1ffz Citations

The structural basis of ribosome activity in peptide bond synthesis.

Science 289 920-30 (2000)
Related entries: 1c04, 1ffk, 1fg0

Cited: 1103 times
EuropePMC logo PMID: 10937990

Abstract

Using the atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK(a) (where K(a) is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.

Articles - 1ffz mentioned but not cited (4)

  1. Number, position, and significance of the pseudouridines in the large subunit ribosomal RNA of Haloarcula marismortui and Deinococcus radiodurans. Del Campo M, Recinos C, Yanez G, Pomerantz SC, Guymon R, Crain PF, McCloskey JA, Ofengand J. RNA 11 210-219 (2005)
  2. iPARTS: an improved tool of pairwise alignment of RNA tertiary structures. Wang CW, Chen KT, Lu CL. Nucleic Acids Res. 38 W340-7 (2010)
  3. Ribosomal dynamics inferred from variations in experimental measurements. Gabashvili IS, Whirl-Carrillo M, Bada M, Banatao DR, Altman RB. RNA 9 1301-1307 (2003)
  4. iPARTS2: an improved tool for pairwise alignment of RNA tertiary structures, version 2. Yang CH, Shih CT, Chen KT, Lee PH, Tsai PH, Lin JC, Yen CY, Lin TY, Lu CL. Nucleic Acids Res. 44 W328-32 (2016)


Reviews citing this publication (310)

  1. The case of the missing allosteric ribozymes. Panchapakesan SSS, Breaker RR. Nat Chem Biol (2021)
  2. Cotranslational Folding of Proteins on the Ribosome. Liutkute M, Samatova E, Rodnina MV. Biomolecules 10 (2020)
  3. Myosin and Other Energy-Transducing ATPases: Structural Dynamics Studied by Electron Paramagnetic Resonance. Arata T. Int J Mol Sci 21 (2020)
  4. Nucleic acid-based therapy for coronavirus disease 2019. Piyush R, Rajarshi K, Chatterjee A, Khan R, Ray S. Heliyon 6 e05007 (2020)
  5. Piece by piece: Building a ribozyme. Gray MW, Gopalan V. J Biol Chem 295 2313-2323 (2020)
  6. Translation elongation factor P (EF-P). Hummels KR, Kearns DB. FEMS Microbiol Rev 44 208-218 (2020)
  7. Approaches to the Structure-Based Design of Antivirulence Drugs: Therapeutics for the Post-Antibiotic Era. Neville N, Jia Z. Molecules 24 (2019)
  8. Emerging Role of Eukaryote Ribosomes in Translational Control. Dalla Venezia N, Vincent A, Marcel V, Catez F, Diaz JJ. Int J Mol Sci 20 (2019)
  9. How Ricin Damages the Ribosome. Grela P, Szajwaj M, Horbowicz-Drożdżal P, Tchórzewski M. Toxins (Basel) 11 (2019)
  10. Mechanisms and functions of ribosome-associated protein quality control. Joazeiro CAP. Nat Rev Mol Cell Biol 20 368-383 (2019)
  11. Mechanisms of Cotranslational Maturation of Newly Synthesized Proteins. Kramer G, Shiber A, Bukau B. Annu Rev Biochem 88 337-364 (2019)
  12. Molecular Mechanisms of pre-mRNA Splicing through Structural Biology of the Spliceosome. Yan C, Wan R, Shi Y. Cold Spring Harb Perspect Biol 11 (2019)
  13. NMR characterization of RNA small molecule interactions. Thompson RD, Baisden JT, Zhang Q. Methods 167 66-77 (2019)
  14. Progress in synthesizing protocells. Toparlak OD, Mansy SS. Exp Biol Med (Maywood) 244 304-313 (2019)
  15. Regulation of Ribosome Biogenesis in Skeletal Muscle Hypertrophy. Figueiredo VC, McCarthy JJ. Physiology (Bethesda) 34 30-42 (2019)
  16. The Role of Proton Transfer on Mutations. Srivastava R. Front Chem 7 536 (2019)
  17. Engineered Ribosomes for Basic Science and Synthetic Biology. d'Aquino AE, Kim DS, Jewett MC. Annu Rev Chem Biomol Eng 9 311-340 (2018)
  18. Function and Regulation of Human Terminal Uridylyltransferases. Yashiro Y, Tomita K. Front Genet 9 538 (2018)
  19. Genetic tool development and systemic regulation in biosynthetic technology. Dai Z, Zhang S, Yang Q, Zhang W, Qian X, Dong W, Jiang M, Xin F. Biotechnol Biofuels 11 152 (2018)
  20. Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. FEMS Microbiol. Rev. 42 579-613 (2018)
  21. Large Noncoding RNAs in Bacteria. Harris KA, Breaker RR. Microbiol Spectr 6 (2018)
  22. Non-coding RNAs in virology: an RNA genomics approach. Isaac C, Patel TR, Zovoilis A. Biotechnol. Genet. Eng. Rev. 34 90-106 (2018)
  23. Perspective of ions and messengers: an intricate link between potassium, glutamate, and cyclic di-AMP. Gundlach J, Commichau FM, Stülke J. Curr. Genet. 64 191-195 (2018)
  24. Rewarming the Primordial Soup: Revisitations and Rediscoveries in Prebiotic Chemistry. Saladino R, Šponer JE, Šponer J, Di Mauro E. Chembiochem 19 22-25 (2018)
  25. Ribosome-Targeting Antibiotics: Modes of Action, Mechanisms of Resistance, and Implications for Drug Design. Lin J, Zhou D, Steitz TA, Polikanov YS, Gagnon MG. Annu. Rev. Biochem. 87 451-478 (2018)
  26. Sortase A: A Model for Transpeptidation and Its Biological Applications. Pishesha N, Ingram JR, Ploegh HL. Annu. Rev. Cell Dev. Biol. 34 163-188 (2018)
  27. The Mechanisms of Action of Ribosome-Targeting Peptide Antibiotics. Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. Front Mol Biosci 5 48 (2018)
  28. A Review on Recent Computational Methods for Predicting Noncoding RNAs. Zhang Y, Huang H, Zhang D, Qiu J, Yang J, Wang K, Zhu L, Fan J, Yang J. Biomed Res Int 2017 9139504 (2017)
  29. Basic units of protein structure, folding, and function. Berezovsky IN, Guarnera E, Zheng Z. Prog. Biophys. Mol. Biol. 128 85-99 (2017)
  30. Dynamic basis of fidelity and speed in translation: Coordinated multistep mechanisms of elongation and termination. Prabhakar A, Choi J, Wang J, Petrov A, Puglisi JD. Protein Sci. 26 1352-1362 (2017)
  31. Ligand-dependent ribozymes. Felletti M, Hartig JS. Wiley Interdiscip Rev RNA 8 (2017)
  32. Nucleic acids: function and potential for abiogenesis. Wachowius F, Attwater J, Holliger P. Q Rev Biophys 50 e4 (2017)
  33. RNA structure, binding, and coordination in Arabidopsis. Foley SW, Kramer MC, Gregory BD. Wiley Interdiscip Rev RNA 8 (2017)
  34. Rewiring protein synthesis: From natural to synthetic amino acids. Fan Y, Evans CR, Ling J. Biochim Biophys Acta Gen Subj 1861 3024-3029 (2017)
  35. Ribosome structural dynamics in translocation: yet another functional role for ribosomal RNA. Noller HF, Lancaster L, Mohan S, Zhou J. Q. Rev. Biophys. 50 e12 (2017)
  36. Structural and Biochemical Properties of Novel Self-Cleaving Ribozymes. Lee KY, Lee BJ. Molecules 22 (2017)
  37. Structural biology: Past, present, and future. Moore PB. N Biotechnol 38 29-35 (2017)
  38. The Celebration of 40 years of structural biology at Aarhus University as seen through the eyes of a translationalist. Merrick WC. N Biotechnol 38 26-28 (2017)
  39. The double life of the ribosome: When its protein folding activity supports prion propagation. Voisset C, Blondel M, Jones GW, Friocourt G, Stahl G, Chédin S, Béringue V, Gillet R. Prion 11 89-97 (2017)
  40. The lost language of the RNA World. Nelson JW, Breaker RR. Sci Signal 10 (2017)
  41. The mechanism of translation. Frank J. F1000Res 6 198 (2017)
  42. The parable of the caveman and the Ferrari: protein synthesis and the RNA world. Noller HF. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (2017)
  43. Transcription control engineering and applications in synthetic biology. Engstrom MD, Pfleger BF. Synth Syst Biotechnol 2 176-191 (2017)
  44. A Two-Way Street: Regulatory Interplay between RNA Polymerase and Nascent RNA Structure. Zhang J, Landick R. Trends Biochem. Sci. 41 293-310 (2016)
  45. Bacterial Protein Synthesis as a Target for Antibiotic Inhibition. Arenz S, Wilson DN. Cold Spring Harb Perspect Med 6 (2016)
  46. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Schwarz S, Shen J, Kadlec K, Wang Y, Brenner Michael G, Feßler AT, Vester B. Cold Spring Harb Perspect Med 6 (2016)
  47. Mechanistic insight into eukaryotic 60S ribosomal subunit biogenesis by cryo-electron microscopy. Greber BJ. RNA 22 1643-1662 (2016)
  48. Origins of tmRNA: the missing link in the birth of protein synthesis? Macé K, Gillet R. Nucleic Acids Res. 44 8041-8051 (2016)
  49. RNA damage in biological conflicts and the diversity of responding RNA repair systems. Burroughs AM, Aravind L. Nucleic Acids Res. 44 8525-8555 (2016)
  50. RNA versatility governs tRNA function: Why tRNA flexibility is essential beyond the translation cycle. Kuhn CD. Bioessays 38 465-473 (2016)
  51. Structure and Function of the Mitochondrial Ribosome. Greber BJ, Ban N. Annu. Rev. Biochem. 85 103-132 (2016)
  52. Taming Prebiotic Chemistry: The Role of Heterogeneous and Interfacial Catalysis in the Emergence of a Prebiotic Catalytic/Information Polymer System. Monnard PA. Life (Basel) 6 (2016)
  53. The Conservation and Function of RNA Secondary Structure in Plants. Vandivier LE, Anderson SJ, Foley SW, Gregory BD. Annu Rev Plant Biol 67 463-488 (2016)
  54. Bacterial transfer RNAs. Shepherd J, Ibba M. FEMS Microbiol. Rev. 39 280-300 (2015)
  55. Controlling translation via modulation of tRNA levels. Wilusz JE. Wiley Interdiscip Rev RNA 6 453-470 (2015)
  56. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification. Fang P, Guo M. Life (Basel) 5 1703-1725 (2015)
  57. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. de la Cruz J, Karbstein K, Woolford JL. Annu. Rev. Biochem. 84 93-129 (2015)
  58. Origins and Early Evolution of the tRNA Molecule. Tamura K. Life (Basel) 5 1687-1699 (2015)
  59. Paradigms of ribosome synthesis: Lessons learned from ribosomal proteins. Gamalinda M, Woolford JL. Translation (Austin) 3 e975018 (2015)
  60. Potential extra-ribosomal functions of ribosomal proteins in Saccharomyces cerevisiae. Lu H, Zhu YF, Xiong J, Wang R, Jia Z. Microbiol. Res. 177 28-33 (2015)
  61. Progress and challenges for chemical probing of RNA structure inside living cells. Kubota M, Tran C, Spitale RC. Nat. Chem. Biol. 11 933-941 (2015)
  62. RNA synthesis by in vitro selected ribozymes for recreating an RNA world. Martin LL, Unrau PJ, Müller UF. Life (Basel) 5 247-268 (2015)
  63. Recent developments of engineered translational machineries for the incorporation of non-canonical amino acids into polypeptides. Terasaka N, Iwane Y, Geiermann AS, Goto Y, Suga H. Int J Mol Sci 16 6513-6531 (2015)
  64. Review seed biopharmaceutical cyclic peptides: From discovery to applications. Mahatmanto T. Biopolymers 104 804-814 (2015)
  65. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Med Res Rev 35 225-285 (2015)
  66. Role of tautomerism in RNA biochemistry. Singh V, Fedeles BI, Essigmann JM. RNA 21 1-13 (2015)
  67. The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Kaushal PS, Sharma MR, Agrawal RK. Biochimie 114 119-126 (2015)
  68. The RNA World: molecular cooperation at the origins of life. Higgs PG, Lehman N. Nat. Rev. Genet. 16 7-17 (2015)
  69. The dynamics of the RNA world: insights and challenges. Kun Á, Szilágyi A, Könnyű B, Boza G, Zachar I, Szathmáry E. Ann. N. Y. Acad. Sci. 1341 75-95 (2015)
  70. The ribosome challenge to the RNA world. Bowman JC, Hud NV, Williams LD. J. Mol. Evol. 80 143-161 (2015)
  71. Co-translational mechanisms of protein maturation. Gloge F, Becker AH, Kramer G, Bukau B. Curr. Opin. Struct. Biol. 24 24-33 (2014)
  72. Co-translational mechanisms of quality control of newly synthesized polypeptides. Gandin V, Topisirovic I. Translation (Austin) 2 e28109 (2014)
  73. EF-G and EF4: translocation and back-translocation on the bacterial ribosome. Yamamoto H, Qin Y, Achenbach J, Li C, Kijek J, Spahn CM, Nierhaus KH. Nat. Rev. Microbiol. 12 89-100 (2014)
  74. Functional implications of ribosomal RNA methylation in response to environmental stress. Baldridge KC, Contreras LM. Crit. Rev. Biochem. Mol. Biol. 49 69-89 (2014)
  75. Long non-coding RNAs as emerging regulators of differentiation, development, and disease. Dey BK, Mueller AC, Dutta A. Transcription 5 e944014 (2014)
  76. Methods to enable the design of bioactive small molecules targeting RNA. Disney MD, Yildirim I, Childs-Disney JL. Org. Biomol. Chem. 12 1029-1039 (2014)
  77. Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications, of mammalian mitochondrial translation. Lightowlers RN, Rozanska A, Chrzanowska-Lightowlers ZM. FEBS Lett. 588 2496-2503 (2014)
  78. Origin of symbol-using systems: speech, but not sign, without the semantic urge. Sereno MI. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369 20130303 (2014)
  79. Probing the mechanisms of translation with force. Kaiser CM, Tinoco I. Chem. Rev. 114 3266-3280 (2014)
  80. Synergism and mutualism in non-enzymatic RNA polymerization. Kaddour H, Sahai N. Life (Basel) 4 598-620 (2014)
  81. The ribosome emerges from a black box. Ramakrishnan V. Cell 159 979-984 (2014)
  82. The stereochemical basis of the genetic code and the (mostly) autotrophic origin of life. Fontecilla-Camps JC. Life (Basel) 4 1013-1025 (2014)
  83. Arrest peptides: cis-acting modulators of translation. Ito K, Chiba S. Annu. Rev. Biochem. 82 171-202 (2013)
  84. DExD/H-box RNA helicases in ribosome biogenesis. Martin R, Straub AU, Doebele C, Bohnsack MT. RNA Biol 10 4-18 (2013)
  85. Early self-reproduction, the emergence of division mechanisms in protocells. Murtas G. Mol Biosyst 9 195-204 (2013)
  86. Mitochondrial protein synthesis: efficiency and accuracy. Kehrein K, Bonnefoy N, Ott M. Antioxid. Redox Signal. 19 1928-1939 (2013)
  87. Novel methods and strategies in the discovery of TACE inhibitors. Murumkar PR, Giridhar R, Yadav MR. Expert Opin Drug Discov 8 157-181 (2013)
  88. Protein folding on the ribosome studied using NMR spectroscopy. Waudby CA, Launay H, Cabrita LD, Christodoulou J. Prog Nucl Magn Reson Spectrosc 74 57-75 (2013)
  89. Protein translocation across the inner membrane of Gram-negative bacteria: the Sec and Tat dependent protein transport pathways. Kudva R, Denks K, Kuhn P, Vogt A, Müller M, Koch HG. Res. Microbiol. 164 505-534 (2013)
  90. Structural basis of the translational elongation cycle. Voorhees RM, Ramakrishnan V. Annu. Rev. Biochem. 82 203-236 (2013)
  91. The hammerhead ribozyme: structure, catalysis, and gene regulation. Scott WG, Horan LH, Martick M. Prog Mol Biol Transl Sci 120 1-23 (2013)
  92. The role of the macrolide tulathromycin in veterinary medicine. Villarino N, Brown SA, Martín-Jiménez T. Vet. J. 198 352-357 (2013)
  93. Beyond DNA origami: the unfolding prospects of nucleic acid nanotechnology. Michelotti N, Johnson-Buck A, Manzo AJ, Walter NG. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4 139-152 (2012)
  94. Biocatalysts: beautiful creatures. Saibi W, Abdeljalil S, Masmoudi K, Gargouri A. Biochem. Biophys. Res. Commun. 426 289-293 (2012)
  95. Cryo-electron microscopy of ribosomal complexes in cotranslational folding, targeting, and translocation. Knoops K, Schoehn G, Schaffitzel C. Wiley Interdiscip Rev RNA 3 429-441 (2012)
  96. Elements of ribosomal drug resistance and specificity. Blaha GM, Polikanov YS, Steitz TA. Curr. Opin. Struct. Biol. 22 750-758 (2012)
  97. How should we think about the ribosome? Moore PB. Annu Rev Biophys 41 1-19 (2012)
  98. Neutrons, magnets, and photons: a career in structural biology. Moore PB. J. Biol. Chem. 287 805-818 (2012)
  99. RNA biology in a test tube--an overview of in vitro systems/assays. Roca X, Karginov FV. Wiley Interdiscip Rev RNA 3 509-527 (2012)
  100. Ribosomal proteins: structure, function, and evolution. Korobeinikova AV, Garber MB, Gongadze GM. Biochemistry Mosc. 77 562-574 (2012)
  101. Specialized ribosomes: a new frontier in gene regulation and organismal biology. Xue S, Barna M. Nat. Rev. Mol. Cell Biol. 13 355-369 (2012)
  102. Structural aspects of mitochondrial translational apparatus. Agrawal RK, Sharma MR. Curr. Opin. Struct. Biol. 22 797-803 (2012)
  103. The cutting crew - ribonucleases are key players in the control of plastid gene expression. Stoppel R, Meurer J. J. Exp. Bot. 63 1663-1673 (2012)
  104. The origins of the RNA world. Robertson MP, Joyce GF. Cold Spring Harb Perspect Biol 4 (2012)
  105. The structure and function of the eukaryotic ribosome. Wilson DN, Doudna Cate JH. Cold Spring Harb Perspect Biol 4 (2012)
  106. Antibiotics that target protein synthesis. McCoy LS, Xie Y, Tor Y. Wiley Interdiscip Rev RNA 2 209-232 (2011)
  107. Assembly of bacterial ribosomes. Shajani Z, Sykes MT, Williamson JR. Annu. Rev. Biochem. 80 501-526 (2011)
  108. Getting past the RNA world: the initial Darwinian ancestor. Yarus M. Cold Spring Harb Perspect Biol 3 (2011)
  109. How a neutral evolutionary ratchet can build cellular complexity. Lukeš J, Archibald JM, Keeling PJ, Doolittle WF, Gray MW. IUBMB Life 63 528-537 (2011)
  110. Ribosome evolution: emergence of peptide synthesis machinery. Tamura K. J. Biosci. 36 921-928 (2011)
  111. Ribozymes: Flexible molecular devices at work. Talini G, Branciamore S, Gallori E. Biochimie 93 1998-2005 (2011)
  112. Teaching argumentation and scientific discourse using the ribosomal peptidyl transferase reaction. Johnson RJ. Biochem Mol Biol Educ 39 185-190 (2011)
  113. The mechanism of peptidyl transfer catalysis by the ribosome. Leung EK, Suslov N, Tuttle N, Sengupta R, Piccirilli JA. Annu. Rev. Biochem. 80 527-555 (2011)
  114. The ribosomal tunnel as a functional environment for nascent polypeptide folding and translational stalling. Wilson DN, Beckmann R. Curr. Opin. Struct. Biol. 21 274-282 (2011)
  115. The roles of RNA in the synthesis of protein. Moore PB, Steitz TA. Cold Spring Harb Perspect Biol 3 a003780 (2011)
  116. Closing the circle: replicating RNA with RNA. Cheng LK, Unrau PJ. Cold Spring Harb Perspect Biol 2 a002204 (2010)
  117. Development of the genetic code: insights from a fungal codon reassignment. Moura GR, Paredes JA, Santos MA. FEBS Lett. 584 334-341 (2010)
  118. Functional interactions by transfer RNAs in the ribosome. Khade P, Joseph S. FEBS Lett. 584 420-426 (2010)
  119. How antibiotics kill bacteria: from targets to networks. Kohanski MA, Dwyer DJ, Collins JJ. Nat. Rev. Microbiol. 8 423-435 (2010)
  120. Molecular pathogenesis in Diamond-Blackfan anemia. Ito E, Konno Y, Toki T, Terui K. Int. J. Hematol. 92 413-418 (2010)
  121. Origin and evolution of the ribosome. Fox GE. Cold Spring Harb Perspect Biol 2 a003483 (2010)
  122. Properties of intraribosomal part of nascent polypeptide. Kolb VA. Biochemistry Mosc. 75 1517-1527 (2010)
  123. Protein folding and aggregation in bacteria. Sabate R, de Groot NS, Ventura S. Cell. Mol. Life Sci. 67 2695-2715 (2010)
  124. RNA in evolution. Lehman N. Wiley Interdiscip Rev RNA 1 202-213 (2010)
  125. Ribosomal tunnel and translation regulation. Bogdanov AA, Sumbatyan NV, Shishkina AV, Karpenko VV, Korshunova GA. Biochemistry Mosc. 75 1501-1516 (2010)
  126. Structure and dynamics of a processive Brownian motor: the translating ribosome. Frank J, Gonzalez RL. Annu. Rev. Biochem. 79 381-412 (2010)
  127. Structure and function of the molecular chaperone Trigger Factor. Hoffmann A, Bukau B, Kramer G. Biochim. Biophys. Acta 1803 650-661 (2010)
  128. The origins of cellular life. Schrum JP, Zhu TF, Szostak JW. Cold Spring Harb Perspect Biol 2 a002212 (2010)
  129. A gripping tale of ribosomal frameshifting: extragenic suppressors of frameshift mutations spotlight P-site realignment. Atkins JF, Björk GR. Microbiol. Mol. Biol. Rev. 73 178-210 (2009)
  130. A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. Simonović M, Steitz TA. Biochim. Biophys. Acta 1789 612-623 (2009)
  131. Biological implications of the ribosome's stunning stereochemistry. Zimmerman E, Yonath A. Chembiochem 10 63-72 (2009)
  132. Biologically inspired synthetic enzymes made from DNA. Schlosser K, Li Y. Chem. Biol. 16 311-322 (2009)
