (2001)
  90. Thiosugar nucleotide analogues: synthesis of uridine 5'-(2,3,6-tri-O-acetyl-4-S-acetyl-4-thio-alpha-D-galactopyranosyl diphosphate). Elhalabi J, Rice KG. Carbohydr Res 335 159-165 (2001)
  91. Alpha 1,3 galactosyltransferase: new sequences and characterization of conserved cysteine residues. Shetterly S, Tom I, Yen TY, Joshi R, Lee L, Wang PG, Macher BA. Glycobiology 11 645-653 (2001)
  92. Structure of bovine alpha-1,3-galactosyltransferase and its complexes with UDP and DPGal inferred from molecular modeling. Rao M, Tvaroska I. Proteins 44 428-434 (2001)
  93. The Vaccinia Virus H3 Envelope Protein, a Major Target of Neutralizing Antibodies, Exhibits a Glycosyltransferase Fold and Binds UDP-Glucose. Singh K, Gittis AG, Gitti RK, Ostazeski SA, Su HP, Garboczi DN. J Virol 90 5020-5030 (2016)
  94. Porcine beta1,4-galactosyltransferase-I sequence and expression. Landers EA, Burkin HR, Bleck GT, Howell-Skalla L, Miller DJ. Reprod Domest Anim 44 228-234 (2009)
  95. Solution conformation of various uridine diphosphoglucose salts as probed by NMR spectroscopy. Monteiro C, Neyret S, Leforestier J, Hervé du Penhoat C. Carbohydr Res 329 141-155 (2000)
  96. Unusual sugar nucleotide recognition elements of mesophilic vs. thermophilic glycogen synthases. Zea CJ, Pohl NL. Biopolymers 79 106-113 (2005)
  97. An efficient synthesis of GDP-hexanolamine, a key tool for the purification of fucosyltransferases. Vincent SP, Gastinel LN. Carbohydr Res 337 1039-1042 (2002)
  98. Lactose on the basolateral side of mammary epithelial cells inhibits milk production concomitantly with signal transducer and activator of transcription 5 inactivation. Kobayashi K, Wakasa H, Han L, Koyama T, Tsugami Y, Nishimura T. Cell Tissue Res 389 501-515 (2022)
  99. Synthesis and photolytic activation of 6''-O-2-nitrobenzyl uridine-5'-diphosphogalactose: a 'caged' UDP-Gal derivative. Mannerstedt K, Hindsgaul O. Carbohydr Res 343 875-881 (2008)
  100. Synthesis of protected 2-amino-2-deoxy-D-xylothionolactam derivatives and some aspects of their reactivity. Devel L, Hamon L, Becker H, Thellend A, Vidal-Cros A. Carbohydr Res 338 1591-1601 (2003)
  101. Identification of novel LFNG mutations in spondylocostal dysostosis. Otomo N, Mizumoto S, Lu HF, Takeda K, Campos-Xavier B, Mittaz-Crettol L, Guo L, Takikawa K, Nakamura M, Yamada S, Matsumoto M, Watanabe K, Ikegawa S. J Hum Genet 64 261-264 (2019)
  102. So what do your sugars do? Hughes RC. Glycoconj J 17 567-575 (2000)
  103. Generation of novel chimeric LacdiNAcS by gene fusion of alpha-lactalbumin and beta1,4-galactosyltransferase 1. Do SI. Glycoconj J 26 567-575 (2009)
  104. Glycoprotein In Vitro N-Glycan Processing Using Enzymes Expressed in E. coli. Zhang L, Li Y, Li R, Yang X, Zheng Z, Fu J, Yu H, Chen X. Molecules 28 2753 (2023)