  133. Constraint counting on RNA structures: linking flexibility and function. Fulle S, Gohlke H. Methods 49 181-188 (2009)
  134. Current perspective of TACE inhibitors: a review. DasGupta S, Murumkar PR, Giridhar R, Yadav MR. Bioorg. Med. Chem. 17 444-459 (2009)
  135. Darwin's warm little pond revisited: from molecules to the origin of life. Follmann H, Brownson C. Naturwissenschaften 96 1265-1292 (2009)
  136. Elongation in translation as a dynamic interaction among the ribosome, tRNA, and elongation factors EF-G and EF-Tu. Agirrezabala X, Frank J. Q. Rev. Biophys. 42 159-200 (2009)
  137. Large facilities and the evolving ribosome, the cellular machine for genetic-code translation. Yonath A. J R Soc Interface 6 Suppl 5 S575-85 (2009)
  138. Mechanism of ribosome assisted protein folding: a new insight into rRNA functions. Samanta D, Das A, Bhattacharya A, Basu A, Das D, DasGupta C. Biochem. Biophys. Res. Commun. 384 137-140 (2009)
  139. Natural and unnatural ribozymes: back to the primordial RNA world. Talini G, Gallori E, Maurel MC. Res. Microbiol. 160 457-465 (2009)
  140. Principles, applications, and limitations of automated ribotyping as a rapid method in food safety. Pavlic M, Griffiths MW. Foodborne Pathog. Dis. 6 1047-1055 (2009)
  141. Programmed drug-dependent ribosome stalling. Ramu H, Mankin A, Vazquez-Laslop N. Mol. Microbiol. 71 811-824 (2009)
  142. Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies. Kamerlin SC, Haranczyk M, Warshel A. J Phys Chem B 113 1253-1272 (2009)
  143. RNA-amino acid binding: a stereochemical era for the genetic code. Yarus M, Widmann JJ, Knight R. J. Mol. Evol. 69 406-429 (2009)
  144. Resonance energy transfer methods of RNA detection. Cissell KA, Hunt EA, Deo SK. Anal Bioanal Chem 393 125-135 (2009)
  145. Ribosomal translocation: one step closer to the molecular mechanism. Shoji S, Walker SE, Fredrick K. ACS Chem. Biol. 4 93-107 (2009)
  146. Ribosome's mode of function: myths, facts and recent results. Wekselman I, Davidovich C, Agmon I, Zimmerman E, Rozenberg H, Bashan A, Berisio R, Yonath A. J. Pept. Sci. 15 122-130 (2009)
  147. The A-Z of bacterial translation inhibitors. Wilson DN. Crit. Rev. Biochem. Mol. Biol. 44 393-433 (2009)
  148. The modern RNP world of eukaryotes. Collins LJ, Kurland CG, Biggs P, Penny D. J. Hered. 100 597-604 (2009)
  149. The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Kramer G, Boehringer D, Ban N, Bukau B. Nat. Struct. Mol. Biol. 16 589-597 (2009)
  150. The structural and functional diversity of metabolite-binding riboswitches. Roth A, Breaker RR. Annu. Rev. Biochem. 78 305-334 (2009)
  151. The structure and function of catalytic RNAs. Wu Q, Huang L, Zhang Y. Sci. China, C, Life Sci. 52 232-244 (2009)
  152. Theoretical studies of RNA catalysis: hybrid QM/MM methods and their comparison with MD and QM. Banás P, Jurecka P, Walter NG, Sponer J, Otyepka M. Methods 49 202-216 (2009)
  153. Three-way RNA junctions with remote tertiary contacts: a recurrent and highly versatile fold. de la Peña M, Dufour D, Gallego J. RNA 15 1949-1964 (2009)
  154. Van-den Berghe's 5q- syndrome in 2008. Mohamedali A, Mufti GJ. Br. J. Haematol. 144 157-168 (2009)
  155. What recent ribosome structures have revealed about the mechanism of translation. Schmeing TM, Ramakrishnan V. Nature 461 1234-1242 (2009)
  156. A structural understanding of the dynamic ribosome machine. Steitz TA. Nat. Rev. Mol. Cell Biol. 9 242-253 (2008)
  157. Bacterial 5S rRNA-binding proteins of the CTC family. Gongadze GM, Korepanov AP, Korobeinikova AV, Garber MB. Biochemistry Mosc. 73 1405-1417 (2008)
  158. Catalytic DNAzymes: derivations and functions. Pan W, Clawson GA. Expert Opin Biol Ther 8 1071-1085 (2008)
  159. Correlating ribosome function with high-resolution structures. Bashan A, Yonath A. Trends Microbiol. 16 326-335 (2008)
  160. Modulating the activity of the peptidyl transferase center of the ribosome. Beringer M. RNA 14 795-801 (2008)
  161. Ribosomal dysfunction and inherited marrow failure. Ganapathi KA, Shimamura A. Br. J. Haematol. 141 376-387 (2008)
  162. Structural proteomics by NMR spectroscopy. Shin J, Lee W, Lee W. Expert Rev Proteomics 5 589-601 (2008)
  163. The origin and evolution of the ribosome. Smith TF, Lee JC, Gutell RR, Hartman H. Biol. Direct 3 16 (2008)
  164. Tools for the study of ribosome-borne protein folding activity. Voisset C, Thuret JY, Tribouillard-Tanvier D, Saupe SJ, Blondel M. Biotechnol J 3 1033-1040 (2008)
  165. Accommodating the bacterial decoding release factor as an alien protein among the RNAs at the active site of the ribosome. Poole ES, Young DJ, Askarian-Amiri ME, Scarlett DJ, Tate WP. Cell Res. 17 591-607 (2007)
  166. Exploring the mechanism of protein synthesis with modified substrates and novel intermediate mimics. Weinger JS, Strobel SA. Blood Cells Mol. Dis. 38 110-116 (2007)
  167. How ribosomes make peptide bonds. Rodnina MV, Beringer M, Wintermeyer W. Trends Biochem. Sci. 32 20-26 (2007)
  168. Importance of tRNA interactions with 23S rRNA for peptide bond formation on the ribosome: studies with substrate analogs. Beringer M, Rodnina MV. Biol. Chem. 388 687-691 (2007)
  169. Insight into the functional versatility of RNA through model-making with applications to data fitting. Bevilacqua PC, Cerrone-Szakal AL, Siegfried NA. Q. Rev. Biophys. 40 55-85 (2007)
  170. Long-range distance determinations in biomacromolecules by EPR spectroscopy. Schiemann O, Prisner TF. Q. Rev. Biophys. 40 1-53 (2007)
  171. Quantitative studies of ribosome conformational dynamics. Fraser CS, Doudna JA. Q. Rev. Biophys. 40 163-189 (2007)
  172. RNA catalysis: ribozymes, ribosomes, and riboswitches. Strobel SA, Cochrane JC. Curr Opin Chem Biol 11 636-643 (2007)
  173. RNA takes center stage. Todd G, Karbstein K. Biopolymers 87 275-278 (2007)
  174. Ribozyme catalysis revisited: is water involved? Walter NG. Mol. Cell 28 923-929 (2007)
  175. Ribozymes. Scott WG. Curr. Opin. Struct. Biol. 17 280-286 (2007)
  176. Searching genomes for ribozymes and riboswitches. Hammann C, Westhof E. Genome Biol. 8 210 (2007)
  177. The ribosomal peptidyl transferase. Beringer M, Rodnina MV. Mol. Cell 26 311-321 (2007)
  178. The versatility of oligonucleotides as potential therapeutics. Eckstein F. Expert Opin Biol Ther 7 1021-1034 (2007)
  179. Aminoglycoside interactions with RNAs and nucleases. Kirsebom LA, Virtanen A, Mikkelsen NE. Handb Exp Pharmacol 73-96 (2006)
  180. Approaches to semi-synthetic minimal cells: a review. Luisi PL, Ferri F, Stano P. Naturwissenschaften 93 1-13 (2006)
  181. Eukaryotic ribosomal proteins lacking a eubacterial counterpart: important players in ribosomal function. Dresios J, Panopoulos P, Synetos D. Mol. Microbiol. 59 1651-1663 (2006)
  182. Nascent peptide in the "birth canal" of the ribosome. Mankin AS. Trends Biochem. Sci. 31 11-13 (2006)
  183. RNA synthetic biology. Isaacs FJ, Dwyer DJ, Collins JJ. Nat. Biotechnol. 24 545-554 (2006)
  184. Revolutions in RNA secondary structure prediction. Mathews DH. J. Mol. Biol. 359 526-532 (2006)
  185. Structure-based drug design meets the ribosome. Franceschi F, Duffy EM. Biochem. Pharmacol. 71 1016-1025 (2006)
  186. The expanding universe of noncoding RNAs. Hannon GJ, Rivas FV, Murchison EP, Steitz JA. Cold Spring Harb. Symp. Quant. Biol. 71 551-564 (2006)
  187. The principles of guiding by RNA: chimeric RNA-protein enzymes. Hüttenhofer A, Schattner P. Nat. Rev. Genet. 7 475-482 (2006)
  188. Antibiotics targeting ribosomes: resistance, selectivity, synergism and cellular regulation. Yonath A. Annu. Rev. Biochem. 74 649-679 (2005)
  189. Biogenesis of inner membrane proteins in Escherichia coli. Luirink J, von Heijne G, Houben E, de Gier JW. Annu. Rev. Microbiol. 59 329-355 (2005)
  190. Carbohydrates as the next frontier in pharmaceutical research. Werz DB, Seeberger PH. Chemistry 11 3194-3206 (2005)
  191. From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects. Baram D, Yonath A. FEBS Lett. 579 948-954 (2005)
  192. Initiation of protein synthesis in bacteria. Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU. Microbiol. Mol. Biol. Rev. 69 101-123 (2005)
  193. On the structural basis of peptide-bond formation and antibiotic resistance from atomic structures of the large ribosomal subunit. Steitz TA. FEBS Lett. 579 955-958 (2005)
  194. Origins of the genetic code: the escaped triplet theory. Yarus M, Caporaso JG, Knight R. Annu. Rev. Biochem. 74 179-198 (2005)
  195. Quenched probes for highly specific detection of cellular RNAs. Silverman AP, Kool ET. Trends Biotechnol. 23 225-230 (2005)
  196. Ribozyme catalysis: not different, just worse. Doudna JA, Lorsch JR. Nat. Struct. Mol. Biol. 12 395-402 (2005)
  197. Signal recognition particles in chloroplasts, bacteria, yeast and mammals (review). Pool MR. Mol. Membr. Biol. 22 3-15 (2005)
  198. Single-molecule RNA science. Zhuang X. Annu Rev Biophys Biomol Struct 34 399-414 (2005)
  199. Structural studies of E. coli ribosomes by spectroscopic techniques: a specialized review. Bonicontro A, Risuleo G. Spectrochim Acta A Mol Biomol Spectrosc 62 1070-1080 (2005)
  200. Structure, folding and mechanisms of ribozymes. Lilley DM. Curr. Opin. Struct. Biol. 15 313-323 (2005)
  201. Substrate recognition of type III secretion machines--testing the RNA signal hypothesis. Sorg JA, Miller NC, Schneewind O. Cell. Microbiol. 7 1217-1225 (2005)
  202. Symmetry at the active site of the ribosome: structural and functional implications. Agmon I, Bashan A, Zarivach R, Yonath A. Biol. Chem. 386 833-844 (2005)
  203. The 30S ribosomal P site: a function of 16S rRNA. Noller HF, Hoang L, Fredrick K. FEBS Lett. 579 855-858 (2005)
  204. The bacterial ribosome as a target for antibiotics. Poehlsgaard J, Douthwaite S. Nat. Rev. Microbiol. 3 870-881 (2005)
  205. The catalytic diversity of RNAs. Fedor MJ, Williamson JR. Nat. Rev. Mol. Cell Biol. 6 399-412 (2005)
  206. The co-translational folding and interactions of nascent protein chains: a new approach using fluorescence resonance energy transfer. Johnson AE. FEBS Lett. 579 916-920 (2005)
  207. The ribosomal peptidyl transferase center: structure, function, evolution, inhibition. Polacek N, Mankin AS. Crit. Rev. Biochem. Mol. Biol. 40 285-311 (2005)
  208. The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer. Frank J, Sengupta J, Gao H, Li W, Valle M, Zavialov A, Ehrenberg M. FEBS Lett. 579 959-962 (2005)
  209. The social life of ribosomal proteins. Brodersen DE, Nissen P. FEBS J. 272 2098-2108 (2005)
  210. Chaperone-assisted folding of newly synthesized proteins in the cytosol. Deuerling E, Bukau B. Crit. Rev. Biochem. Mol. Biol. 39 261-277 (2004)
  211. Control of SecA and SecM translation by protein secretion. Nakatogawa H, Murakami A, Ito K. Curr. Opin. Microbiol. 7 145-150 (2004)
  212. Directed evolution of nucleic acid enzymes. Joyce GF. Annu. Rev. Biochem. 73 791-836 (2004)
  213. Extreme secretion: protein translocation across the archael plasma membrane. Ring G, Eichler J. J. Bioenerg. Biomembr. 36 35-45 (2004)
  214. Glycosylation of prion strains in transmissible spongiform encephalopathies. Atkinson PH. Aust. Vet. J. 82 292-299 (2004)
  215. Intraribosomal regulation of expression and fate of proteins. Nakatogawa H, Ito K. Chembiochem 5 48-51 (2004)
  216. New approaches to targeting RNA with oligonucleotides: inhibition of group I intron self-splicing. Disney MD, Childs JL, Turner DH. Biopolymers 73 151-161 (2004)
  217. Pathways of chaperone-mediated protein folding in the cytosol. Young JC, Agashe VR, Siegers K, Hartl FU. Nat. Rev. Mol. Cell Biol. 5 781-791 (2004)
  218. Protein folding and quality control in the endoplasmic reticulum. Kleizen B, Braakman I. Curr. Opin. Cell Biol. 16 343-349 (2004)
  219. Ribosomal crystallography: a flexible nucleotide anchoring tRNA translocation, facilitates peptide-bond formation, chirality discrimination and antibiotics synergism. Agmon I, Amit M, Auerbach T, Bashan A, Baram D, Bartels H, Berisio R, Greenberg I, Harms J, Hansen HA, Kessler M, Pyetan E, Schluenzen F, Sittner A, Yonath A, Zarivach R. FEBS Lett. 567 20-26 (2004)
  220. Ribosomal crystallography: initiation, peptide bond formation, and amino acid polymerization are hampered by antibiotics. Yonath A, Bashan A. Annu. Rev. Microbiol. 58 233-251 (2004)
  221. Ribosome function: governing the fate of a nascent polypeptide. Rospert S. Curr. Biol. 14 R386-8 (2004)
  222. Ribosome inactivation for preservation: concepts and reservations. El-Sharoud WM. Sci Prog 87 137-152 (2004)
  223. Roles of protein subunits in RNA-protein complexes: lessons from ribonuclease P. Hsieh J, Andrews AJ, Fierke CA. Biopolymers 73 79-89 (2004)
  224. The driving force for molecular evolution of translation. Noller HF. RNA 10 1833-1837 (2004)
  225. The machinery of membrane protein assembly. White SH, von Heijne G. Curr. Opin. Struct. Biol. 14 397-404 (2004)
  226. 5 S rRNA: structure and interactions. Szymański M, Barciszewska MZ, Erdmann VA, Barciszewski J. Biochem. J. 371 641-651 (2003)
  227. After the ribosome structure: how does translocation work? Joseph S. RNA 9 160-164 (2003)
  228. After the ribosome structures: how does peptidyl transferase work? Moore PB, Steitz TA. RNA 9 155-159 (2003)
  229. In search of an RNA replicase ribozyme. McGinness KE, Joyce GF. Chem. Biol. 10 5-14 (2003)
  230. Ketolides: an emerging treatment for macrolide-resistant respiratory infections, focusing on S. pneumoniae. Zhanel GG, Hisanaga T, Nichol K, Wierzbowski A, Hoban DJ. Expert Opin Emerg Drugs 8 297-321 (2003)
  231. Peptide bond formation on the ribosome: structure and mechanism. Rodnina MV, Wintermeyer W. Curr. Opin. Struct. Biol. 13 334-340 (2003)
  232. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Steitz TA, Moore PB. Trends Biochem. Sci. 28 411-418 (2003)
  233. Ribosomal crystallography: peptide bond formation and its inhibition. Bashan A, Zarivach R, Schluenzen F, Agmon I, Harms J, Auerbach T, Baram D, Berisio R, Bartels H, Hansen HA, Fucini P, Wilson D, Peretz M, Kessler M, Yonath A. Biopolymers 70 19-41 (2003)
  234. Ribosomal tolerance and peptide bond formation. Yonath A. Biol. Chem. 384 1411-1419 (2003)
  235. Ribosome assembly in eukaryotes. Fromont-Racine M, Senger B, Saveanu C, Fasiolo F. Gene 313 17-42 (2003)
  236. Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? Craig EA, Eisenman HC, Hundley HA. Curr. Opin. Microbiol. 6 157-162 (2003)
  237. Ribozymes: recent advances in the development of RNA tools. Puerta-Fernández E, Romero-López C, Barroso-delJesus A, Berzal-Herranz A. FEMS Microbiol. Rev. 27 75-97 (2003)
  238. Structural biology: a high-tech tool for biomedical research. Machius M. Curr. Opin. Nephrol. Hypertens. 12 431-438 (2003)
  239. Structural insight into functional aspects of ribosomal RNA targeting. Yonath A. Chembiochem 4 1008-1017 (2003)
  240. The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. Plant EP, Jacobs KL, Harger JW, Meskauskas A, Jacobs JL, Baxter JL, Petrov AN, Dinman JD. RNA 9 168-174 (2003)
  241. The birth of a channel. Deutsch C. Neuron 40 265-276 (2003)
  242. The origins of RNA catalysis in ribozymes. Lilley DM. Trends Biochem. Sci. 28 495-501 (2003)
  243. The process of structure-based drug design. Anderson AC. Chem. Biol. 10 787-797 (2003)
  244. The roads to and from the RNA world. Dworkin JP, Lazcano A, Miller SL. J. Theor. Biol. 222 127-134 (2003)
  245. The structural basis of large ribosomal subunit function. Moore PB, Steitz TA. Annu. Rev. Biochem. 72 813-850 (2003)
  246. Toward an understanding of the structural basis of translation. Frank J. Genome Biol. 4 237 (2003)
  247. Biologically important reactions catalyzed by RNA molecules. Ikeda Y, Taira K. Chem Rec 2 307-318 (2002)
  248. Catalytic strategies of the hepatitis delta virus ribozymes. Shih IH, Been MD. Annu. Rev. Biochem. 71 887-917 (2002)
  249. Coenzymes as coribozymes. Jadhav VR, Yarus M. Biochimie 84 877-888 (2002)
  250. Evolutionary conservation of reactions in translation. Ganoza MC, Kiel MC, Aoki H. Microbiol. Mol. Biol. Rev. 66 460-85, table of contents (2002)
  251. Omnipotent RNA. Spirin AS. FEBS Lett. 530 4-8 (2002)
  252. Primordial genetics: phenotype of the ribocyte. Yarus M. Annu. Rev. Genet. 36 125-151 (2002)
  253. Protein-protein interactions required during translation. Gallie DR. Plant Mol. Biol. 50 949-970 (2002)
  254. RNA-acting antibiotics: in-vitro selection of RNA aptamers for the design of new bioactive molecules less susceptible to bacterial resistance. Maurel MC, Biard B, Moulinier C, Braz D, Nugier J, Chaumas I, Reboud-Ravaux M, Décout JL. J. Pharm. Pharmacol. 54 1019-1031 (2002)
  255. Recent advances in the in vitro evolution of nucleic acids. Bittker JA, Phillips KJ, Liu DR. Curr Opin Chem Biol 6 367-374 (2002)
  256. Regulatory nascent peptides in the ribosomal tunnel. Tenson T, Ehrenberg M. Cell 108 591-594 (2002)
  257. Ribonuclease III: new sense from nuisance. Conrad C, Rauhut R. Int. J. Biochem. Cell Biol. 34 116-129 (2002)
  258. Ribosome structure and the mechanism of translation. Ramakrishnan V. Cell 108 557-572 (2002)
  259. Ribozyme therapy: RNA enzymes to the rescue. Jose AM. Yale J Biol Med 75 215-219 (2002)
  260. Structural dynamics of ribosomal RNA during decoding on the ribosome. Rodnina MV, Daviter T, Gromadski K, Wintermeyer W. Biochimie 84 745-754 (2002)
  261. The antiquity of RNA-based evolution. Joyce GF. Nature 418 214-221 (2002)
  262. The chemical repertoire of natural ribozymes. Doudna JA, Cech TR. Nature 418 222-228 (2002)
  263. The involvement of RNA in ribosome function. Moore PB, Steitz TA. Nature 418 229-235 (2002)
  264. The path to perdition is paved with protons. Green R, Lorsch JR. Cell 110 665-668 (2002)
  265. The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. Yonath A. Annu Rev Biophys Biomol Struct 31 257-273 (2002)
  266. Two decades of RNA catalysis. DeRose VJ. Chem. Biol. 9 961-969 (2002)
  267. A progress report on translational control in eukaryotes. Kozak M. Sci. STKE 2001 pe1 (2001)
  268. An extended Escherichia coli "selenocysteine insertion sequence" (SECIS) as a multifunctional RNA structure. Engelberg-Kulka H, Liu Z, Li C, Reches M. Biofactors 14 61-68 (2001)
  269. Analysis of the active site of the ribosome by site-directed mutagenesis. Kim DF, Semrad K, Green R. Cold Spring Harb. Symp. Quant. Biol. 66 119-126 (2001)
  270. Artificial ribozymes and deoxyribozymes. Jäschke A. Curr. Opin. Struct. Biol. 11 321-326 (2001)
  271. Atomic structures at last: the ribosome in 2000. Ramakrishnan V, Moore PB. Curr. Opin. Struct. Biol. 11 144-154 (2001)
  272. Bioorganic applications of semisynthetic DNA-protein conjugates. Niemeyer CM. Chemistry 7 3188-3195 (2001)
  273. Computational methods for RNA structure determination. Major F, Griffey R. Curr. Opin. Struct. Biol. 11 282-286 (2001)
  274. Correlating the X-ray structures for halo- and thermophilic ribosomal subunits with biochemical data for the Escherichia coli ribosome. Sergiev P, Leonov A, Dokudovskaya S, Shpanchenko O, Dontsova O, Bogdanov A, Rinke-Appel J, Mueller F, Osswald M, von Knoblauch K, Brimacombe R. Cold Spring Harb. Symp. Quant. Biol. 66 87-100 (2001)
  275. Cryo-electron microscopy as an investigative tool: the ribosome as an example. Frank J. Bioessays 23 725-732 (2001)
  276. Eukaryotic ribonuclease P: increased complexity to cope with the nuclear pre-tRNA pathway. Xiao S, Houser-Scott F, Engelke DR. J. Cell. Physiol. 187 11-20 (2001)
  277. Exploring the mechanism of the peptidyl transfer reaction by chemical footprinting. Strobel SA, Muth GW, Chen L. Cold Spring Harb. Symp. Quant. Biol. 66 109-117 (2001)
  278. Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms. Rodnina MV, Wintermeyer W. Annu. Rev. Biochem. 70 415-435 (2001)
  279. Folding of newly translated proteins in vivo: the role of molecular chaperones. Frydman J. Annu. Rev. Biochem. 70 603-647 (2001)
  280. High-resolution structures of ribosomal subunits: initiation, inhibition, and conformational variability. Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Pioletti M, Bartels H, Gluehmann M, Hansen H, Auerbach T, Franceschi F, Yonath A. Cold Spring Harb. Symp. Quant. Biol. 66 43-56 (2001)
  281. In the fluorescent spotlight: global and local conformational changes of small catalytic RNAs. Walter NG, Harris DA, Pereira MJ, Rueda D. Biopolymers 61 224-242 (2001)
  282. Initiation factors in the early events of mRNA translation in bacteria. Gualerzi CO, Brandi L, Caserta E, Garofalo C, Lammi M, La Teana A, Petrelli D, Spurio R, Tomsic J, Pon CL. Cold Spring Harb. Symp. Quant. Biol. 66 363-376 (2001)
  283. Macromolecular assemblies: greater than their parts. Bamford DH, Gilbert RJ, Grimes JM, Stuart DI. Curr. Opin. Struct. Biol. 11 107-113 (2001)
  284. Meanderings of the mRNA through the ribosome. Culver GM. Structure 9 751-758 (2001)
  285. Nanoparticles, Proteins, and Nucleic Acids: Biotechnology Meets Materials Science. Niemeyer CM. Angew. Chem. Int. Ed. Engl. 40 4128-4158 (2001)
  286. On translation by RNAs alone. Yarus M. Cold Spring Harb. Symp. Quant. Biol. 66 207-215 (2001)
  287. Progress toward an understanding of the structure and enzymatic mechanism of the large ribosomal subunit. Hansen JL, Schmeing TM, Klein DJ, Ippolito JA, Ban N, Nissen P, Freeborn B, Moore PB, Steitz TA. Cold Spring Harb. Symp. Quant. Biol. 66 33-42 (2001)
  288. Proteome analysis of bacterial pathogens. Jungblut PR. Microbes Infect. 3 831-840 (2001)
  289. Pseudouridines and pseudouridine synthases of the ribosome. Ofengand J, Malhotra A, Remme J, Gutgsell NS, Del Campo M, Jean-Charles S, Peil L, Kaya Y. Cold Spring Harb. Symp. Quant. Biol. 66 147-159 (2001)
  290. RNA structure and the roots of protein synthesis. Rich A. Cold Spring Harb. Symp. Quant. Biol. 66 1-16 (2001)
  291. Ratchet-like movements between the two ribosomal subunits: their implications in elongation factor recognition and tRNA translocation. Frank J, Agrawal RK. Cold Spring Harb. Symp. Quant. Biol. 66 67-75 (2001)
  292. Recent advances in the elucidation of the mechanisms of action of ribozymes. Takagi Y, Warashina M, Stec WJ, Yoshinari K, Taira K. Nucleic Acids Res. 29 1815-1834 (2001)
  293. Ribosome biogenesis: role of small nucleolar RNA in maturation of eukaryotic rRNA. Gerbi SA, Borovjagin AV, Ezrokhi M, Lange TS. Cold Spring Harb. Symp. Quant. Biol. 66 575-590 (2001)
  294. Ribosome fidelity: tRNA discrimination, proofreading and induced fit. Rodnina MV, Wintermeyer W. Trends Biochem. Sci. 26 124-130 (2001)
  295. Short peptides conferring resistance to macrolide antibiotics. Tenson T, Mankin AS. Peptides 22 1661-1668 (2001)
  296. Structural studies of eukaryotic elongation factors. Andersen GR, Nyborg J. Cold Spring Harb. Symp. Quant. Biol. 66 425-437 (2001)
  297. Structure and function of type II restriction endonucleases. Pingoud A, Jeltsch A. Nucleic Acids Res. 29 3705-3727 (2001)
  298. Structure of the ribosome at 5.5 A resolution and its interactions with functional ligands. Noller HF, Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Lancaster L, Dallas A, Fredrick K, Earnest TN, Cate JH. Cold Spring Harb. Symp. Quant. Biol. 66 57-66 (2001)
  299. Structure, function, and regulation of free and membrane-bound ribosomes: the view from their substrates and products. Johnson AE, Chen JC, Flanagan JJ, Miao Y, Shao Y, Lin J, Bock PE. Cold Spring Harb. Symp. Quant. Biol. 66 531-541 (2001)
  300. Structure-activity relationships of ketolides vs. macrolides. Douthwaite S. Clin. Microbiol. Infect. 7 Suppl 3 11-17 (2001)
  301. The active 80S ribosome-Sec61 complex. Beckmann R, Spahn CM, Frank J, Blobel G. Cold Spring Harb. Symp. Quant. Biol. 66 543-554 (2001)
  302. The emergence of life on Earth. Lahav N, Nir S, Elitzur AC. Prog. Biophys. Mol. Biol. 75 75-120 (2001)
  303. The function and synthesis of ribosomes. Lafontaine DL, Tollervey D. Nat. Rev. Mol. Cell Biol. 2 514-520 (2001)
  304. The molecular perspective: the ribosome. Goodsell DS. Stem Cells 19 92-93 (2001)
  305. The ribosome functions as a ribozyme. Lilley DM. Chembiochem 2 31-35 (2001)
  306. The ribosome in focus. Maguire BA, Zimmermann RA. Cell 104 813-816 (2001)
  307. The signal recognition particle. Keenan RJ, Freymann DM, Stroud RM, Walter P. Annu. Rev. Biochem. 70 755-775 (2001)
  308. Translation: in retrospect and prospect. Woese CR. RNA 7 1055-1067 (2001)
  309. Peptidyl transferase: ancient and exiguous. Yarus M, Welch M. Chem. Biol. 7 R187-90 (2000)
  310. The bacterial ribosome at atomic resolution. Brimacombe R. Structure 8 R195-200 (2000)

Articles citing this publication (789)

  1. Initial sequencing and analysis of the human genome. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium. Nature 409 860-921 (2001)
  2. Electrostatics of nanosystems: application to microtubules and the ribosome. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Proc. Natl. Acad. Sci. U.S.A. 98 10037-10041 (2001)
  3. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, Ussery DW. Nucleic Acids Res. 35 3100-3108 (2007)
  4. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Lu XJ, Olson WK. Nucleic Acids Res. 31 5108-5121 (2003)
  5. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. Proc. Natl. Acad. Sci. U.S.A. 101 7287-7292 (2004)
  6. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Harms J, Schluenzen F, Zarivach R, Bashan A, Gat S, Agmon I, Bartels H, Franceschi F, Yonath A. Cell 107 679-688 (2001)
  7. The structure of the eukaryotic ribosome at 3.0 Å resolution. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. Science 334 1524-1529 (2011)
  8. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F. Nature 413 814-821 (2001)
  9. Geometric nomenclature and classification of RNA base pairs. Leontis NB, Westhof E. RNA 7 499-512 (2001)
  10. Control of gene expression by a natural metabolite-responsive ribozyme. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR. Nature 428 281-286 (2004)
  11. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA. Proc. Natl. Acad. Sci. U.S.A. 98 4899-4903 (2001)
  12. A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. Ishizuka A, Siomi MC, Siomi H. Genes Dev. 16 2497-2508 (2002)
  13. Structure of the 80S ribosome from Saccharomyces cerevisiae--tRNA-ribosome and subunit-subunit interactions. Spahn CM, Beckmann R, Eswar N, Penczek PA, Sali A, Blobel G, Frank J. Cell 107 373-386 (2001)
  14. rRNA modifications and ribosome function. Decatur WA, Fournier MJ. Trends Biochem. Sci. 27 344-351 (2002)
  15. The ribosomal exit tunnel functions as a discriminating gate. Nakatogawa H, Ito K. Cell 108 629-636 (2002)
  16. Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements. Korostelev A, Trakhanov S, Laurberg M, Noller HF. Cell 126 1065-1077 (2006)
  17. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z. J. Proteome Res. 6 1882-1898 (2007)
  18. On the evolution of cells. Woese CR. Proc. Natl. Acad. Sci. U.S.A. 99 8742-8747 (2002)
  19. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. Mol. Cell 10 117-128 (2002)
  20. Crystal structure of a self-splicing group I intron with both exons. Adams PL, Stahley MR, Kosek AB, Wang J, Strobel SA. Nature 430 45-50 (2004)
  21. Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. Pioletti M, Schlünzen F, Harms J, Zarivach R, Glühmann M, Avila H, Bashan A, Bartels H, Auerbach T, Jacobi C, Hartsch T, Yonath A, Franceschi F. EMBO J. 20 1829-1839 (2001)
  22. The roles of ribosomal proteins in the structure assembly, and evolution of the large ribosomal subunit. Klein DJ, Moore PB, Steitz TA. J. Mol. Biol. 340 141-177 (2004)
  23. Crystal structure of the eukaryotic ribosome. Ben-Shem A, Jenner L, Yusupova G, Yusupov M. Science 330 1203-1209 (2010)
  24. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, Sali A, Frank J, Blobel G. Cell 107 361-372 (2001)
  25. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Woolhead CA, McCormick PJ, Johnson AE. Cell 116 725-736 (2004)
  26. Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. Hansen JL, Moore PB, Steitz TA. J. Mol. Biol. 330 1061-1075 (2003)
  27. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Sharma MR, Koc EC, Datta PP, Booth TM, Spremulli LL, Agrawal RK. Cell 115 97-108 (2003)
  28. Study of the structural dynamics of the E coli 70S ribosome using real-space refinement. Gao H, Sengupta J, Valle M, Korostelev A, Eswar N, Stagg SM, Van Roey P, Agrawal RK, Harvey SC, Sali A, Chapman MS, Frank J. Cell 113 789-801 (2003)
  29. The active site of the ribosome is composed of two layers of conserved nucleotides with distinct roles in peptide bond formation and peptide release. Youngman EM, Brunelle JL, Kochaniak AB, Green R. Cell 117 589-599 (2004)
  30. Insights into substrate stabilization from snapshots of the peptidyl transferase center of the intact 70S ribosome. Voorhees RM, Weixlbaumer A, Loakes D, Kelley AC, Ramakrishnan V. Nat. Struct. Mol. Biol. 16 528-533 (2009)
  31. Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins. Ferbitz L, Maier T, Patzelt H, Bukau B, Deuerling E, Ban N. Nature 431 590-596 (2004)
  32. L23 protein functions as a chaperone docking site on the ribosome. Kramer G, Rauch T, Rist W, Vorderwülbecke S, Patzelt H, Schulze-Specking A, Ban N, Deuerling E, Bukau B. Nature 419 171-174 (2002)
  33. An induced-fit mechanism to promote peptide bond formation and exclude hydrolysis of peptidyl-tRNA. Schmeing TM, Huang KS, Strobel SA, Steitz TA. Nature 438 520-524 (2005)
  34. Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. Lecompte O, Ripp R, Thierry JC, Moras D, Poch O. Nucleic Acids Res. 30 5382-5390 (2002)
  35. The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome. Tenson T, Lovmar M, Ehrenberg M. J. Mol. Biol. 330 1005-1014 (2003)
  36. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. Oh WJ, Wu CC, Kim SJ, Facchinetti V, Julien LA, Finlan M, Roux PP, Su B, Jacinto E. EMBO J. 29 3939-3951 (2010)
  37. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. Mathews DH. RNA 10 1178-1190 (2004)
  38. The geometry of the ribosomal polypeptide exit tunnel. Voss NR, Gerstein M, Steitz TA, Moore PB. J. Mol. Biol. 360 893-906 (2006)
  39. Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures. Ma J, Campbell A, Karlin S. J. Bacteriol. 184 5733-5745 (2002)
  40. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Kehrenberg C, Schwarz S, Jacobsen L, Hansen LH, Vester B. Mol. Microbiol. 57 1064-1073 (2005)
  41. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Guo F, Gooding AR, Cech TR. Mol. Cell 16 351-362 (2004)
  42. Ribozyme-catalyzed transcription of an active ribozyme. Wochner A, Attwater J, Coulson A, Holliger P. Science 332 209-212 (2011)
  43. Structural insight into nascent polypeptide chain-mediated translational stalling. Seidelt B, Innis CA, Wilson DN, Gartmann M, Armache JP, Villa E, Trabuco LG, Becker T, Mielke T, Schulten K, Steitz TA, Beckmann R. Science 326 1412-1415 (2009)
  44. The ribosome as an entropy trap. Sievers A, Beringer M, Rodnina MV, Wolfenden R. Proc. Natl. Acad. Sci. U.S.A. 101 7897-7901 (2004)
  45. Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Bashan A, Agmon I, Zarivach R, Schluenzen F, Harms J, Berisio R, Bartels H, Franceschi F, Auerbach T, Hansen HA, Kossoy E, Kessler M, Yonath A. Mol. Cell 11 91-102 (2003)
  46. Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N. Biochem. Biophys. Res. Commun. 290 339-348 (2002)
  47. Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. King TH, Liu B, McCully RR, Fournier MJ. Mol. Cell 11 425-435 (2003)
  48. Molecular mechanism of drug-dependent ribosome stalling. Vazquez-Laslop N, Thum C, Mankin AS. Mol. Cell 30 190-202 (2008)
  49. Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. Schmeing TM, Huang KS, Kitchen DE, Strobel SA, Steitz TA. Mol. Cell 20 437-448 (2005)
  50. A cryo-electron microscopic study of ribosome-bound termination factor RF2. Rawat UB, Zavialov AV, Sengupta J, Valle M, Grassucci RA, Linde J, Vestergaard B, Ehrenberg M, Frank J. Nature 421 87-90 (2003)
  51. Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae. Canu A, Malbruny B, Coquemont M, Davies TA, Appelbaum PC, Leclercq R. Antimicrob. Agents Chemother. 46 125-131 (2002)
  52. Structural insights into peptide bond formation. Hansen JL, Schmeing TM, Moore PB, Steitz TA. Proc. Natl. Acad. Sci. U.S.A. 99 11670-11675 (2002)
  53. RNA catalyses nuclear pre-mRNA splicing. Fica SM, Tuttle N, Novak T, Li NS, Lu J, Koodathingal P, Dai Q, Staley JP, Piccirilli JA. Nature 503 229-234 (2013)
  54. Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR. Insect Mol. Biol. 15 657-686 (2006)
  55. Substrate-assisted catalysis of peptide bond formation by the ribosome. Weinger JS, Parnell KM, Dorner S, Green R, Strobel SA. Nat. Struct. Mol. Biol. 11 1101-1106 (2004)
  56. Folding zones inside the ribosomal exit tunnel. Lu J, Deutsch C. Nat. Struct. Mol. Biol. 12 1123-1129 (2005)
  57. The contribution of metal ions to the structural stability of the large ribosomal subunit. Klein DJ, Moore PB, Steitz TA. RNA 10 1366-1379 (2004)
  58. Resistance to macrolides and related antibiotics in Streptococcus pneumoniae. Leclercq R, Courvalin P. Antimicrob. Agents Chemother. 46 2727-2734 (2002)
  59. Structure of the mammalian ribosome-Sec61 complex to 3.4 Å resolution. Voorhees RM, Fernández IS, Scheres SH, Hegde RS. Cell 157 1632-1643 (2014)
  60. The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J. Mol. Cell 8 181-188 (2001)
  61. Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C-terminal region of Oxa1. Jia L, Dienhart M, Schramp M, McCauley M, Hell K, Stuart RA. EMBO J. 22 6438-6447 (2003)
  62. Structural insight into the role of the ribosomal tunnel in cellular regulation. Berisio R, Schluenzen F, Harms J, Bashan A, Auerbach T, Baram D, Yonath A. Nat. Struct. Biol. 10 366-370 (2003)
  63. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Bulkley D, Innis CA, Blaha G, Steitz TA. Proc. Natl. Acad. Sci. U.S.A. 107 17158-17163 (2010)
  64. Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. Peske F, Savelsbergh A, Katunin VI, Rodnina MV, Wintermeyer W. J. Mol. Biol. 343 1183-1194 (2004)
  65. Silent mutations affect in vivo protein folding in Escherichia coli. Cortazzo P, Cerveñansky C, Marín M, Reiss C, Ehrlich R, Deana A. Biochem. Biophys. Res. Commun. 293 537-541 (2002)
  66. 5S Ribosomal RNA Database. Szymanski M, Barciszewska MZ, Erdmann VA, Barciszewski J. Nucleic Acids Res. 30 176-178 (2002)
  67. RNA backbone is rotameric. Murray LJ, Arendall WB, Richardson DC, Richardson JS. Proc. Natl. Acad. Sci. U.S.A. 100 13904-13909 (2003)
  68. Analysis of mutations at residues A2451 and G2447 of 23S rRNA in the peptidyltransferase active site of the 50S ribosomal subunit. Thompson J, Kim DF, O'Connor M, Lieberman KR, Bayfield MA, Gregory ST, Green R, Noller HF, Dahlberg AE. Proc. Natl. Acad. Sci. U.S.A. 98 9002-9007 (2001)
  69. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Schlünzen F, Pyetan E, Fucini P, Yonath A, Harms JM. Mol. Microbiol. 54 1287-1294 (2004)
  70. Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR. Lee SW, Berger SJ, Martinović S, Pasa-Tolić L, Anderson GA, Shen Y, Zhao R, Smith RD. Proc. Natl. Acad. Sci. U.S.A. 99 5942-5947 (2002)
  71. A hierarchical model for evolution of 23S ribosomal RNA. Bokov K, Steinberg SV. Nature 457 977-980 (2009)
  72. Ribosomal peptidyl transferase can withstand mutations at the putative catalytic nucleotide. Polacek N, Gaynor M, Yassin A, Mankin AS. Nature 411 498-501 (2001)
  73. The Structural Biology Center 19ID undulator beamline: facility specifications and protein crystallographic results. Rosenbaum G, Alkire RW, Evans G, Rotella FJ, Lazarski K, Zhang RG, Ginell SL, Duke N, Naday I, Lazarz J, Molitsky MJ, Keefe L, Gonczy J, Rock L, Sanishvili R, Walsh MA, Westbrook E, Joachimiak A. J Synchrotron Radiat 13 30-45 (2006)
  74. Comparison of the hammerhead cleavage reactions stimulated by monovalent and divalent cations. O'Rear JL, Wang S, Feig AL, Beigelman L, Uhlenbeck OC, Herschlag D. RNA 7 537-545 (2001)
  75. The hybrid state of tRNA binding is an authentic translation elongation intermediate. Dorner S, Brunelle JL, Sharma D, Green R. Nat. Struct. Mol. Biol. 13 234-241 (2006)
  76. Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. Muto H, Nakatogawa H, Ito K. Mol. Cell 22 545-552 (2006)
  77. Class-1 translation termination factors: invariant GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Seit-Nebi A, Frolova L, Justesen J, Kisselev L. Nucleic Acids Res. 29 3982-3987 (2001)
  78. KtrAB and KtrCD: two K+ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. Holtmann G, Bakker EP, Uozumi N, Bremer E. J. Bacteriol. 185 1289-1298 (2003)
  79. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Katunin VI, Muth GW, Strobel SA, Wintermeyer W, Rodnina MV. Mol. Cell 10 339-346 (2002)
  80. Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome. Ullers RS, Houben EN, Raine A, ten Hagen-Jongman CM, Ehrenberg M, Brunner J, Oudega B, Harms N, Luirink J. J. Cell Biol. 161 679-684 (2003)
  81. Modeling a minimal ribosome based on comparative sequence analysis. Mears JA, Cannone JJ, Stagg SM, Gutell RR, Agrawal RK, Harvey SC. J. Mol. Biol. 321 215-234 (2002)
  82. Treble clef finger--a functionally diverse zinc-binding structural motif. Grishin NV. Nucleic Acids Res. 29 1703-1714 (2001)
  83. Assembly of the 30S ribosomal subunit. Culver GM. Biopolymers 68 234-249 (2003)
  84. Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. Ng WL, Kazmierczak KM, Robertson GT, Gilmour R, Winkler ME. J. Bacteriol. 185 359-370 (2003)
  85. A conformational change in the ribosomal peptidyl transferase center upon active/inactive transition. Bayfield MA, Dahlberg AE, Schulmeister U, Dorner S, Barta A. Proc. Natl. Acad. Sci. U.S.A. 98 10096-10101 (2001)
  86. Anatomy of Escherichia coli ribosome binding sites. Shultzaberger RK, Bucheimer RE, Rudd KE, Schneider TD. J. Mol. Biol. 313 215-228 (2001)
  87. Catalytic roles for proton transfer and protonation in ribozymes. Bevilacqua PC, Brown TS, Nakano S, Yajima R. Biopolymers 73 90-109 (2004)
  88. Differential contributions of ribosomal protein genes to Arabidopsis thaliana leaf development. Horiguchi G, Mollá-Morales A, Pérez-Pérez JM, Kojima K, Robles P, Ponce MR, Micol JL, Tsukaya H. Plant J. 65 724-736 (2011)
  89. The hammerhead cleavage reaction in monovalent cations. Curtis EA, Bartel DP. RNA 7 546-552 (2001)
  90. The key function of a conserved and modified rRNA residue in the ribosomal response to the nascent peptide. Vázquez-Laslop N, Ramu H, Klepacki D, Kannan K, Mankin AS. EMBO J. 29 3108-3117 (2010)
  91. A widespread self-cleaving ribozyme class is revealed by bioinformatics. Roth A, Weinberg Z, Chen AG, Kim PB, Ames TD, Breaker RR. Nat. Chem. Biol. 10 56-60 (2014)
  92. Mechanism of peptide bond synthesis on the ribosome. Trobro S, Aqvist J. Proc. Natl. Acad. Sci. U.S.A. 102 12395-12400 (2005)
  93. RNA structure comparison, motif search and discovery using a reduced representation of RNA conformational space. Duarte CM, Wadley LM, Pyle AM. Nucleic Acids Res. 31 4755-4761 (2003)
  94. Structural basis for selectivity and toxicity of ribosomal antibiotics. Böttger EC, Springer B, Prammananan T, Kidan Y, Sander P. EMBO Rep. 2 318-323 (2001)
  95. Induced-fit tightens pleuromutilins binding to ribosomes and remote interactions enable their selectivity. Davidovich C, Bashan A, Auerbach-Nevo T, Yaggie RD, Gontarek RR, Yonath A. Proc. Natl. Acad. Sci. U.S.A. 104 4291-4296 (2007)
  96. Modulation of the rate of peptidyl transfer on the ribosome by the nature of substrates. Wohlgemuth I, Brenner S, Beringer M, Rodnina MV. J Biol Chem 283 32229-32235 (2008)
  97. Protein folding during cotranslational translocation in the endoplasmic reticulum. Kowarik M, Küng S, Martoglio B, Helenius A. Mol. Cell 10 769-778 (2002)
  98. Ribosome rescue by tmRNA requires truncated mRNAs. Ivanova N, Pavlov MY, Felden B, Ehrenberg M. J. Mol. Biol. 338 33-41 (2004)
  99. Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template. Xiong Y, Steitz TA. Nature 430 640-645 (2004)
  100. Ribosome exit tunnel can entropically stabilize alpha-helices. Ziv G, Haran G, Thirumalai D. Proc. Natl. Acad. Sci. U.S.A. 102 18956-18961 (2005)
  101. Crystal structure of a group I intron splicing intermediate. Adams PL, Stahley MR, Gill ML, Kosek AB, Wang J, Strobel SA. RNA 10 1867-1887 (2004)
  102. The kinetics of ribosomal peptidyl transfer revisited. Johansson M, Bouakaz E, Lovmar M, Ehrenberg M. Mol. Cell 30 589-598 (2008)
  103. A new role for BiP: closing the aqueous translocon pore during protein integration into the ER membrane. Haigh NG, Johnson AE. J. Cell Biol. 156 261-270 (2002)
  104. Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker. He Y, Liu DR. Nat Nanotechnol 5 778-782 (2010)
  105. A late-acting quality control process for mature eukaryotic rRNAs. LaRiviere FJ, Cole SE, Ferullo DJ, Moore MJ. Mol. Cell 24 619-626 (2006)
  106. Propagating conformational changes over long (and short) distances in proteins. Yu EW, Koshland DE. Proc. Natl. Acad. Sci. U.S.A. 98 9517-9520 (2001)
  107. Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. Woolhead CA, Johnson AE, Bernstein HD. Mol. Cell 22 587-598 (2006)
  108. U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. Gürel G, Blaha G, Moore PB, Steitz TA. J. Mol. Biol. 389 146-156 (2009)
  109. Detection of non-coding RNAs on the basis of predicted secondary structure formation free energy change. Uzilov AV, Keegan JM, Mathews DH. BMC Bioinformatics 7 173 (2006)
  110. Lighting up biochemiluminescence by the surface self-assembly of DNA-hemin complexes. Xiao Y, Pavlov V, Gill R, Bourenko T, Willner I. Chembiochem 5 374-379 (2004)
  111. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. Bhushan S, Hoffmann T, Seidelt B, Frauenfeld J, Mielke T, Berninghausen O, Wilson DN, Beckmann R. PLoS Biol. 9 e1000581 (2011)
  112. Crystal structures of the Bacillus stearothermophilus CCA-adding enzyme and its complexes with ATP or CTP. Li F, Xiong Y, Wang J, Cho HD, Tomita K, Weiner AM, Steitz TA. Cell 111 815-824 (2002)
  113. Deletion of a conserved, central ribosomal intersubunit RNA bridge. Ali IK, Lancaster L, Feinberg J, Joseph S, Noller HF. Mol. Cell 23 865-874 (2006)
  114. Structural compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome. Systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria. Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, Watanabe K. J Biol Chem 276 21724-21736 (2001)
  115. Tech.Sight. Molecular biology. Making catalytic DNAs. Breaker RR. Science 290 2095-2096 (2000)
  116. Tertiary interactions within the ribosomal exit tunnel. Kosolapov A, Deutsch C. Nat. Struct. Mol. Biol. 16 405-411 (2009)
  117. The critical role of the universally conserved A2602 of 23S ribosomal RNA in the release of the nascent peptide during translation termination. Polacek N, Gomez MJ, Ito K, Xiong L, Nakamura Y, Mankin A. Mol. Cell 11 103-112 (2003)
  118. Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site. Fredrick K, Noller HF. Mol. Cell 9 1125-1131 (2002)
  119. Arabidopsis ribosomal proteins RPL23aA and RPL23aB are differentially targeted to the nucleolus and are disparately required for normal development. Degenhardt RF, Bonham-Smith PC. Plant Physiol. 147 128-142 (2008)
  120. Functional involvement of G8 in the hairpin ribozyme cleavage mechanism. Pinard R, Hampel KJ, Heckman JE, Lambert D, Chan PA, Major F, Burke JM. EMBO J. 20 6434-6442 (2001)
  121. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. Poulsen SM, Karlsson M, Johansson LB, Vester B. Mol. Microbiol. 41 1091-1099 (2001)
  122. Three-dimensional structures of translating ribosomes by Cryo-EM. Gilbert RJ, Fucini P, Connell S, Fuller SD, Nierhaus KH, Robinson CV, Dobson CM, Stuart DI. Mol. Cell 14 57-66 (2004)
  123. An in vitro evolved precursor tRNA with aminoacylation activity. Saito H, Kourouklis D, Suga H. EMBO J. 20 1797-1806 (2001)
  124. SCOR: a Structural Classification of RNA database. Klosterman PS, Tamura M, Holbrook SR, Brenner SE. Nucleic Acids Res. 30 392-394 (2002)
  125. Structure of the mammalian ribosome-channel complex at 17A resolution. Morgan DG, Ménétret JF, Neuhof A, Rapoport TA, Akey CW. J. Mol. Biol. 324 871-886 (2002)
  126. On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization. Wolf YI, Koonin EV. Biol. Direct 2 14 (2007)
  127. Protein activation of a ribozyme: the role of bacterial RNase P protein. Buck AH, Dalby AB, Poole AW, Kazantsev AV, Pace NR. EMBO J. 24 3360-3368 (2005)
  128. Water and ion binding around r(UpA)12 and d(TpA)12 oligomers--comparison with RNA and DNA (CpG)12 duplexes. Auffinger P, Westhof E. J. Mol. Biol. 305 1057-1072 (2001)
  129. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Polikanov YS, Steitz TA, Innis CA. Nat. Struct. Mol. Biol. 21 787-793 (2014)
  130. Binding site of macrolide antibiotics on the ribosome: new resistance mutation identifies a specific interaction of ketolides with rRNA. Garza-Ramos G, Xiong L, Zhong P, Mankin A. J. Bacteriol. 183 6898-6907 (2001)
  131. Proteomic identification of all plastid-specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit. Yamaguchi K, Subramanian AR. Eur. J. Biochem. 270 190-205 (2003)
  132. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Kannan K, Vázquez-Laslop N, Mankin AS. Cell 151 508-520 (2012)
  133. An "integrated model" of programmed ribosomal frameshifting. Harger JW, Meskauskas A, Dinman JD. Trends Biochem. Sci. 27 448-454 (2002)
  134. Mechanisms of streptomycin resistance: selection of mutations in the 16S rRNA gene conferring resistance. Springer B, Kidan YG, Prammananan T, Ellrott K, Böttger EC, Sander P. Antimicrob. Agents Chemother. 45 2877-2884 (2001)
  135. Role of an active site adenine in hairpin ribozyme catalysis. Kuzmin YI, Da Costa CP, Cottrell JW, Fedor MJ. J. Mol. Biol. 349 989-1010 (2005)
  136. The role of fluctuations in tRNA selection by the ribosome. Lee TH, Blanchard SC, Kim HD, Puglisi JD, Chu S. Proc. Natl. Acad. Sci. U.S.A. 104 13661-13665 (2007)
  137. A common speed limit for RNA-cleaving ribozymes and deoxyribozymes. Breaker RR, Emilsson GM, Lazarev D, Nakamura S, Puskarz IJ, Roth A, Sudarsan N. RNA 9 949-957 (2003)
  138. Catalysts from synthetic genetic polymers. Taylor AI, Pinheiro VB, Smola MJ, Morgunov AS, Peak-Chew S, Cozens C, Weeks KM, Herdewijn P, Holliger P. Nature 518 427-430 (2015)
  139. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Pringle M, Poehlsgaard J, Vester B, Long KS. Mol. Microbiol. 54 1295-1306 (2004)
  140. New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Weinberg Z, Kim PB, Chen TH, Li S, Harris KA, Lünse CE, Breaker RR. Nat. Chem. Biol. 11 606-610 (2015)
  141. Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. Schmeing TM, Moore PB, Steitz TA. RNA 9 1345-1352 (2003)
  142. The plasticity of a translation arrest motif yields insights into nascent polypeptide recognition inside the ribosome tunnel. Yap MN, Bernstein HD. Mol. Cell 34 201-211 (2009)
  143. X-ray crystal structures of the WT and a hyper-accurate ribosome from Escherichia coli. Vila-Sanjurjo A, Ridgeway WK, Seymaner V, Zhang W, Santoso S, Yu K, Cate JH. Proc. Natl. Acad. Sci. U.S.A. 100 8682-8687 (2003)
  144. Nascent peptide in the ribosome exit tunnel affects functional properties of the A-site of the peptidyl transferase center. Ramu H, Vázquez-Laslop N, Klepacki D, Dai Q, Piccirilli J, Micura R, Mankin AS. Mol. Cell 41 321-330 (2011)
  145. Peptide bond formation does not involve acid-base catalysis by ribosomal residues. Bieling P, Beringer M, Adio S, Rodnina MV. Nat. Struct. Mol. Biol. 13 423-428 (2006)
  146. The Escherichia coli DEAD protein DbpA recognizes a small RNA hairpin in 23S rRNA. Tsu CA, Kossen K, Uhlenbeck OC. RNA 7 702-709 (2001)
  147. EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. Sharma D, Southworth DR, Green R. RNA 10 102-113 (2004)
  148. Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. Poulsen SM, Kofoed C, Vester B. J. Mol. Biol. 304 471-481 (2000)
  149. Oxazolidinone antibiotics target the P site on Escherichia coli ribosomes. Aoki H, Ke L, Poppe SM, Poel TJ, Weaver EA, Gadwood RC, Thomas RC, Shinabarger DL, Ganoza MC. Antimicrob. Agents Chemother. 46 1080-1085 (2002)
  150. Structural basis for template-independent RNA polymerization. Tomita K, Fukai S, Ishitani R, Ueda T, Takeuchi N, Vassylyev DG, Nureki O. Nature 430 700-704 (2004)
  151. Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. Fahlman RP, Dale T, Uhlenbeck OC. Mol. Cell 16 799-805 (2004)
  152. Enhancing the catalytic repertoire of nucleic acids: a systematic study of linker length and rigidity. Lee SE, Sidorov A, Gourlain T, Mignet N, Thorpe SJ, Brazier JA, Dickman MJ, Hornby DP, Grasby JA, Williams DM. Nucleic Acids Res. 29 1565-1573 (2001)
  153. Parameter optimized surfaces (POPS): analysis of key interactions and conformational changes in the ribosome. Fraternali F, Cavallo L. Nucleic Acids Res. 30 2950-2960 (2002)
  154. The drive to life on wet and icy worlds. Russell MJ, Barge LM, Bhartia R, Bocanegra D, Bracher PJ, Branscomb E, Kidd R, McGlynn S, Meier DH, Nitschke W, Shibuya T, Vance S, White L, Kanik I. Astrobiology 14 308-343 (2014)
  155. The structure of the RlmB 23S rRNA methyltransferase reveals a new methyltransferase fold with a unique knot. Michel G, Sauvé V, Larocque R, Li Y, Matte A, Cygler M. Structure 10 1303-1315 (2002)
  156. A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA. Andersen TE, Porse BT, Kirpekar F. RNA 10 907-913 (2004)
  157. Genetic identification of nascent peptides that induce ribosome stalling. Tanner DR, Cariello DA, Woolstenhulme CJ, Broadbent MA, Buskirk AR. J. Biol. Chem. 284 34809-34818 (2009)
  158. The interaction networks of structured RNAs. Lescoute A, Westhof E. Nucleic Acids Res. 34 6587-6604 (2006)
  159. The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Kierzek E, Kierzek R. Nucleic Acids Res. 31 4472-4480 (2003)
  160. Mapping the electrostatic potential within the ribosomal exit tunnel. Lu J, Kobertz WR, Deutsch C. J. Mol. Biol. 371 1378-1391 (2007)
  161. pH-sensitivity of the ribosomal peptidyl transfer reaction dependent on the identity of the A-site aminoacyl-tRNA. Johansson M, Ieong KW, Trobro S, Strazewski P, Åqvist J, Pavlov MY, Ehrenberg M. Proc. Natl. Acad. Sci. U.S.A. 108 79-84 (2011)
  162. A novel site of antibiotic action in the ribosome: interaction of evernimicin with the large ribosomal subunit. Belova L, Tenson T, Xiong L, McNicholas PM, Mankin AS. Proc. Natl. Acad. Sci. U.S.A. 98 3726-3731 (2001)
  163. Structure of a mitochondrial ribosome with minimal RNA. Sharma MR, Booth TM, Simpson L, Maslov DA, Agrawal RK. Proc. Natl. Acad. Sci. U.S.A. 106 9637-9642 (2009)
  164. The common and the distinctive features of the bulged-G motif based on a 1.04 A resolution RNA structure. Correll CC, Beneken J, Plantinga MJ, Lubbers M, Chan YL. Nucleic Acids Res. 31 6806-6818 (2003)
  165. Different conformations of nascent polypeptides during translocation across the ER membrane. Mingarro I, Nilsson I, Whitley P, von Heijne G. BMC Cell Biol. 1 3 (2000)
  166. Reconstitution of archaeal ribonuclease P from RNA and four protein components. Kouzuma Y, Mizoguchi M, Takagi H, Fukuhara H, Tsukamoto M, Numata T, Kimura M. Biochem. Biophys. Res. Commun. 306 666-673 (2003)
  167. Role of an active site guanine in hairpin ribozyme catalysis probed by exogenous nucleobase rescue. Kuzmin YI, Da Costa CP, Fedor MJ. J. Mol. Biol. 340 233-251 (2004)
  168. The interaction between C75 of tRNA and the A loop of the ribosome stimulates peptidyl transferase activity. Brunelle JL, Youngman EM, Sharma D, Green R. RNA 12 33-39 (2006)
  169. Thermodynamics and kinetics of protein folding under confinement. Mittal J, Best RB. Proc. Natl. Acad. Sci. U.S.A. 105 20233-20238 (2008)
  170. A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome. Maguire BA, Beniaminov AD, Ramu H, Mankin AS, Zimmermann RA. Mol. Cell 20 427-435 (2005)
  171. Desiccation tolerance in the moss Polytrichum formosum: physiological and fine-structural changes during desiccation and recovery. Proctor MC, Ligrone R, Duckett JG. Ann. Bot. 99 75-93 (2007)
  172. Identification and site of action of the remaining four putative pseudouridine synthases in Escherichia coli. Del Campo M, Kaya Y, Ofengand J. RNA 7 1603-1615 (2001)
  173. Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Zhao H, Sen S, Udayabhaskararao T, Sawczyk M, Kučanda K, Manna D, Kundu PK, Lee JW, Král P, Klajn R. Nat Nanotechnol 11 82-88 (2016)
  174. The lonepair triloop: a new motif in RNA structure. Lee JC, Cannone JJ, Gutell RR. J. Mol. Biol. 325 65-83 (2003)
  175. Novel mutations in ribosomal proteins L4 and L22 that confer erythromycin resistance in Escherichia coli. Zaman S, Fitzpatrick M, Lindahl L, Zengel J. Mol. Microbiol. 66 1039-1050 (2007)
  176. Resistance to the macrolide antibiotic tylosin is conferred by single methylations at 23S rRNA nucleotides G748 and A2058 acting in synergy. Liu M, Douthwaite S. Proc. Natl. Acad. Sci. U.S.A. 99 14658-14663 (2002)
  177. The global structure of the VS ribozyme. Lafontaine DA, Norman DG, Lilley DM. EMBO J. 21 2461-2471 (2002)
  178. A newly synthesized, ribosome-bound polypeptide chain adopts conformations dissimilar from early in vitro refolding intermediates. Clark PL, King J. J. Biol. Chem. 276 25411-25420 (2001)
  179. Identifying the methyltransferases for m(5)U747 and m(5)U1939 in 23S rRNA using MALDI mass spectrometry. Madsen CT, Mengel-Jørgensen J, Kirpekar F, Douthwaite S. Nucleic Acids Res. 31 4738-4746 (2003)
  180. Involvement of a cytosine side chain in proton transfer in the rate-determining step of ribozyme self-cleavage. Shih IH, Been MD. Proc. Natl. Acad. Sci. U.S.A. 98 1489-1494 (2001)
  181. An rRNA mutation identifies the apicoplast as the target for clindamycin in Toxoplasma gondii. Camps M, Arrizabalaga G, Boothroyd J. Mol. Microbiol. 43 1309-1318 (2002)
  182. Protein synthesis by ribosomes with tethered subunits. Orelle C, Carlson ED, Szal T, Florin T, Jewett MC, Mankin AS. Nature 524 119-124 (2015)
  183. Protein-based peptide-bond formation by aminoacyl-tRNA protein transferase. Watanabe K, Toh Y, Suto K, Shimizu Y, Oka N, Wada T, Tomita K. Nature 449 867-871 (2007)
  184. Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. Li XD, Chen ZJ. Elife 1 e00102 (2012)
  185. Symmetric K+ and Mg2+ ion-binding sites in the 5S rRNA loop E inferred from molecular dynamics simulations. Auffinger P, Bielecki L, Westhof E. J. Mol. Biol. 335 555-571 (2004)
  186. Systematic chromosomal deletion of bacterial ribosomal protein genes. Shoji S, Dambacher CM, Shajani Z, Williamson JR, Schultz PG. J. Mol. Biol. 413 751-761 (2011)
  187. A nucleolar protein related to ribosomal protein L7 is required for an early step in large ribosomal subunit biogenesis. Dunbar DA, Dragon F, Lee SJ, Baserga SJ. Proc. Natl. Acad. Sci. U.S.A. 97 13027-13032 (2000)
  188. Initiation factor IF 2 binds to the alpha-sarcin loop and helix 89 of Escherichia coli 23S ribosomal RNA. La Teana A, Gualerzi CO, Dahlberg AE. RNA 7 1173-1179 (2001)
  189. Mononucleotide derivatives as ribosomal P-site substrates reveal an important contribution of the 2'-OH to activity. Dorner S, Panuschka C, Schmid W, Barta A. Nucleic Acids Res. 31 6536-6542 (2003)
  190. O-GlcNAc cycling enzymes associate with the translational machinery and modify core ribosomal proteins. Zeidan Q, Wang Z, De Maio A, Hart GW. Mol. Biol. Cell 21 1922-1936 (2010)
  191. ProbKnot: fast prediction of RNA secondary structure including pseudoknots. Bellaousov S, Mathews DH. RNA 16 1870-1880 (2010)
  192. Ribosomal and non-ribosomal resistance to oxazolidinones: species-specific idiosyncrasy of ribosomal alterations. Sander P, Belova L, Kidan YG, Pfister P, Mankin AS, Böttger EC. Mol. Microbiol. 46 1295-1304 (2002)
  193. Ribosomal history reveals origins of modern protein synthesis. Harish A, Caetano-Anollés G. PLoS ONE 7 e32776 (2012)
  194. Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. Peisker K, Braun D, Wölfle T, Hentschel J, Fünfschilling U, Fischer G, Sickmann A, Rospert S. Mol. Biol. Cell 19 5279-5288 (2008)
  195. The origin of the RNA world: co-evolution of genes and metabolism. Copley SD, Smith E, Morowitz HJ. Bioorg. Chem. 35 430-443 (2007)
  196. Crystal structure of a core spliceosomal protein interface. Schellenberg MJ, Edwards RA, Ritchie DB, Kent OA, Golas MM, Stark H, Lührmann R, Glover JN, MacMillan AM. Proc. Natl. Acad. Sci. U.S.A. 103 1266-1271 (2006)
  197. Inactivation of ribosomal protein genes in Bacillus subtilis reveals importance of each ribosomal protein for cell proliferation and cell differentiation. Akanuma G, Nanamiya H, Natori Y, Yano K, Suzuki S, Omata S, Ishizuka M, Sekine Y, Kawamura F. J. Bacteriol. 194 6282-6291 (2012)
  198. Mutations outside the anisomycin-binding site can make ribosomes drug-resistant. Blaha G, Gürel G, Schroeder SJ, Moore PB, Steitz TA. J. Mol. Biol. 379 505-519 (2008)
  199. Resistance to quinupristin-dalfopristin due to mutation of L22 ribosomal protein in Staphylococcus aureus. Malbruny B, Canu A, Bozdogan B, Fantin B, Zarrouk V, Dutka-Malen S, Feger C, Leclercq R. Antimicrob. Agents Chemother. 46 2200-2207 (2002)
  200. A structural ensemble of a ribosome-nascent chain complex during cotranslational protein folding. Cabrita LD, Cassaignau AME, Launay HMM, Waudby CA, Wlodarski T, Camilloni C, Karyadi ME, Robertson AL, Wang X, Wentink AS, Goodsell L, Woolhead CA, Vendruscolo M, Dobson CM, Christodoulou J. Nat. Struct. Mol. Biol. 23 278-285 (2016)
  201. Complete crystallographic analysis of the dynamics of CCA sequence addition. Tomita K, Ishitani R, Fukai S, Nureki O. Nature 443 956-960 (2006)
  202. Functional RNAs exhibit tolerance for non-heritable 2'-5' versus 3'-5' backbone heterogeneity. Engelhart AE, Powner MW, Szostak JW. Nat Chem 5 390-394 (2013)
  203. Structural elucidation of a PRP8 core domain from the heart of the spliceosome. Ritchie DB, Schellenberg MJ, Gesner EM, Raithatha SA, Stuart DT, Macmillan AM. Nat. Struct. Mol. Biol. 15 1199-1205 (2008)
  204. Chemical engineering of the peptidyl transferase center reveals an important role of the 2'-hydroxyl group of A2451. Erlacher MD, Lang K, Shankaran N, Wotzel B, Hüttenhofer A, Micura R, Mankin AS, Polacek N. Nucleic Acids Res. 33 1618-1627 (2005)
  205. Oxazolidinones inhibit cellular proliferation via inhibition of mitochondrial protein synthesis. Nagiec EE, Wu L, Swaney SM, Chosay JG, Ross DE, Brieland JK, Leach KL. Antimicrob. Agents Chemother. 49 3896-3902 (2005)
  206. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli. Semrad K, Green R, Schroeder R. RNA 10 1855-1860 (2004)
  207. Rescue of an abasic hairpin ribozyme by cationic nucleobases: evidence for a novel mechanism of RNA catalysis. Lebruska LL, Kuzmine II, Fedor MJ. Chem. Biol. 9 465-473 (2002)
  208. pH-dependent conformational flexibility within the ribosomal peptidyl transferase center. Muth GW, Chen L, Kosek AB, Strobel SA. RNA 7 1403-1415 (2001)
  209. A new hydrogen-bonding potential for the design of protein-RNA interactions predicts specific contacts and discriminates decoys. Chen Y, Kortemme T, Robertson T, Baker D, Varani G. Nucleic Acids Res. 32 5147-5162 (2004)
  210. Crystal structure and mechanistic investigation of the twister ribozyme. Liu Y, Wilson TJ, McPhee SA, Lilley DM. Nat. Chem. Biol. 10 739-744 (2014)
  211. Do mRNAs act as direct sensors of small molecules to control their expression? Stormo GD, Ji Y. Proc. Natl. Acad. Sci. U.S.A. 98 9465-9467 (2001)
  212. Selection of the simplest RNA that binds isoleucine. Lozupone C, Changayil S, Majerfeld I, Yarus M. RNA 9 1315-1322 (2003)
  213. Stepwise prediction of conformational discontinuous B-cell epitopes using the Mapitope algorithm. Bublil EM, Freund NT, Mayrose I, Penn O, Roitburd-Berman A, Rubinstein ND, Pupko T, Gershoni JM. Proteins 68 294-304 (2007)
  214. The structural basis of macrolide-ribosome binding assessed using mutagenesis of 23S rRNA positions 2058 and 2059. Pfister P, Jenni S, Poehlsgaard J, Thomas A, Douthwaite S, Ban N, Böttger EC. J. Mol. Biol. 342 1569-1581 (2004)
  215. A DEAD box protein is required for formation of a hidden break in Arabidopsis chloroplast 23S rRNA. Nishimura K, Ashida H, Ogawa T, Yokota A. Plant J. 63 766-777 (2010)
  216. Cotranslational folding increases GFP folding yield. Ugrinov KG, Clark PL. Biophys. J. 98 1312-1320 (2010)
  217. Global growth deficiencies in mice lacking the ribosomal protein HIP/RPL29. Kirn-Safran CB, Oristian DS, Focht RJ, Parker SG, Vivian JL, Carson DD. Dev. Dyn. 236 447-460 (2007)
  218. MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. Pintard L, Bujnicki JM, Lapeyre B, Bonnerot C. EMBO J. 21 1139-1147 (2002)
  219. R chi-01, a new family of oxazolidinones that overcome ribosome-based linezolid resistance. Skripkin E, McConnell TS, DeVito J, Lawrence L, Ippolito JA, Duffy EM, Sutcliffe J, Franceschi F. Antimicrob. Agents Chemother. 52 3550-3557 (2008)
  220. The A730 loop is an important component of the active site of the VS ribozyme. Lafontaine DA, Wilson TJ, Norman DG, Lilley DM. J. Mol. Biol. 312 663-674 (2001)
  221. The ribosome as a conveying thermal ratchet machine. Spirin AS. J. Biol. Chem. 284 21103-21119 (2009)
  222. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis. Lang K, Erlacher M, Wilson DN, Micura R, Polacek N. Chem. Biol. 15 485-492 (2008)
  223. A general approach for the use of oligonucleotide effectors to regulate the catalysis of RNA-cleaving ribozymes and DNAzymes. Wang DY, Lai BH, Feldman AR, Sen D. Nucleic Acids Res. 30 1735-1742 (2002)
  224. A versatile tRNA aminoacylation catalyst based on RNA. Murakami H, Saito H, Suga H. Chem. Biol. 10 655-662 (2003)
  225. Crystal structures of an archaeal class I CCA-adding enzyme and its nucleotide complexes. Xiong Y, Li F, Wang J, Weiner AM, Steitz TA. Mol. Cell 12 1165-1172 (2003)
  226. Human ribosomal protein L13a is dispensable for canonical ribosome function but indispensable for efficient rRNA methylation. Chaudhuri S, Vyas K, Kapasi P, Komar AA, Dinman JD, Barik S, Mazumder B. RNA 13 2224-2237 (2007)
  227. Posttranscriptional modifications in the A-loop of 23S rRNAs from selected archaea and eubacteria. Hansen MA, Kirpekar F, Ritterbusch W, Vester B. RNA 8 202-213 (2002)
  228. Predicting helical coaxial stacking in RNA multibranch loops. Tyagi R, Mathews DH. RNA 13 939-951 (2007)
  229. Sequence selectivity of macrolide-induced translational attenuation. Davis AR, Gohara DW, Yap MN. Proc. Natl. Acad. Sci. U.S.A. 111 15379-15384 (2014)
  230. The fragmented mitochondrial ribosomal RNAs of Plasmodium falciparum. Feagin JE, Harrell MI, Lee JC, Coe KJ, Sands BH, Cannone JJ, Tami G, Schnare MN, Gutell RR. PLoS ONE 7 e38320 (2012)
  231. The thermodynamic origin of the stability of a thermophilic ribozyme. Fang XW, Golden BL, Littrell K, Shelton V, Thiyagarajan P, Pan T, Sosnick TR. Proc. Natl. Acad. Sci. U.S.A. 98 4355-4360 (2001)
  232. Visualizing large RNA molecules in solution. Gopal A, Zhou ZH, Knobler CM, Gelbart WM. RNA 18 284-299 (2012)
  233. DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities. Ferrè F, Ponty Y, Lorenz WA, Clote P. Nucleic Acids Res. 35 W659-68 (2007)
  234. Homogeneous stalled ribosome nascent chain complexes produced in vivo or in vitro. Evans MS, Ugrinov KG, Frese MA, Clark PL. Nat. Methods 2 757-762 (2005)
  235. Oligonucleotide directed misfolding of RNA inhibits Candida albicans group I intron splicing. Childs JL, Disney MD, Turner DH. Proc. Natl. Acad. Sci. U.S.A. 99 11091-11096 (2002)
  236. Structural dynamics of precursor and product of the RNA enzyme from the hepatitis delta virus as revealed by molecular dynamics simulations. Krasovska MV, Sefcikova J, Spacková N, Sponer J, Walter NG. J. Mol. Biol. 351 731-748 (2005)
  237. Chemical correction of pre-mRNA splicing defects associated with sequestration of muscleblind-like 1 protein by expanded r(CAG)-containing transcripts. Kumar A, Parkesh R, Sznajder LJ, Childs-Disney JL, Sobczak K, Disney MD. ACS Chem. Biol. 7 496-505 (2012)
  238. Mechanisms of SecM-mediated stalling in the ribosome. Gumbart J, Schreiner E, Wilson DN, Beckmann R, Schulten K. Biophys. J. 103 331-341 (2012)
  239. Structure of the chloroplast ribosome: novel domains for translation regulation. Manuell AL, Quispe J, Mayfield SP. PLoS Biol. 5 e209 (2007)
  240. A folding zone in the ribosomal exit tunnel for Kv1.3 helix formation. Tu LW, Deutsch C. J. Mol. Biol. 396 1346-1360 (2010)
  241. Direct Raman measurement of an elevated base pKa in the active site of a small ribozyme in a precatalytic conformation. Guo M, Spitale RC, Volpini R, Krucinska J, Cristalli G, Carey PR, Wedekind JE. J. Am. Chem. Soc. 131 12908-12909 (2009)
  242. Functional group requirements in the probable active site of the VS ribozyme. Lafontaine DA, Wilson TJ, Zhao ZY, Lilley DM. J. Mol. Biol. 323 23-34 (2002)
  243. Protein folding activity of ribosomal RNA is a selective target of two unrelated antiprion drugs. Tribouillard-Tanvier D, Dos Reis S, Gug F, Voisset C, Béringue V, Sabate R, Kikovska E, Talarek N, Bach S, Huang C, Desban N, Saupe SJ, Supattapone S, Thuret JY, Chédin S, Vilette D, Galons H, Sanyal S, Blondel M. PLoS ONE 3 e2174 (2008)
  244. RMF inactivates ribosomes by covering the peptidyl transferase centre and entrance of peptide exit tunnel. Yoshida H, Yamamoto H, Uchiumi T, Wada A. Genes Cells 9 271-278 (2004)
  245. The C-terminal amino acid sequence of nascent peptide is a major determinant of SsrA tagging at all three stop codons. Sunohara T, Abo T, Inada T, Aiba H. RNA 8 1416-1427 (2002)
  246. Three-dimensional motifs from the SCOR, structural classification of RNA database: extruded strands, base triples, tetraloops and U-turns. Klosterman PS, Hendrix DK, Tamura M, Holbrook SR, Brenner SE. Nucleic Acids Res. 32 2342-2352 (2004)
  247. Contribution of 16S rRNA nucleotides forming the 30S subunit A and P sites to translation in Escherichia coli. Abdi NM, Fredrick K. RNA 11 1624-1632 (2005)
  248. Dynamics of Recognition between tRNA and elongation factor Tu. Eargle J, Black AA, Sethi A, Trabuco LG, Luthey-Schulten Z. J. Mol. Biol. 377 1382-1405 (2008)
  249. Increased sensitivity to protein synthesis inhibitors in cells lacking tmRNA. de la Cruz J, Vioque A. RNA 7 1708-1716 (2001)
  250. Interplay between the ribosomal tunnel, nascent chain, and macrolides influences drug inhibition. Starosta AL, Karpenko VV, Shishkina AV, Mikolajka A, Sumbatyan NV, Schluenzen F, Korshunova GA, Bogdanov AA, Wilson DN. Chem. Biol. 17 504-514 (2010)
  251. Nanopore-protein interactions dramatically alter stability and yield of the native state in restricted spaces. Cheung MS, Thirumalai D. J. Mol. Biol. 357 632-643 (2006)
  252. Peptidyl-prolyl-tRNA at the ribosomal P-site reacts poorly with puromycin. Muto H, Ito K. Biochem. Biophys. Res. Commun. 366 1043-1047 (2008)
  253. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. Grosjean H, Gaspin C, Marck C, Decatur WA, de Crécy-Lagard V. BMC Genomics 9 470 (2008)
  254. Statics of the ribosomal exit tunnel: implications for cotranslational peptide folding, elongation regulation, and antibiotics binding. Fulle S, Gohlke H. J. Mol. Biol. 387 502-517 (2009)
  255. Structure acquisition of the T1 domain of Kv1.3 during biogenesis. Kosolapov A, Tu L, Wang J, Deutsch C. Neuron 44 295-307 (2004)
  256. The evolution of ribonucleotide reduction revisited. Stubbe J, Ge J, Yee CS. Trends Biochem. Sci. 26 93-99 (2001)
  257. Dbp9p, a putative ATP-dependent RNA helicase involved in 60S-ribosomal-subunit biogenesis, functionally interacts with Dbp6p. Daugeron MC, Kressler D, Linder P. RNA 7 1317-1334 (2001)
  258. New NMR experiments for RNA nucleobase resonance assignment and chemical shift analysis of an RNA UUCG tetraloop. Fürtig B, Richter C, Bermel W, Schwalbe H. J. Biomol. NMR 28 69-79 (2004)
  259. Historical Article Polar bears, antibiotics, and the evolving ribosome (Nobel Lecture). Yonath A. Angew. Chem. Int. Ed. Engl. 49 4341-4354 (2010)
  260. Residue specific ribose and nucleobase dynamics of the cUUCGg RNA tetraloop motif by MNMR 13C relaxation. Duchardt E, Schwalbe H. J. Biomol. NMR 32 295-308 (2005)
  261. Cleavage of RNA phosphodiester bonds by small molecular entities: a mechanistic insight. Lönnberg H. Org. Biomol. Chem. 9 1687-1703 (2011)
  262. Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein l3. Bøsling J, Poulsen SM, Vester B, Long KS. Antimicrob. Agents Chemother. 47 2892-2896 (2003)
  263. The crystal structure of the zinc phosphodiesterase from Escherichia coli provides insight into function and cooperativity of tRNase Z-family proteins. Kostelecky B, Pohl E, Vogel A, Schilling O, Meyer-Klaucke W. J. Bacteriol. 188 1607-1614 (2006)
  264. Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Akaike T, Ida T, Wei FY, Nishida M, Kumagai Y, Alam MM, Ihara H, Sawa T, Matsunaga T, Kasamatsu S, Nishimura A, Morita M, Tomizawa K, Nishimura A, Watanabe S, Inaba K, Shima H, Tanuma N, Jung M, Fujii S, Watanabe Y, Ohmuraya M, Nagy P, Feelisch M, Fukuto JM, Motohashi H. Nat Commun 8 1177 (2017)
  265. Lecture On peptide bond formation, translocation, nascent protein progression and the regulatory properties of ribosomes. Derived on 20 October 2002 at the 28th FEBS Meeting in Istanbul. Agmon I, Auerbach T, Baram D, Bartels H, Bashan A, Berisio R, Fucini P, Hansen HA, Harms J, Kessler M, Peretz M, Schluenzen F, Yonath A, Zarivach R. Eur. J. Biochem. 270 2543-2556 (2003)
  266. The PDB data uniformity project. Bhat TN, Bourne P, Feng Z, Gilliland G, Jain S, Ravichandran V, Schneider B, Schneider K, Thanki N, Weissig H, Westbrook J, Berman HM. Nucleic Acids Res. 29 214-218 (2001)
  267. The extended loops of ribosomal proteins L4 and L22 are not required for ribosome assembly or L4-mediated autogenous control. Zengel JM, Jerauld A, Walker A, Wahl MC, Lindahl L. RNA 9 1188-1197 (2003)
  268. A trans-membrane segment inside the ribosome exit tunnel triggers RAMP4 recruitment to the Sec61p translocase. Pool MR. J. Cell Biol. 185 889-902 (2009)
  269. Chemiluminescence flow biosensor for hydrogen peroxide using DNAzyme immobilized on eggshell membrane as a thermally stable biocatalyst. Chen W, Li B, Xu C, Wang L. Biosens Bioelectron 24 2534-2540 (2009)
  270. Electron microscopy of functional ribosome complexes. Frank J. Biopolymers 68 223-233 (2003)
  271. Ligand crowding at a nascent signal sequence. Eisner G, Koch HG, Beck K, Brunner J, Muller M. J. Cell Biol. 163 35-44 (2003)
  272. 13-Deoxytedanolide, a marine sponge-derived antitumor macrolide, binds to the 60S large ribosomal subunit. Nishimura S, Matsunaga S, Yoshida M, Hirota H, Yokoyama S, Fusetani N. Bioorg. Med. Chem. 13 449-454 (2005)
  273. Evolution of protein synthesis from an RNA world. Noller HF. Cold Spring Harb Perspect Biol 4 a003681 (2012)
  274. Localization of spermine binding sites in 23S rRNA by photoaffinity labeling: parsing the spermine contribution to ribosomal 50S subunit functions. Xaplanteri MA, Petropoulos AD, Dinos GP, Kalpaxis DL. Nucleic Acids Res. 33 2792-2805 (2005)
  275. Quality Meshing of Implicit Solvation Models of Biomolecular Structures. Zhang Y, Xu G, Bajaj C. Comput Aided Geom Des 23 510-530 (2006)
  276. Revision of AMBER Torsional Parameters for RNA Improves Free Energy Predictions for Tetramer Duplexes with GC and iGiC Base Pairs. Yildirim I, Kennedy SD, Stern HA, Hart JM, Kierzek R, Turner DH. J Chem Theory Comput 8 172-181 (2012)
  277. Translation initiation factor (iso) 4E interacts with BTF3, the beta subunit of the nascent polypeptide-associated complex. Freire MA. Gene 345 271-277 (2005)
  278. BayesFold: rational 2 degrees folds that combine thermodynamic, covariation, and chemical data for aligned RNA sequences. Knight R, Birmingham A, Yarus M. RNA 10 1323-1336 (2004)
  279. Divergent evolutions of trinucleotide polymerization revealed by an archaeal CCA-adding enzyme structure. Okabe M, Tomita K, Ishitani R, Ishii R, Takeuchi N, Arisaka F, Nureki O, Yokoyama S. EMBO J. 22 5918-5927 (2003)
  280. Exploration of the conserved A+C wobble pair within the ribosomal peptidyl transferase center using affinity purified mutant ribosomes. Hesslein AE, Katunin VI, Beringer M, Kosek AB, Rodnina MV, Strobel SA. Nucleic Acids Res. 32 3760-3770 (2004)
  281. HrpA, a DEAH-box RNA helicase, is involved in mRNA processing of a fimbrial operon in Escherichia coli. Koo JT, Choe J, Moseley SL. Mol. Microbiol. 52 1813-1826 (2004)
  282. The alkaline solution to the emergence of life: energy, entropy and early evolution. Russell MJ. Acta Biotheor. 55 133-179 (2007)
  283. A two-step chemical mechanism for ribosome-catalysed peptide bond formation. Hiller DA, Singh V, Zhong M, Strobel SA. Nature 476 236-239 (2011)
  284. An intact ribose moiety at A2602 of 23S rRNA is key to trigger peptidyl-tRNA hydrolysis during translation termination. Amort M, Wotzel B, Bakowska-Zywicka K, Erlacher MD, Micura R, Polacek N. Nucleic Acids Res. 35 5130-5140 (2007)
  285. Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Sharma S, Watzinger P, Kötter P, Entian KD. Nucleic Acids Res. 41 5428-5443 (2013)
  286. Mapping functionally important motifs SPF and GGQ of the decoding release factor RF2 to the Escherichia coli ribosome by hydroxyl radical footprinting. Implications for macromolecular mimicry and structural changes in RF2. Scarlett DJ, McCaughan KK, Wilson DN, Tate WP. J. Biol. Chem. 278 15095-15104 (2003)
  287. Structural relationships among the ribosomal stalk proteins from the three domains of life. Grela P, Bernadó P, Svergun D, Kwiatowski J, Abramczyk D, Grankowski N, Tchórzewski M. J. Mol. Evol. 67 154-167 (2008)
  288. The G2447A mutation does not affect ionization of a ribosomal group taking part in peptide bond formation. Beringer M, Adio S, Wintermeyer W, Rodnina M. RNA 9 919-922 (2003)
  289. Chain dynamics of nascent polypeptides emerging from the ribosome. Ellis JP, Bakke CK, Kirchdoerfer RN, Jungbauer LM, Cavagnero S. ACS Chem. Biol. 3 555-566 (2008)
  290. Intronic hammerhead ribozymes are ultraconserved in the human genome. de la Peña M, García-Robles I. EMBO Rep. 11 711-716 (2010)
  291. Leaving group activation by aromatic stacking: an alternative to general acid catalysis. Versées W, Loverix S, Vandemeulebroucke A, Geerlings P, Steyaert J. J. Mol. Biol. 338 1-6 (2004)
  292. Mapping of the Saccharomyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly. Jia L, Kaur J, Stuart RA. Eukaryotic Cell 8 1792-1802 (2009)
  293. On-enzyme refolding permits small RNA and tRNA surveillance by the CCA-adding enzyme. Kuhn CD, Wilusz JE, Zheng Y, Beal PA, Joshua-Tor L. Cell 160 644-658 (2015)
  294. RNA solvation: a molecular dynamics simulation perspective. Auffinger P, Westhof E. Biopolymers 56 266-274 (2000)
  295. Sequence-specific interactions of nascent Escherichia coli polypeptides with trigger factor and signal recognition particle. Ullers RS, Houben EN, Brunner J, Oudega B, Harms N, Luirink J. J Biol Chem 281 13999-14005 (2006)
  296. Structural and evolutionary classification of G/U wobble basepairs in the ribosome. Mokdad A, Krasovska MV, Sponer J, Leontis NB. Nucleic Acids Res. 34 1326-1341 (2006)
  297. The expanding view of RNA and DNA function. Breaker RR, Joyce GF. Chem. Biol. 21 1059-1065 (2014)
  298. Translocation of a beta-hairpin-forming peptide through a cylindrical tunnel. Kirmizialtin S, Ganesan V, Makarov DE. J Chem Phys 121 10268-10277 (2004)
  299. A novel mode of regulation of an RNA-cleaving DNAzyme by effectors that bind to both enzyme and substrate. Wang DY, Sen D. J. Mol. Biol. 310 723-734 (2001)
  300. Comprehensive genetic selection revealed essential bases in the peptidyl-transferase center. Sato NS, Hirabayashi N, Agmon I, Yonath A, Suzuki T. Proc. Natl. Acad. Sci. U.S.A. 103 15386-15391 (2006)
  301. Computational exploration of mobile ion distributions around RNA duplex. Kirmizialtin S, Elber R. J Phys Chem B 114 8207-8220 (2010)
  302. POPSCOMP: an automated interaction analysis of biomolecular complexes. Kleinjung J, Fraternali F. Nucleic Acids Res. 33 W342-6 (2005)
  303. Conserved codon composition of ribosomal protein coding genes in Escherichia coli, Mycobacterium tuberculosis and Saccharomyces cerevisiae: lessons from supervised machine learning in functional genomics. Lin K, Kuang Y, Joseph JS, Kolatkar PR. Nucleic Acids Res. 30 2599-2607 (2002)
  304. Destabilization of the P site codon-anticodon helix results from movement of tRNA into the P/E hybrid state within the ribosome. McGarry KG, Walker SE, Wang H, Fredrick K. Mol. Cell 20 613-622 (2005)
  305. Early encounters of a nascent membrane protein: specificity and timing of contacts inside and outside the ribosome. Houben EN, Zarivach R, Oudega B, Luirink J. J. Cell Biol. 170 27-35 (2005)
  306. Effects of nucleotide substitution and modification on the stability and structure of helix 69 from 28S rRNA. Sumita M, Desaulniers JP, Chang YC, Chui HM, Clos L, Chow CS. RNA 11 1420-1429 (2005)
  307. Erythromycin inhibition of 50S ribosomal subunit formation in Escherichia coli cells. Usary J, Champney WS. Mol. Microbiol. 40 951-962 (2001)
  308. Human vault-associated non-coding RNAs bind to mitoxantrone, a chemotherapeutic compound. Gopinath SC, Matsugami A, Katahira M, Kumar PK. Nucleic Acids Res. 33 4874-4881 (2005)
  309. Mechanism for the definition of elongation and termination by the class II CCA-adding enzyme. Toh Y, Takeshita D, Numata T, Fukai S, Nureki O, Tomita K. EMBO J. 28 3353-3365 (2009)
  310. Multisite ribosomal stalling: a unique mode of regulatory nascent chain action revealed for MifM. Chiba S, Ito K. Mol. Cell 47 863-872 (2012)
  311. Participation of the tRNA A76 hydroxyl groups throughout translation. Weinger JS, Strobel SA. Biochemistry 45 5939-5948 (2006)
  312. Protein folding by domain V of Escherichia coli 23S rRNA: specificity of RNA-protein interactions. Samanta D, Mukhopadhyay D, Chowdhury S, Ghosh J, Pal S, Basu A, Bhattacharya A, Das A, Das D, DasGupta C. J. Bacteriol. 190 3344-3352 (2008)
  313. Tubulins in the primate retina: evidence that xanthophylls may be endogenous ligands for the paclitaxel-binding site. Crabtree DV, Ojima I, Geng X, Adler AJ. Bioorg. Med. Chem. 9 1967-1976 (2001)
  314. YgdE is the 2'-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Purta E, O'Connor M, Bujnicki JM, Douthwaite S. Mol. Microbiol. 72 1147-1158 (2009)
  315. Control of potassium homeostasis is an essential function of the second messenger cyclic di-AMP in Bacillus subtilis. Gundlach J, Herzberg C, Kaever V, Gunka K, Hoffmann T, Weiß M, Gibhardt J, Thürmer A, Hertel D, Daniel R, Bremer E, Commichau FM, Stülke J. Sci Signal 10 (2017)
  316. Near-critical behavior of aminoacyl-tRNA pools in E. coli at rate-limiting supply of amino acids. Elf J, Ehrenberg M. Biophys. J. 88 132-146 (2005)
  317. Novel synthetic polyamines are effective in the treatment of experimental microsporidiosis, an opportunistic AIDS-associated infection. Bacchi CJ, Weiss LM, Lane S, Frydman B, Valasinas A, Reddy V, Sun JS, Marton LJ, Khan IA, Moretto M, Yarlett N, Wittner M. Antimicrob. Agents Chemother. 46 55-61 (2002)
  318. Oligonucleotide-directed peptide synthesis in a ribosome- and ribozyme-free system. Tamura K, Schimmel P. Proc. Natl. Acad. Sci. U.S.A. 98 1393-1397 (2001)
  319. Ribosomal protein-sequence block structure suggests complex prokaryotic evolution with implications for the origin of eukaryotes. Vishwanath P, Favaretto P, Hartman H, Mohr SC, Smith TF. Mol. Phylogenet. Evol. 33 615-625 (2004)
  320. Comprehensive analysis of phosphorylated proteins of Escherichia coli ribosomes. Soung GY, Miller JL, Koc H, Koc EC. J. Proteome Res. 8 3390-3402 (2009)
  321. Cross talk between the +73/294 interaction and the cleavage site in RNase P RNA mediated cleavage. Brännvall M, Kikovska E, Kirsebom LA. Nucleic Acids Res. 32 5418-5429 (2004)
  322. General base catalysis for cleavage by the active-site cytosine of the hepatitis delta virus ribozyme: QM/MM calculations establish chemical feasibility. Banás P, Rulísek L, Hánosová V, Svozil D, Walter NG, Sponer J, Otyepka M. J Phys Chem B 112 11177-11187 (2008)
  323. In situ observation of peptide bond formation at the water-air interface. Griffith EC, Vaida V. Proc. Natl. Acad. Sci. U.S.A. 109 15697-15701 (2012)
  324. Pure translation display. Forster AC, Cornish VW, Blacklow SC. Anal. Biochem. 333 358-364 (2004)
  325. Rapid peptide bond formation on isolated 50S ribosomal subunits. Wohlgemuth I, Beringer M, Rodnina MV. EMBO Rep. 7 699-703 (2006)
  326. Recognition of nucleotide G745 in 23 S ribosomal RNA by the rrmA methyltransferase. Hansen LH, Kirpekar F, Douthwaite S. J. Mol. Biol. 310 1001-1010 (2001)
  327. Representation, searching and discovery of patterns of bases in complex RNA structures. Harrison AM, South DR, Willett P, Artymiuk PJ. J. Comput. Aided Mol. Des. 17 537-549 (2003)
  328. Ribosome reactivation by replacement of damaged proteins. Pulk A, Liiv A, Peil L, Maiväli U, Nierhaus K, Remme J. Mol. Microbiol. 75 801-814 (2010)
  329. Role of the ribosome in protein folding. Das D, Das A, Samanta D, Ghosh J, Dasgupta S, Bhattacharya A, Basu A, Sanyal S, Das Gupta C. Biotechnol J 3 999-1009 (2008)
  330. The RNA dreamtime: modern cells feature proteins that might have supported a prebiotic polypeptide world but nothing indicates that RNA world ever was. Kurland CG. Bioessays 32 866-871 (2010)
  331. The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit. Lancaster L, Lambert NJ, Maklan EJ, Horan LH, Noller HF. RNA 14 1999-2012 (2008)
  332. Tom40 protein import channel binds to non-native proteins and prevents their aggregation. Esaki M, Kanamori T, Nishikawa S, Shin I, Schultz PG, Endo T. Nat. Struct. Biol. 10 988-994 (2003)
  333. A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center. Hsiao C, Williams LD. Nucleic Acids Res. 37 3134-3142 (2009)
  334. An orthogonal ribosome-tRNA pair via engineering of the peptidyl transferase center. Terasaka N, Hayashi G, Katoh T, Suga H. Nat. Chem. Biol. 10 555-557 (2014)
  335. Boltzmann probability of RNA structural neighbors and riboswitch detection. Freyhult E, Moulton V, Clote P. Bioinformatics 23 2054-2062 (2007)
  336. Polytopic membrane protein folding at L17 in the ribosome tunnel initiates cyclical changes at the translocon. Lin PJ, Jongsma CG, Pool MR, Johnson AE. J. Cell Biol. 195 55-70 (2011)
  337. Role of conserved nucleotides in building the 16 S rRNA binding site for ribosomal protein S15. Serganov A, Bénard L, Portier C, Ennifar E, Garber M, Ehresmann B, Ehresmann C. J. Mol. Biol. 305 785-803 (2001)
  338. The 2'-OH group of the peptidyl-tRNA stabilizes an active conformation of the ribosomal PTC. Zaher HS, Shaw JJ, Strobel SA, Green R. EMBO J. 30 2445-2453 (2011)
  339. The ribosome structure controls and directs mRNA entry, translocation and exit dynamics. Kurkcuoglu O, Doruker P, Sen TZ, Kloczkowski A, Jernigan RL. Phys Biol 5 046005 (2008)
  340. BPS: a database of RNA base-pair structures. Xin Y, Olson WK. Nucleic Acids Res. 37 D83-8 (2009)
  341. Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Kofoed CB, Vester B. Antimicrob. Agents Chemother. 46 3339-3342 (2002)
  342. Regulation of a Bacteroides operon that controls excision and transfer of the conjugative transposon CTnDOT. Wang Y, Shoemaker NB, Salyers AA. J. Bacteriol. 186 2548-2557 (2004)
  343. Synthesis of selenium-derivatized nucleosides and oligonucleotides for X-ray crystallography. Carrasco N, Ginsburg D, Du Q, Huang Z. Nucleosides Nucleotides Nucleic Acids 20 1723-1734 (2001)
  344. Catalysis of amide synthesis by RNA phosphodiester and hydroxyl groups. Chamberlin SI, Merino EJ, Weeks KM. Proc. Natl. Acad. Sci. U.S.A. 99 14688-14693 (2002)
  345. Experimental confirmation of a key role for non-optimal codons in protein export. Zalucki YM, Jennings MP. Biochem. Biophys. Res. Commun. 355 143-148 (2007)
  346. Historical Article From the structure and function of the ribosome to new antibiotics (Nobel Lecture). Steitz TA. Angew. Chem. Int. Ed. Engl. 49 4381-4398 (2010)
  347. ISG20L2, a novel vertebrate nucleolar exoribonuclease involved in ribosome biogenesis. Couté Y, Kindbeiter K, Belin S, Dieckmann R, Duret L, Bezin L, Sanchez JC, Diaz JJ. Mol. Cell Proteomics 7 546-559 (2008)
  348. Osmolytes stimulate the reconstitution of functional 50S ribosomes from in vitro transcripts of Escherichia coli 23S rRNA. Semrad K, Green R. RNA 8 401-411 (2002)
  349. Short-range RNA-RNA crosslinking methods to determine rRNA structure and interactions. Juzumiene D, Shapkina T, Kirillov S, Wollenzien P. Methods 25 333-343 (2001)
  350. Structural effects of nucleobase variations at key active site residue Ade38 in the hairpin ribozyme. MacElrevey C, Salter JD, Krucinska J, Wedekind JE. RNA 14 1600-1616 (2008)
  351. Transmembrane segments form tertiary hairpins in the folding vestibule of the ribosome. Tu L, Khanna P, Deutsch C. J. Mol. Biol. 426 185-198 (2014)
  352. Transmembrane segments of nascent polytopic membrane proteins control cytosol/ER targeting during membrane integration. Lin PJ, Jongsma CG, Liao S, Johnson AE. J. Cell Biol. 195 41-54 (2011)
  353. Historical Article Unraveling the structure of the ribosome (Nobel Lecture). Ramakrishnan V. Angew. Chem. Int. Ed. Engl. 49 4355-4380 (2010)
  354. An autonomous molecular assembler for programmable chemical synthesis. Meng W, Muscat RA, McKee ML, Milnes PJ, El-Sagheer AH, Bath J, Davis BG, Brown T, O'Reilly RK, Turberfield AJ. Nat Chem 8 542-548 (2016)
  355. An uncharged amine in the transition state of the ribosomal peptidyl transfer reaction. Kingery DA, Pfund E, Voorhees RM, Okuda K, Wohlgemuth I, Kitchen DE, Rodnina MV, Strobel SA. Chem. Biol. 15 493-500 (2008)
  356. Analysis of gene expression in normal and neoplastic human testis: new roles of RNA. Novotny GW, Nielsen JE, Sonne SB, Skakkebaek NE, Rajpert-De Meyts E, Leffers H. Int. J. Androl. 30 316-26; discussion 326-7 (2007)
  357. Bridging the gap between in vitro and in vivo RNA folding. Leamy KA, Assmann SM, Mathews DH, Bevilacqua PC. Q. Rev. Biophys. 49 e10 (2016)
  358. Molecular basis for maintenance of fidelity during the CCA-adding reaction by a CCA-adding enzyme. Toh Y, Numata T, Watanabe K, Takeshita D, Nureki O, Tomita K. EMBO J. 27 1944-1952 (2008)
  359. Multilign: an algorithm to predict secondary structures conserved in multiple RNA sequences. Xu Z, Mathews DH. Bioinformatics 27 626-632 (2011)
  360. Peptide synthesis with a template-like RNA guide and aminoacyl phosphate adaptors. Tamura K, Schimmel P. Proc. Natl. Acad. Sci. U.S.A. 100 8666-8669 (2003)
  361. Structural diversity and isomorphism of hydrogen-bonded base interactions in nucleic acids. Walberer BJ, Cheng AC, Frankel AD. J. Mol. Biol. 327 767-780 (2003)
  362. The catalytic mechanism of hairpin ribozyme studied by hydrostatic pressure. Tobé S, Heams T, Vergne J, Hervé G, Maurel MC. Nucleic Acids Res. 33 2557-2564 (2005)
  363. The two ribosomal protein L23A genes are differentially transcribed in Arabidopsis thaliana. McIntosh KB, Bonham-Smith PC. Genome 48 443-454 (2005)
  364. 23S rRNA assisted folding of cytoplasmic malate dehydrogenase is distinctly different from its self-folding. Sanyal SC, Pal S, Chowdhury S, DasGupta C. Nucleic Acids Res. 30 2390-2397 (2002)
  365. Binding of ribosome recycling factor to ribosomes, comparison with tRNA. Hirokawa G, Kiel MC, Muto A, Kawai G, Igarashi K, Kaji H, Kaji A. J. Biol. Chem. 277 35847-35852 (2002)
  366. DNA renaturation at the water-phenol interface. Goldar A, Sikorav JL. Eur Phys J E Soft Matter 14 211-239 (2004)
  367. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex. Perederina A, Nevskaya N, Nikonov O, Nikulin A, Dumas P, Yao M, Tanaka I, Garber M, Gongadze G, Nikonov S. RNA 8 1548-1557 (2002)
  368. Evidence for a role of initiation factor 3 in recycling of ribosomal complexes stalled on mRNAs in Escherichia coli. Singh NS, Das G, Seshadri A, Sangeetha R, Varshney U. Nucleic Acids Res. 33 5591-5601 (2005)
  369. Generation of chemically engineered ribosomes for atomic mutagenesis studies on protein biosynthesis. Erlacher MD, Chirkova A, Voegele P, Polacek N. Nat Protoc 6 580-592 (2011)
  370. Prebiotically plausible mechanisms increase compositional diversity of nucleic acid sequences. Derr J, Manapat ML, Rajamani S, Leu K, Xulvi-Brunet R, Joseph I, Nowak MA, Chen IA. Nucleic Acids Res. 40 4711-4722 (2012)
  371. Ribosome rescue and translation termination at non-standard stop codons by ICT1 in mammalian mitochondria. Akabane S, Ueda T, Nierhaus KH, Takeuchi N. PLoS Genet. 10 e1004616 (2014)
  372. Simultaneous binding of trigger factor and signal recognition particle to the E. coli ribosome. Raine A, Ivanova N, Wikberg JE, Ehrenberg M. Biochimie 86 495-500 (2004)
  373. The archaeon Haloarcula marismortui has few modifications in the central parts of its 23S ribosomal RNA. Kirpekar F, Hansen LH, Rasmussen A, Poehlsgaard J, Vester B. J. Mol. Biol. 348 563-573 (2005)
  374. The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility. Bashan A, Yonath A. J Mol Struct 890 289-294 (2008)
  375. A conserved chloramphenicol binding site at the entrance to the ribosomal peptide exit tunnel. Long KS, Porse BT. Nucleic Acids Res. 31 7208-7215 (2003)
  376. A divalent metal-dependent self-cleaving DNAzyme with a tyrosine side chain. Lam CH, Hipolito CJ, Hollenstein M, Perrin DM. Org. Biomol. Chem. 9 6949-6954 (2011)
  377. Aptazyme-mediated regulation of 16S ribosomal RNA. Wieland M, Berschneider B, Erlacher MD, Hartig JS. Chem. Biol. 17 236-242 (2010)
  378. Codon-anticodon interaction at the P site is a prerequisite for tRNA interaction with the small ribosomal subunit. Schäfer MA, Tastan AO, Patzke S, Blaha G, Spahn CM, Wilson DN, Nierhaus KH. J. Biol. Chem. 277 19095-19105 (2002)
  379. Collective dynamics of the ribosomal tunnel revealed by elastic network modeling. Kurkcuoglu O, Kurkcuoglu Z, Doruker P, Jernigan RL. Proteins 75 837-845 (2009)
  380. Conversion of a ribozyme to a deoxyribozyme through in vitro evolution. Paul N, Springsteen G, Joyce GF. Chem. Biol. 13 329-338 (2006)
  381. Effect of polyamines on the inhibition of peptidyltransferase by antibiotics: revisiting the mechanism of chloramphenicol action. Xaplanteri MA, Andreou A, Dinos GP, Kalpaxis DL. Nucleic Acids Res. 31 5074-5083 (2003)
  382. Erythromycin resistance by L4/L22 mutations and resistance masking by drug efflux pump deficiency. Lovmar M, Nilsson K, Lukk E, Vimberg V, Tenson T, Ehrenberg M. EMBO J. 28 736-744 (2009)
  383. Establishment of Arabidopsis thaliana ribosomal protein RPL23A-1 as a functional homologue of Saccharomyces cerevisiae ribosomal protein L25. McIntosh KB, Bonham-Smith PC. Plant Mol. Biol. 46 673-682 (2001)
  384. Identification of an imino group indispensable for cleavage by a small ribozyme. Spitale RC, Volpini R, Heller MG, Krucinska J, Cristalli G, Wedekind JE. J. Am. Chem. Soc. 131 6093-6095 (2009)
  385. Mechanisms of RNA catalysis. Lilley DM. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366 2910-2917 (2011)
  386. Montmorillonite protection of an UV-irradiated hairpin ribozyme: evolution of the RNA world in a mineral environment. Biondi E, Branciamore S, Maurel MC, Gallori E. BMC Evol. Biol. 7 Suppl 2 S2 (2007)
  387. Peptide-mediated macrolide resistance reveals possible specific interactions in the nascent peptide exit tunnel. Vimberg V, Xiong L, Bailey M, Tenson T, Mankin A. Mol. Microbiol. 54 376-385 (2004)
  388. Ribosomal RNAs are tolerant toward genetic insertions: evolutionary origin of the expansion segments. Yokoyama T, Suzuki T. Nucleic Acids Res. 36 3539-3551 (2008)
  389. Ribosome-DnaK interactions in relation to protein folding. Ghosh J, Basu A, Pal S, Chowdhuri S, Bhattacharya A, Pal D, Chattoraj DK, DasGupta C. Mol. Microbiol. 48 1679-1692 (2003)
  390. Sequence-dependent elongation dynamics on macrolide-bound ribosomes. Johansson M, Chen J, Tsai A, Kornberg G, Puglisi JD. Cell Rep 7 1534-1546 (2014)
  391. News The dynamic tunnel. Etchells SA, Hartl FU. Nat. Struct. Mol. Biol. 11 391-392 (2004)
  392. The structure of free L11 and functional dynamics of L11 in free, L11-rRNA(58 nt) binary and L11-rRNA(58 nt)-thiostrepton ternary complexes. Lee D, Lee D, Walsh JD, Yu P, Markus MA, Choli-Papadopoulou T, Schwieters CD, Krueger S, Draper DE, Wang YX. J. Mol. Biol. 367 1007-1022 (2007)
  393. Trigger factor interacts with the signal peptide of nascent Tat substrates but does not play a critical role in Tat-mediated export. Jong WS, ten Hagen-Jongman CM, Genevaux P, Brunner J, Oudega B, Luirink J. Eur. J. Biochem. 271 4779-4787 (2004)
  394. A comparative genomics study on the effect of individual amino acids on ribosome stalling. Sabi R, Tuller T. BMC Genomics 16 Suppl 10 S5 (2015)
  395. Chaperone binding at the ribosomal exit tunnel. Kristensen O, Gajhede M. Structure 11 1547-1556 (2003)
  396. Chemistry and the missing era of evolution. Cairns-Smith AG. Chemistry 14 3830-3839 (2008)
  397. Existence of efficient divalent metal ion-catalyzed and inefficient divalent metal ion-independent channels in reactions catalyzed by a hammerhead ribozyme. Zhou JM, Zhou DM, Takagi Y, Kasai Y, Inoue A, Baba T, Taira K. Nucleic Acids Res. 30 2374-2382 (2002)
  398. Gain of function mutations in membrane region M2C2 of KtrB open a gate controlling K+ transport by the KtrAB system from Vibrio alginolyticus. Hänelt I, Löchte S, Sundermann L, Elbers K, Vor der Brüggen M, Bakker EP. J. Biol. Chem. 285 10318-10327 (2010)
  399. How is the balance between protein synthesis and degradation achieved? Rothman S. Theor Biol Med Model 7 25 (2010)
  400. Negamycin binds to the wall of the nascent chain exit tunnel of the 50S ribosomal subunit. Schroeder SJ, Blaha G, Moore PB. Antimicrob. Agents Chemother. 51 4462-4465 (2007)
  401. Protein folding following synthesis in vitro and in vivo: association of newly synthesized protein with 50S subunit of E. coli ribosome. Basu A, Samanta D, Bhattacharya A, Das A, Das D, Dasgupta C. Biochem. Biophys. Res. Commun. 366 592-597 (2008)
  402. Recurrent insertion of 5'-terminal nucleotides and loss of the branchpoint motif in lineages of group II introns inserted in mitochondrial preribosomal RNAs. Li CF, Costa M, Bassi G, Lai YK, Michel F. RNA 17 1321-1335 (2011)
  403. Specificity of the ribosomal A site for aminoacyl-tRNAs. Dale T, Fahlman RP, Olejniczak M, Uhlenbeck OC. Nucleic Acids Res. 37 1202-1210 (2009)
  404. The internal ribosome entry site (IRES) of hepatitis C virus visualized by electron microscopy. Beales LP, Rowlands DJ, Holzenburg A. RNA 7 661-670 (2001)
  405. The role of the universally conserved A2450-C2063 base pair in the ribosomal peptidyl transferase center. Chirkova A, Erlacher MD, Clementi N, Zywicki M, Aigner M, Polacek N. Nucleic Acids Res. 38 4844-4855 (2010)
  406. The structural basis of RNA-catalyzed RNA polymerization. Shechner DM, Bartel DP. Nat. Struct. Mol. Biol. 18 1036-1042 (2011)
  407. Displacement of the canonical single-stranded DNA-binding protein in the Thermoproteales. Paytubi S, McMahon SA, Graham S, Liu H, Botting CH, Makarova KS, Koonin EV, Naismith JH, White MF. Proc. Natl. Acad. Sci. U.S.A. 109 E398-405 (2012)
  408. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation. Schäferkordt J, Wagner R. Nucleic Acids Res. 29 3394-3403 (2001)
  409. Erythromycin, roxithromycin, and clarithromycin: use of slow-binding kinetics to compare their in vitro interaction with a bacterial ribosomal complex active in peptide bond formation. Dinos GP, Connell SR, Nierhaus KH, Kalpaxis DL. Mol Pharmacol 63 617-623 (2003)
  410. Fine-tuning of translation termination efficiency in Saccharomyces cerevisiae involves two factors in close proximity to the exit tunnel of the ribosome. Hatin I, Fabret C, Namy O, Decatur WA, Rousset JP. Genetics 177 1527-1537 (2007)
  411. Forced extraction of targeted components from complex macromolecular assemblies. Moore SD, Baker TA, Sauer RT. Proc. Natl. Acad. Sci. U.S.A. 105 11685-11690 (2008)
  412. Ketolide antimicrobial activity persists after disruption of interactions with domain II of 23S rRNA. Novotny GW, Jakobsen L, Andersen NM, Poehlsgaard J, Douthwaite S. Antimicrob. Agents Chemother. 48 3677-3683 (2004)
  413. Location of 2(')-O-methyl nucleotides in 26S rRNA and methylation guide snoRNAs in Caenorhabditis elegans. Higa S, Maeda N, Kenmochi N, Tanaka T. Biochem. Biophys. Res. Commun. 297 1344-1349 (2002)
  414. NML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent manner. Waku T, Nakajima Y, Yokoyama W, Nomura N, Kako K, Kobayashi A, Shimizu T, Fukamizu A. J. Cell. Sci. 129 2382-2393 (2016)
  415. Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding. Zhang Y, Li Z, Pilch DS, Leibowitz MJ. Nucleic Acids Res. 30 2961-2971 (2002)
  416. Protein Synthesis with Ribosomes Selected for the Incorporation of β-Amino Acids. Maini R, Chowdhury SR, Dedkova LM, Roy B, Daskalova SM, Paul R, Chen S, Hecht SM. Biochemistry 54 3694-3706 (2015)
  417. Puromycin oligonucleotides reveal steric restrictions for ribosome entry and multiple modes of translation inhibition. Starck SR, Roberts RW. RNA 8 890-903 (2002)
  418. RNA-dependent folding and stabilization of C5 protein during assembly of the E. coli RNase P holoenzyme. Guo X, Campbell FE, Sun L, Christian EL, Anderson VE, Harris ME. J. Mol. Biol. 360 190-203 (2006)
  419. S-adenosyl-L-methionine induces compaction of nascent peptide chain inside the ribosomal exit tunnel upon translation arrest in the Arabidopsis CGS1 gene. Onoue N, Yamashita Y, Nagao N, Goto DB, Onouchi H, Naito S. J. Biol. Chem. 286 14903-14912 (2011)
  420. The conformation of a nascent polypeptide inside the ribosome tunnel affects protein targeting and protein folding. Peterson JH, Woolhead CA, Bernstein HD. Mol. Microbiol. 78 203-217 (2010)
  421. Toward ribosomal RNA catalytic activity in the absence of protein. Anderson RM, Kwon M, Strobel SA. J. Mol. Evol. 64 472-483 (2007)
  422. Translocation and rotation of tRNA during template-independent RNA polymerization by tRNA nucleotidyltransferase. Yamashita S, Takeshita D, Tomita K. Structure 22 315-325 (2014)
  423. A conserved base-pair between tRNA and 23 S rRNA in the peptidyl transferase center is important for peptide release. Feinberg JS, Joseph S. J. Mol. Biol. 364 1010-1020 (2006)
  424. Codon size reduction as the origin of the triplet genetic code. Baranov PV, Venin M, Provan G. PLoS ONE 4 e5708 (2009)
  425. Confined dynamics of a ribosome-bound nascent globin: Cone angle analysis of fluorescence depolarization decays in the presence of two local motions. Ellis JP, Culviner PH, Cavagnero S. Protein Sci. 18 2003-2015 (2009)
  426. Cooperativity and flexibility of cystic fibrosis transmembrane conductance regulator transmembrane segments participate in membrane localization of a charged residue. Carveth K, Buck T, Anthony V, Skach WR. J. Biol. Chem. 277 39507-39514 (2002)
  427. Factors governing helix formation in peptides confined to carbon nanotubes. O'Brien EP, Stan G, Thirumalai D, Brooks BR. Nano Lett. 8 3702-3708 (2008)
  428. Interference probing of rRNA with snoRNPs: a novel approach for functional mapping of RNA in vivo. Liu B, Fournier MJ. RNA 10 1130-1141 (2004)
  429. Key intermolecular interactions in the E. coli 70S ribosome revealed by coarse-grained analysis. Zhang Z, Sanbonmatsu KY, Voth GA. J. Am. Chem. Soc. 133 16828-16838 (2011)
  430. Mutations in ribosomal proteins, RPL4 and RACK1, suppress the phenotype of a thermospermine-deficient mutant of Arabidopsis thaliana. Kakehi J, Kawano E, Yoshimoto K, Cai Q, Imai A, Takahashi T. PLoS ONE 10 e0117309 (2015)
  431. Nascent peptide side chains induce rearrangements in distinct locations of the ribosomal tunnel. Lu J, Hua Z, Kobertz WR, Deutsch C. J. Mol. Biol. 411 499-510 (2011)
  432. Path of nascent polypeptide in exit tunnel revealed by molecular dynamics simulation of ribosome. Ishida H, Hayward S. Biophys. J. 95 5962-5973 (2008)
  433. Ribosomal crystallography: from poorly diffracting microcrystals to high-resolution structures. Gluehmann M, Zarivach R, Bashan A, Harms J, Schluenzen F, Bartels H, Agmon I, Rosenblum G, Pioletti M, Auerbach T, Avila H, Hansen HA, Franceschi F, Yonath A. Methods 25 292-302 (2001)
  434. Ribosome origins: the relative age of 23S rRNA Domains. Hury J, Nagaswamy U, Larios-Sanz M, Fox GE. Orig Life Evol Biosph 36 421-429 (2006)
  435. The A2453-C2499 wobble base pair in Escherichia coli 23S ribosomal RNA is responsible for pH sensitivity of the peptidyltransferase active site conformation. Bayfield MA, Thompson J, Dahlberg AE. Nucleic Acids Res. 32 5512-5518 (2004)
  436. A pathway for the transmission of allosteric signals in the ribosome through a network of RNA tertiary interactions. Chan YL, Dresios J, Wool IG. J. Mol. Biol. 355 1014-1025 (2006)
  437. Characterizing RNA ensembles from NMR data with kinematic models. Fonseca R, Pachov DV, Bernauer J, van den Bedem H. Nucleic Acids Res. 42 9562-9572 (2014)
  438. Characterizing RNA structures in vitro and in vivo with selective 2'-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq). Watters KE, Yu AM, Strobel EJ, Settle AH, Lucks JB. Methods 103 34-48 (2016)
  439. Cryo-EM structure of the large subunit of the spinach chloroplast ribosome. Ahmed T, Yin Z, Bhushan S. Sci Rep 6 35793 (2016)
  440. Evidence against stabilization of the transition state oxyanion by a pKa-perturbed RNA base in the peptidyl transferase center. Parnell KM, Seila AC, Strobel SA. Proc. Natl. Acad. Sci. U.S.A. 99 11658-11663 (2002)
  441. Nanostructures from Synthetic Genetic Polymers. Taylor AI, Beuron F, Peak-Chew SY, Morris EP, Herdewijn P, Holliger P. Chembiochem 17 1107-1110 (2016)
  442. Non-bulk-like solvent behavior in the ribosome exit tunnel. Lucent D, Snow CD, Aitken CE, Pande VS. PLoS Comput. Biol. 6 e1000963 (2010)
  443. Polyamines affect diversely the antibiotic potency: insight gained from kinetic studies of the blasticidin S AND spiramycin interactions with functional ribosomes. Petropoulos AD, Xaplanteri MA, Dinos GP, Wilson DN, Kalpaxis DL. J. Biol. Chem. 279 26518-26525 (2004)
  444. Protein and nucleic acid together: a mechanism for the emergence of biological selection. Dale T. J. Theor. Biol. 240 337-342 (2006)
  445. RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone. Wang X, Kapral G, Murray L, Richardson D, Richardson J, Snoeyink J. J Math Biol 56 253-278 (2008)
  446. Role of pseudouridine in structural rearrangements of helix 69 during bacterial ribosome assembly. Sakakibara Y, Chow CS. ACS Chem. Biol. 7 871-878 (2012)
  447. The Amber ff99 Force Field Predicts Relative Free Energy Changes for RNA Helix Formation. Spasic A, Serafini J, Mathews DH. J Chem Theory Comput 8 2497-2505 (2012)
  448. The N-terminal extension of Escherichia coli ribosomal protein L20 is important for ribosome assembly, but dispensable for translational feedback control. Guillier M, Allemand F, Graffe M, Raibaud S, Dardel F, Springer M, Chiaruttini C. RNA 11 728-738 (2005)
  449. The solution structure of the VS ribozyme active site loop reveals a dynamic "hot-spot". Flinders J, Dieckmann T. J. Mol. Biol. 341 935-949 (2004)
  450. Transfer RNA(Ala) recognizes transfer-messenger RNA with specificity; a functional complex prior to entering the ribosome? Gillet R, Felden B. EMBO J. 20 2966-2976 (2001)
  451. tRNAs in the spotlight during protein biosynthesis. Brosius J. Trends Biochem. Sci. 26 653-656 (2001)
  452. A structural perspective on the dynamics of kinesin motors. Hyeon C, Onuchic JN. Biophys. J. 101 2749-2759 (2011)
  453. Analysis of the interplay of protein biogenesis factors at the ribosome exit site reveals new role for NAC. Nyathi Y, Pool MR. J. Cell Biol. 210 287-301 (2015)
  454. Attenuation-based dual-fluorescent-protein reporter for screening translation inhibitors. Osterman IA, Prokhorova IV, Sysoev VO, Boykova YV, Efremenkova OV, Svetlov MS, Kolb VA, Bogdanov AA, Sergiev PV, Dontsova OA. Antimicrob. Agents Chemother. 56 1774-1783 (2012)
  455. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein. Chandler JR, Truong TT, Silva PM, Seyedsayamdost MR, Carr G, Radey M, Jacobs MA, Sims EH, Clardy J, Greenberg EP. MBio 3 (2012)
  456. Binding interactions between the core central domain of 16S rRNA and the ribosomal protein S15 determined by molecular dynamics simulations. Li W, Ma B, Shapiro BA. Nucleic Acids Res. 31 629-638 (2003)
  457. Comparative genomics and the gene complement of a minimal cell. Islas S, Becerra A, Luisi PL, Lazcano A. Orig Life Evol Biosph 34 243-256 (2004)
  458. Deletion of L4 domains reveals insights into the importance of ribosomal protein extensions in eukaryotic ribosome assembly. Gamalinda M, Woolford JL. RNA 20 1725-1731 (2014)
  459. Domain III of the T. thermophilus 23S rRNA folds independently to a near-native state. Athavale SS, Gossett JJ, Hsiao C, Bowman JC, O'Neill E, Hershkovitz E, Preeprem T, Hud NV, Wartell RM, Harvey SC, Williams LD. RNA 18 752-758 (2012)
  460. From Never Born Proteins to Minimal Living Cells: two projects in synthetic biology. Luisi PL, Chiarabelli C, Stano P. Orig Life Evol Biosph 36 605-616 (2006)
  461. Interaction of nascent chains with the ribosomal tunnel proteins Rpl4, Rpl17, and Rpl39 of Saccharomyces cerevisiae. Zhang Y, Wölfle T, Rospert S. J. Biol. Chem. 288 33697-33707 (2013)
  462. Localization of the protein L2 in the 50 S subunit and the 70 S E. coli ribosome. Willumeit R, Forthmann S, Beckmann J, Diedrich G, Ratering R, Stuhrmann HB, Nierhaus KH. J. Mol. Biol. 305 167-177 (2001)
  463. Mechanisms of resistance to telithromycin in Streptococcus pneumoniae. Hisanaga T, Hoban DJ, Zhanel GG. J. Antimicrob. Chemother. 56 447-450 (2005)
  464. New tertiary constraints between the RNA components of active yeast spliceosomes: a photo-crosslinking study. Ryan DE, Kim CH, Murray JB, Adams CJ, Stockley PG, Abelson J. RNA 10 1251-1265 (2004)
  465. News Peptide bond formation is all about proximity. Gregory ST, Dahlberg AE. Nat. Struct. Mol. Biol. 11 586-587 (2004)
  466. Protein translocation through a tunnel induces changes in folding kinetics: a lattice model study. Contreras Martínez LM, Martínez-Veracoechea FJ, Pohkarel P, Stroock AD, Escobedo FA, DeLisa MP. Biotechnol. Bioeng. 94 105-117 (2006)
  467. Single synonymous codon substitution eliminates pausing during chloramphenicol acetyl transferase synthesis on Escherichia coli ribosomes in vitro. Ramachandiran V, Kramer G, Horowitz PM, Hardesty B. FEBS Lett. 512 209-212 (2002)
  468. Statistical evaluation of improvement in RNA secondary structure prediction. Xu Z, Almudevar A, Mathews DH. Nucleic Acids Res. 40 e26 (2012)
  469. The chemical versatility of RNA. Hiller DA, Strobel SA. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366 2929-2935 (2011)
  470. TurboKnot: rapid prediction of conserved RNA secondary structures including pseudoknots. Seetin MG, Mathews DH. Bioinformatics 28 792-798 (2012)
  471. 2'/3'-O-peptidyl adenosine as a general base catalyst of its own external peptidyl transfer: implications for the ribosome catalytic mechanism. Changalov MM, Ivanova GD, Rangelov MA, Acharya P, Acharya S, Minakawa N, Földesi A, Stoineva IB, Yomtova VM, Roussev CD, Matsuda A, Chattopadhyaya J, Petkov DD. Chembiochem 6 992-996 (2005)
  472. A novel association between two trypanosome-specific factors and the conserved L5-5S rRNA complex. Ciganda M, Prohaska K, Hellman K, Williams N. PLoS ONE 7 e41398 (2012)
  473. Collaboration between primitive cell membranes and soluble catalysts. Adamala KP, Engelhart AE, Szostak JW. Nat Commun 7 11041 (2016)
  474. Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and the 50S subunit. Simonović M, Steitz TA. Proc. Natl. Acad. Sci. U.S.A. 105 500-505 (2008)
  475. Defect in the formation of 70S ribosomes caused by lack of ribosomal protein L34 can be suppressed by magnesium. Akanuma G, Kobayashi A, Suzuki S, Kawamura F, Shiwa Y, Watanabe S, Yoshikawa H, Hanai R, Ishizuka M. J. Bacteriol. 196 3820-3830 (2014)
  476. Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes. Milbury CA, Lee JC, Cannone JJ, Gaffney PM, Gutell RR. BMC Genomics 11 485 (2010)
  477. Free energy of nascent-chain folding in the translocon. Gumbart J, Chipot C, Schulten K. J. Am. Chem. Soc. 133 7602-7607 (2011)
  478. Non-hydrolyzable RNA-peptide conjugates: a powerful advance in the synthesis of mimics for 3'-peptidyl tRNA termini. Moroder H, Steger J, Graber D, Fauster K, Trappl K, Marquez V, Polacek N, Wilson DN, Micura R. Angew. Chem. Int. Ed. Engl. 48 4056-4060 (2009)
  479. Origin and evolution of the Peptidyl Transferase Center from proto-tRNAs. Farias ST, Rêgo TG, José MV. FEBS Open Bio 4 175-178 (2014)
  480. Revealing unique properties of the ribosome using a network based analysis. David-Eden H, Mandel-Gutfreund Y. Nucleic Acids Res. 36 4641-4652 (2008)
  481. Ribosomal protein L5 has a highly twisted concave surface and flexible arms responsible for rRNA binding. Nakashima T, Yao M, Kawamura S, Iwasaki K, Kimura M, Tanaka I. RNA 7 692-701 (2001)
  482. Self-Assembly Can Direct Dynamic Covalent Bond Formation toward Diversity or Specificity. Komáromy D, Stuart MCA, Monreal Santiago G, Tezcan M, Krasnikov VV, Otto S. J. Am. Chem. Soc. 139 6234-6241 (2017)
  483. Structural diversity of eukaryotic 18S rRNA and its impact on alignment and phylogenetic reconstruction. Xie Q, Lin J, Qin Y, Zhou J, Bu W. Protein Cell 2 161-170 (2011)
  484. The human large subunit ribosomal protein L36A-like contacts the CCA end of P-site bound tRNA. Baouz S, Woisard A, Sinapah S, Le Caer JP, Argentini M, Bulygin K, Aguié G, Hountondji C. Biochimie 91 1420-1425 (2009)
  485. Transit of tRNA through the Escherichia coli ribosome: cross-linking of the 3' end of tRNA to ribosomal proteins at the P and E sites. Kirillov SV, Wower J, Hixson SS, Zimmermann RA. FEBS Lett. 514 60-66 (2002)
  486. Access to ribosomal protein Rpl25p by the signal recognition particle is required for efficient cotranslational translocation. Dalley JA, Selkirk A, Pool MR. Mol. Biol. Cell 19 2876-2884 (2008)
  487. Decoding the logic of the tRNA regiospecificity of nonribosomal FemX(Wv) aminoacyl transferase. Fonvielle M, Chemama M, Lecerf M, Villet R, Busca P, Bouhss A, Ethève-Quelquejeu M, Arthur M. Angew. Chem. Int. Ed. Engl. 49 5115-5119 (2010)
  488. Functional genetic selection of Helix 66 in Escherichia coli 23S rRNA identified the eukaryotic-binding sequence for ribosomal protein L2. Kitahara K, Kajiura A, Sato NS, Suzuki T. Nucleic Acids Res. 35 4018-4029 (2007)
  489. Involvement of mitochondrial ribosomal proteins in ribosomal RNA-mediated protein folding. Das A, Ghosh J, Bhattacharya A, Samanta D, Das D, Das Gupta C. J. Biol. Chem. 286 43771-43781 (2011)
  490. Molecular dynamics simulations of the denaturation and refolding of an RNA tetraloop. Li W, Ma B, Shapiro B. J. Biomol. Struct. Dyn. 19 381-396 (2001)
  491. NMR structure of the ribosomal protein L23 from Thermus thermophilus. Ohman A, Rak A, Dontsova M, Garber MB, Härd T. J. Biomol. NMR 26 131-137 (2003)
  492. Protein-RNA interactions and virus stability as probed by the dynamics of tryptophan side chains. Da Poian AT, Johnson JE, Silva JL. J. Biol. Chem. 277 47596-47602 (2002)
  493. The RNA origin of transfer RNA aminoacylation and beyond. Suga H, Hayashi G, Terasaka N. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366 2959-2964 (2011)
  494. The shape-shifting quasispecies of RNA: one sequence, many functional folds. Marek MS, Johnson-Buck A, Walter NG. Phys Chem Chem Phys 13 11524-11537 (2011)
  495. The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome. Burakovsky DE, Sergiev PV, Steblyanko MA, Konevega AL, Bogdanov AA, Dontsova OA. FEBS Lett. 585 3073-3078 (2011)
  496. Adaptation of Bacillus subtilis to Life at Extreme Potassium Limitation. Gundlach J, Herzberg C, Hertel D, Thürmer A, Daniel R, Link H, Stülke J. MBio 8 (2017)
  497. Aptamer to ribozyme: the intrinsic catalytic potential of a small RNA. Brackett DM, Dieckmann T. Chembiochem 7 839-843 (2006)
  498. Comparison of fungal 80 S ribosomes by cryo-EM reveals diversity in structure and conformation of rRNA expansion segments. Nilsson J, Sengupta J, Gursky R, Nissen P, Frank J. J. Mol. Biol. 369 429-438 (2007)
  499. Modified Amber Force Field Correctly Models the Conformational Preference for Tandem GA pairs in RNA. Aytenfisu AH, Spasic A, Seetin MG, Serafini J, Mathews DH. J Chem Theory Comput 10 1292-1301 (2014)
  500. On the evolution of the standard genetic code: vestiges of critical scale invariance from the RNA world in current prokaryote genomes. José MV, Govezensky T, García JA, Bobadilla JR. PLoS ONE 4 e4340 (2009)
  501. Protein-cofactor binding and ultrafast electron transfer in riboflavin binding protein under the spatial confinement of nanoscopic reverse micelles. Saha R, Rakshit S, Verma PK, Mitra RK, Pal SK. J. Mol. Recognit. 26 59-66 (2013)
  502. Pyrrolo-C as a molecular probe for monitoring conformations of the tRNA 3' end. Zhang CM, Liu C, Christian T, Gamper H, Rozenski J, Pan D, Randolph JB, Wickstrom E, Cooperman BS, Hou YM. RNA 14 2245-2253 (2008)
  503. Ribose 2'-hydroxyl groups in the 5' strand of the acceptor arm of P-site tRNA are not essential for EF-G catalyzed translocation. Feinberg JS, Joseph S. RNA 12 580-588 (2006)
  504. Ribosome biogenesis in african trypanosomes requires conserved and trypanosome-specific factors. Umaer K, Ciganda M, Williams N. Eukaryotic Cell 13 727-737 (2014)
  505. Simulating the pulling of stalled elongated peptide from the ribosome by the translocon. Rychkova A, Mukherjee S, Bora RP, Warshel A. Proc. Natl. Acad. Sci. U.S.A. 110 10195-10200 (2013)
  506. Single-Molecule Fluorescence Studies of RNA: A Decade's Progress. Karunatilaka KS, Rueda D. Chem Phys Lett 476 1-10 (2009)
  507. The basic reproductive ratio of life. Manapat ML, Chen IA, Nowak MA. J. Theor. Biol. 263 317-327 (2010)
  508. The hammerhead ribozyme structure brought in line. Przybilski R, Hammann C. Chembiochem 7 1641-1644 (2006)
  509. Transcript profiling demonstrates absence of dosage compensation in Arabidopsis following loss of a single RPL23a paralog. Degenhardt RF, Bonham-Smith PC. Planta 228 627-640 (2008)
  510. A model study of protein nascent chain and cotranslational folding using hydrophobic-polar residues. Lu HM, Liang J. Proteins 70 442-449 (2008)
  511. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials. Ge X, Roux B. J. Mol. Recognit. 23 128-141 (2010)
  512. Changes in the conformation of 5S rRNA cause alterations in principal functions of the ribosomal nanomachine. Kouvela EC, Gerbanas GV, Xaplanteri MA, Petropoulos AD, Dinos GP, Kalpaxis DL. Nucleic Acids Res. 35 5108-5119 (2007)
  513. Direct entry to erythronolides via a cyclic bis[allene]. Liu K, Kim H, Ghosh P, Akhmedov NG, Williams LJ. J. Am. Chem. Soc. 133 14968-14971 (2011)
  514. Evolution of transfer RNA and the origin of the translation system. de Farias ST, do Rêgo TG, José MV. Front Genet 5 303 (2014)
  515. Expanding the Scope of Protein Synthesis Using Modified Ribosomes. Dedkova LM, Hecht SM. J Am Chem Soc 141 6430-6447 (2019)
  516. Functional conservation between structurally diverse ribosomal proteins from Drosophila melanogaster and Saccharomyces cerevisiae: fly L23a can substitute for yeast L25 in ribosome assembly and function. Ross CL, Patel RR, Mendelson TC, Ware VC. Nucleic Acids Res. 35 4503-4514 (2007)
  517. Impact of P-Site tRNA and antibiotics on ribosome mediated protein folding: studies using the Escherichia coli ribosome. Mondal S, Pathak BK, Ray S, Barat C. PLoS ONE 9 e101293 (2014)
  518. Importance in catalysis of a magnesium ion with very low affinity for a hammerhead ribozyme. Inoue A, Takagi Y, Taira K. Nucleic Acids Res. 32 4217-4223 (2004)
  519. Interaction between 25S rRNA A loop and eukaryotic translation initiation factor 5B promotes subunit joining and ensures stringent AUG selection. Hiraishi H, Shin BS, Udagawa T, Nemoto N, Chowdhury W, Graham J, Cox C, Reid M, Brown SJ, Asano K. Mol. Cell. Biol. 33 3540-3548 (2013)
  520. Lattice simulations of cotranslational folding of single domain proteins. Wang P, Klimov DK. Proteins 70 925-937 (2008)
  521. Novel base triples in RNA structures revealed by graph theoretical searching methods. Firdaus-Raih M, Harrison AM, Willett P, Artymiuk PJ. BMC Bioinformatics 12 Suppl 13 S2 (2011)
  522. Novel function of C5 protein as a metabolic stabilizer of M1 RNA. Kim Y, Lee Y. FEBS Lett. 583 419-424 (2009)
  523. Retrozymes are a unique family of non-autonomous retrotransposons with hammerhead ribozymes that propagate in plants through circular RNAs. Cervera A, Urbina D, de la Peña M. Genome Biol. 17 135 (2016)
  524. Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2'-OH at P-site position A76. Weinger JS, Kitchen D, Scaringe SA, Strobel SA, Muth GW. Nucleic Acids Res. 32 1502-1511 (2004)
  525. Specificity and catalysis hardwired at the RNA-protein interface in a translational proofreading enzyme. Ahmad S, Muthukumar S, Kuncha SK, Routh SB, Yerabham AS, Hussain T, Kamarthapu V, Kruparani SP, Sankaranarayanan R. Nat Commun 6 7552 (2015)
  526. The structural and functional coupling of two molecular machines, the ribosome and the translocon. Johnson AE. J. Cell Biol. 185 765-767 (2009)
  527. Transition state chirality and role of the vicinal hydroxyl in the ribosomal peptidyl transferase reaction. Huang KS, Carrasco N, Pfund E, Strobel SA. Biochemistry 47 8822-8827 (2008)
  528. Transition states of uncatalyzed hydrolysis and aminolysis reactions of a ribosomal P-site substrate determined by kinetic isotope effects. Hiller DA, Zhong M, Singh V, Strobel SA. Biochemistry 49 3868-3878 (2010)
  529. A new way to see RNA. Keating KS, Humphris EL, Pyle AM. Q. Rev. Biophys. 44 433-466 (2011)
  530. Base pairs and pseudo pairs observed in RNA-ligand complexes. Kondo J, Westhof E. J. Mol. Recognit. 23 241-252 (2010)
  531. Binding of misacylated tRNAs to the ribosomal A site. Dale T, Uhlenbeck OC. RNA 11 1610-1615 (2005)
  532. Changes in ribosome function induced by protein kinase associated with ribosomes of Streptomyces collinus producing kirromycin. Mikulík K, Suchan P, Bobek J. Biochem. Biophys. Res. Commun. 289 434-443 (2001)
  533. Convergent donor and acceptor substrate utilization among kinase ribozymes. Biondi E, Nickens DG, Warren S, Saran D, Burke DH. Nucleic Acids Res. 38 6785-6795 (2010)
  534. Fluorescence-monitored conformational change on the 3'-end of tRNA upon aminoacylation. Schlosser A, Nawrot B, Grillenbeck N, Sprinzl M. J. Biomol. Struct. Dyn. 19 285-291 (2001)
  535. Comment Molecular biology. Small subunit, big science. Williamson JR. Nature 407 306-307 (2000)
  536. Natural low-molecular mass organic compounds with oxidase activity as organocatalysts. Nishiyama T, Hashimoto Y, Kusakabe H, Kumano T, Kobayashi M. Proc. Natl. Acad. Sci. U.S.A. 111 17152-17157 (2014)
  537. Phosphorylation of ribosomal proteins influences subunit association and translation of poly (U) in Streptomyces coelicolor. Mikulík K, Bobek J, Ziková A, Smětáková M, Bezoušková S. Mol Biosyst 7 817-823 (2011)
  538. Picky nascent peptides do not talk to foreign ribosomes. Vázquez-Laslop N, Mankin AS. Proc. Natl. Acad. Sci. U.S.A. 108 5931-5932 (2011)
  539. Role of the ribosomal protein L27 revealed by single-molecule FRET study. Wang Y, Xiao M. Protein Sci. 21 1696-1704 (2012)
  540. Simple peptides derived from the ribosomal core potentiate RNA polymerase ribozyme function. Tagami S, Attwater J, Holliger P. Nat Chem 9 325-332 (2017)
  541. Single TRAM domain RNA-binding proteins in Archaea: functional insight from Ctr3 from the Antarctic methanogen Methanococcoides burtonii. Taha, Siddiqui KS, Campanaro S, Najnin T, Deshpande N, Williams TJ, Aldrich-Wright J, Wilkins M, Curmi PM, Cavicchioli R. Environ. Microbiol. 18 2810-2824 (2016)
  542. The place of RNA in the origin and early evolution of the genetic machinery. Wächtershäuser G. Life (Basel) 4 1050-1091 (2014)
  543. Transcription and translation in an RNA world. Taylor WR. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 361 1751-1760 (2006)
  544. Universal and domain-specific sequences in 23S-28S ribosomal RNA identified by computational phylogenetics. Doris SM, Smith DR, Beamesderfer JN, Raphael BJ, Nathanson JA, Gerbi SA. RNA 21 1719-1730 (2015)
  545. tRNA evolution from the proto-tRNA minihelix world. Root-Bernstein R, Kim Y, Sanjay A, Burton ZF. Transcription 7 153-163 (2016)
  546. A Dual-Sensing Receptor Confers Robust Cellular Homeostasis. Schramke H, Tostevin F, Heermann R, Gerland U, Jung K. Cell Rep 16 213-221 (2016)
  547. A Nascent Peptide Signal Responsive to Endogenous Levels of Polyamines Acts to Stimulate Regulatory Frameshifting on Antizyme mRNA. Yordanova MM, Wu C, Andreev DE, Sachs MS, Atkins JF. J. Biol. Chem. 290 17863-17878 (2015)
  548. A small ribozyme with dual-site kinase activity. Biondi E, Maxwell AW, Burke DH. Nucleic Acids Res. 40 7528-7540 (2012)
  549. Adenine-copper coordination polymer as an oxidative nucleozyme: implications for simple prebiotic catalytic units. Srivatsan SG, Parvez M, Verma S. J. Inorg. Biochem. 97 340-344 (2003)
  550. Could a Proto-Ribosome Emerge Spontaneously in the Prebiotic World? Agmon IC. Molecules 21 (2016)
  551. Hoechst 33258 selectively inhibits group I intron self-splicing by affecting RNA folding. Disney MD, Childs JL, Turner DH. Chembiochem 5 1647-1652 (2004)
  552. Identification of the Components Involved in Cyclic Di-AMP Signaling in Mycoplasma pneumoniae. Blötz C, Treffon K, Kaever V, Schwede F, Hammer E, Stülke J. Front Microbiol 8 1328 (2017)
  553. Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications. Halling SM, Jensen AE. BMC Microbiol. 6 84 (2006)
  554. Lys53 of ribosomal protein L36AL and the CCA end of a tRNA at the P/E hybrid site are in close proximity on the human ribosome. Hountondji C, Bulygin K, Woisard A, Tuffery P, Créchet JB, Pech M, Nierhaus KH, Karpova G, Baouz S. Chembiochem 13 1791-1797 (2012)
  555. Mechanism for template-independent terminal adenylation activity of Qβ replicase. Takeshita D, Yamashita S, Tomita K. Structure 20 1661-1669 (2012)
  556. Minihelix-loop RNAs: minimal structures for aminoacylation catalysts. Ramaswamy K, Wei K, Suga H. Nucleic Acids Res. 30 2162-2171 (2002)
  557. Oxidative stress damages rRNA inside the ribosome and differentially affects the catalytic center. Willi J, Küpfer P, Evéquoz D, Fernandez G, Katz A, Leumann C, Polacek N. Nucleic Acids Res. 46 1945-1957 (2018)
  558. Peptide Bond Formation Mechanism Catalyzed by Ribosome. Świderek K, Marti S, Tuñón I, Moliner V, Bertran J. J. Am. Chem. Soc. 137 12024-12034 (2015)
  559. Pokeweed antiviral protein depurinates the sarcin/ricin loop of the rRNA prior to binding of aminoacyl-tRNA to the ribosomal A-site. Mansouri S, Nourollahzadeh E, Hudak KA. RNA 12 1683-1692 (2006)
  560. RNA tetraplex as a primordial peptide synthesis scaffold. Umehara T, Kitagawa T, Nakazawa Y, Yoshino H, Nemoto R, Tamura K. BioSystems 109 145-150 (2012)
  561. RNA under tension: Folding Landscapes, Kinetic partitioning Mechanism, and Molecular Tensegrity. Lin JC, Hyeon C, Thirumalai D. J Phys Chem Lett 3 3616-3625 (2012)
  562. Ribosomal Mutations Conferring Macrolide Resistance in Legionella pneumophila. Descours G, Ginevra C, Jacotin N, Forey F, Chastang J, Kay E, Etienne J, Lina G, Doublet P, Jarraud S. Antimicrob. Agents Chemother. 61 (2017)
  563. The CCA-end of P-tRNA Contacts Both the Human RPL36AL and the A-site Bound Translation Termination Factor eRF1 at the Peptidyl Transferase Center of the Human 80S Ribosome. Hountondji C, Bulygin K, Créchet JB, Woisard A, Tuffery P, Nakayama J, Frolova L, Nierhaus KH, Karpova G, Baouz S. Open Biochem J 8 52-67 (2014)
  564. The Effect of Limited Diffusion and Wet-Dry Cycling on Reversible Polymerization Reactions: Implications for Prebiotic Synthesis of Nucleic Acids. Higgs PG. Life (Basel) 6 (2016)
  565. Comment The case for an RNA enzyme. Nilsen TW. Nature 408 782-783 (2000)
  566. The hammerhead ribozyme. Eckstein F, Bramlage B. Biopolymers 52 147-154 (1999)
  567. The ribosomal protein L32-2 (RPL32-2) of S. pombe exhibits a novel extraribosomal function by acting as a potential transcriptional regulator. Wang J, Yuan S, Jiang S. FEBS Lett. 580 1827-1832 (2006)
  568. The ribosome moves: RNA mechanics and translocation. Noller HF, Lancaster L, Zhou J, Mohan S. Nat. Struct. Mol. Biol. 24 1021-1027 (2017)
  569. Total syntheses of a conformationally locked North-type methanocarba puromycin analogue and a dinucleotide derivative. Michel BY, Strazewski P. Chemistry 15 6244-6257 (2009)
  570. A molecular model for transcription in the RNA world based on the ribosome large subunit. Taylor WR. Comput Biol Chem 28 313-319 (2004)
  571. A reverse transcriptase ribozyme. Samanta B, Joyce GF. Elife 6 (2017)
  572. Acid-base and metal-ion binding properties of the RNA dinucleotide uridylyl-(5'-->3')-[5']uridylate (pUpU3-). Knobloch B, Suliga D, Okruszek A, Sigel RK. Chemistry 11 4163-4170 (2005)
  573. Catalytic nucleic acid enzymes for the study and development of therapies in the central nervous system: Review Article. Tritz R, Habita C, Robbins JM, Gomez GG, Kruse CA. Gene Ther. Mol. Biol. 9A 89-106 (2005)
  574. Compaction of a prokaryotic signal-anchor transmembrane domain begins within the ribosome tunnel and is stabilized by SRP during targeting. Robinson PJ, Findlay JE, Woolhead CA. J. Mol. Biol. 423 600-612 (2012)
  575. Confinement in nanopores can destabilize α-helix folding proteins and stabilize the β structures. Javidpour L, Sahimi M. J Chem Phys 135 125101 (2011)
  576. Design, synthesis and ribosome binding of chloramphenicol nucleotide and intercalator conjugates. Johansson D, Jessen CH, Pøhlsgaard J, Jensen KB, Vester B, Pedersen EB, Nielsen P. Bioorg. Med. Chem. Lett. 15 2079-2083 (2005)
  577. Detecting protein-protein interactions in the intact cell of Bacillus subtilis (ATCC 6633). Winters MS, Day RA. J. Bacteriol. 185 4268-4275 (2003)
  578. Dynamics of an interactive network composed of a bacterial two-component system, a transporter and K+ as mediator. Heermann R, Zigann K, Gayer S, Rodriguez-Fernandez M, Banga JR, Kremling A, Jung K. PLoS ONE 9 e89671 (2014)
  579. Evolution of an Enzyme from a Noncatalytic Nucleic Acid Sequence. Gysbers R, Tram K, Gu J, Li Y. Sci Rep 5 11405 (2015)
  580. Expression, purification, and evaluation for anticancer activity of ribosomal protein L31 gene (RPL31) from the giant panda (Ailuropoda melanoleuca). Su XL, Hou YL, Yan XH, Ding X, Hou WR, Sun B, Zhang SN. Mol. Biol. Rep. 39 8945-8954 (2012)
  581. Hydroxylated histidine of human ribosomal protein uL2 is involved in maintaining the local structure of 28S rRNA in the ribosomal peptidyl transferase center. Yanshina DD, Bulygin KN, Malygin AA, Karpova GG. FEBS J. 282 1554-1566 (2015)
  582. Improvement of RNA secondary structure prediction using RNase H cleavage and randomized oligonucleotides. Kauffmann AD, Campagna RJ, Bartels CB, Childs-Disney JL. Nucleic Acids Res. 37 e121 (2009)
  583. Mitochondria: Unusual features of the mammalian mitoribosome. Richman TR, Rackham O, Filipovska A. Int. J. Biochem. Cell Biol. 53 115-120 (2014)
  584. Modelling molecular stability in the RNA world. Taylor WR. Comput Biol Chem 29 259-272 (2005)
  585. Comment Molecular biology: A fix for RNA. Begley TJ, Samson LD. Nature 421 795-796 (2003)
  586. Mutations in the Escherichia coli ribosomal protein L22 selectively suppress the expression of a secreted bacterial virulence factor. Yap MN, Bernstein HD. J. Bacteriol. 195 2991-2999 (2013)
  587. Non-nearest-neighbor dependence of stability for group III RNA single nucleotide bulge loops. Kent JL, McCann MD, Phillips D, Panaro BL, Lim GF, Serra MJ. RNA 20 825-834 (2014)
  588. On the structural and functional importance of the highly conserved Glu56 of Thermus thermophilus L4 ribosomal protein. Leontiadou F, Xaplanteri MA, Papadopoulos G, Gerassimou C, Kalpaxis DL, Choli-Papadopoulou T. J. Mol. Biol. 332 73-84 (2003)
  589. Parasites Sustain and Enhance RNA-Like Replicators through Spatial Self-Organisation. Colizzi ES, Hogeweg P. PLoS Comput. Biol. 12 e1004902 (2016)
  590. Pressure modulates the self-cleavage step of the hairpin ribozyme. Schuabb C, Kumar N, Pataraia S, Marx D, Winter R. Nat Commun 8 14661 (2017)
  591. RNA-Redesign: a web server for fixed-backbone 3D design of RNA. Yesselman JD, Das R. Nucleic Acids Res. 43 W498-501 (2015)
  592. RNase P: at last, the key finds its lock. Masquida B, Westhof E. RNA 17 1615-1618 (2011)
  593. Repeated parallel evolution of minimal rRNAs revealed from detailed comparative analysis. Klimov PB, Knowles LL. J. Hered. 102 283-293 (2011)
  594. Ribozymes: catalytic RNAs that cut things, make things, and do odd and useful jobs. Walter NG, Engelke DR. Biologist (London) 49 199-203 (2002)
  595. Selective desulfurization significantly expands sequence variety of 3'-peptidyl-tRNA mimics obtained by native chemical ligation. Geiermann AS, Micura R. Chembiochem 13 1742-1745 (2012)
  596. Single-atom imino substitutions at A9 and A10 reveal distinct effects on the fold and function of the hairpin ribozyme catalytic core. Spitale RC, Volpini R, Mungillo MV, Krucinska J, Cristalli G, Wedekind JE. Biochemistry 48 7777-7779 (2009)
  597. Strength and Regulation of Seven rRNA Promoters in Escherichia coli. Maeda M, Shimada T, Ishihama A. PLoS ONE 10 e0144697 (2015)
  598. The integrity of the G2421-C2395 base pair in the ribosomal E-site is crucial for protein synthesis. Koch M, Clementi N, Rusca N, Vögele P, Erlacher M, Polacek N. RNA Biol 12 70-81 (2015)
  599. The origin of life: a problem of history, chemistry, and evolution. Ma W. Chem. Biodivers. 11 1998-2010 (2014)
  600. The origin of life: look up and look down. Peters JW, Williams LD. Astrobiology 12 1087-1092 (2012)
  601. The plausibility of RNA-templated peptides: simultaneous RNA affinity for adjacent peptide side chains. Turk-Macleod RM, Puthenvedu D, Majerfeld I, Yarus M. J. Mol. Evol. 74 217-225 (2012)
  602. The scenario on the origin of translation in the RNA world: in principle of replication parsimony. Ma W. Biol. Direct 5 65 (2010)
  603. Translocation of a proteinlike chain through a finite channel. Sun T, Zhang L, Su J. J Chem Phys 125 34702 (2006)
  604. A Faster Triphosphorylation Ribozyme. Dolan GF, Akoopie A, Müller UF. PLoS ONE 10 e0142559 (2015)
  605. Arrangement of 3'-terminus of tRNA on the human ribosome as revealed from cross-linking data. Bulygin K, Favre A, Baouz-Drahy S, Hountondji C, Vorobjev Y, Ven'yaminova A, Graifer D, Karpova G. Biochimie 90 1624-1636 (2008)
  606. Critical 23S rRNA interactions for macrolide-dependent ribosome stalling on the ErmCL nascent peptide chain. Koch M, Willi J, Pradère U, Hall J, Polacek N. Nucleic Acids Res. 45 6717-6728 (2017)
  607. Determinants of Helix Formation for a Kv1.3 Transmembrane Segment inside the Ribosome Exit Tunnel. Tu L, Deutsch C. J. Mol. Biol. 429 1722-1732 (2017)
  608. Enhanced expression of Bacillus subtilis yaaA can restore both the growth and the sporulation defects caused by mutation of rplB, encoding ribosomal protein L2. Suzuki S, Tanigawa O, Akanuma G, Nanamiya H, Kawamura F, Tagami K, Nomura N, Kawabata T, Sekine Y. Microbiology (Reading, Engl.) 160 1040-1053 (2014)
  609. Extreme (10(9)) acidification of adenine-NH2 in an open platinated nucleobase quartet. A pH switch with potential as a biological acid/base catalyst. Lüth MS, Willermann M, Lippert B. Chem. Commun. (Camb.) 2058-2059 (2001)
  610. Facile synthesis of a 3-deazaadenosine phosphoramidite for RNA solid-phase synthesis. Mairhofer E, Fuchs E, Micura R. Beilstein J Org Chem 12 2556-2562 (2016)
  611. First synthesis of 2'-deoxyfluoropuromycin analogues: experimental insight into the mechanism of the Staudinger reaction. Charafeddine A, Dayoub W, Chapuis H, Strazewski P. Chemistry 13 5566-5584 (2007)
  612. Low selection pressure aids the evolution of cooperative ribozyme mutations in cells. Amini ZN, Müller UF. J. Biol. Chem. 288 33096-33106 (2013)
  613. Macrolide-peptide conjugates as probes of the path of travel of the nascent peptides through the ribosome. Washington AZ, Benicewicz DB, Canzoneri JC, Fagan CE, Mwakwari SC, Maehigashi T, Dunham CM, Oyelere AK. ACS Chem. Biol. 9 2621-2631 (2014)
  614. Novel assays and novel strains - promising routes to new antibiotics? Donadio S, Brandi L, Monciardini P, Sosio M, Gualerzi CO. Expert Opin Drug Discov 2 789-798 (2007)
  615. RNA aptamers directed against release factor 1 from Thermus thermophilus. Szkaradkiewicz K, Nanninga M, Nesper-Brock M, Gerrits M, Erdmann VA, Sprinzl M. FEBS Lett. 514 90-95 (2002)
  616. Rebek imides and their adenine complexes: preferences for Hoogsteen binding in the solid state and in solution. Castellano RK, Gramlich V, Diederich F. Chemistry 8 118-129 (2002)
  617. News Repopulating the RNA world. Strobel SA. Nature 411 1003-1006 (2001)
  618. Requirement for C-terminal extension to the RNA binding domain for efficient RNA binding by ribosomal protein L2. Hayashi T, Tahara M, Iwasaki K, Kouzuma Y, Kimura M. Biosci. Biotechnol. Biochem. 66 682-684 (2002)
  619. Ribosomal peptide-bond formation. Pech M, Nierhaus KH. Chem. Biol. 15 417-419 (2008)
  620. Ribosomes containing mutants of L4 ribosomal protein from Thermus thermophilus display multiple defects in ribosomal functions and sensitivity against erythromycin. Tsagkalia A, Leontiadou F, Xaplanteri MA, Papadopoulos G, Kalpaxis DL, Choli-Papadopoulou T. RNA 11 1633-1639 (2005)
  621. Ribozyme catalysis via orbital steering. Scott WG. J. Mol. Biol. 311 989-999 (2001)
  622. Silver-catalyzed intramolecular cyclization of 9-propargyladenine via N3 alkylation. Prajapati RK, Kumar J, Verma S. Chem. Commun. (Camb.) 46 3312-3314 (2010)
  623. Termination-free prokaryotic protein translation by using anticodon-adjusted E. coli tRNASer as unified suppressors of the UAA/UGA/UAG stop codons. Read-through ribosome display of full-length DHFR with translated UTR as a buried spacer arm. Ogawa A, Sando S, Aoyama Y. Chembiochem 7 249-252 (2006)
  624. The case for an early biological origin of DNA. Poole AM, Horinouchi N, Catchpole RJ, Si D, Hibi M, Tanaka K, Ogawa J. J. Mol. Evol. 79 204-212 (2014)
  625. Introductory Journal Article The chemical origins of life and its early evolution: an introduction. Lilley DM, Sutherland J. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 366 2853-2856 (2011)
  626. The molecular chaperone DnaK is not recruited to translating ribosomes that lack trigger factor. Kramer G, Ramachandiran V, Horowitz PM, Hardesty B. Arch. Biochem. Biophys. 403 63-70 (2002)
  627. Toward resolution of ambiguity for the unfolded state. Beaucage G. Biophys. J. 95 503-509 (2008)
  628. A fully orthogonal system for protein synthesis in bacterial cells. Aleksashin NA, Szal T, d'Aquino AE, Jewett MC, Vázquez-Laslop N, Mankin AS. Nat Commun 11 1858 (2020)
  629. A novel potassium deficiency-induced stimulon in Anabaena torulosa. Alahari A, Apte SK. J. Biosci. 29 153-161 (2004)
  630. A strategy for co-translational folding studies of ribosome-bound nascent chain complexes using NMR spectroscopy. Cassaignau AM, Launay HM, Karyadi ME, Wang X, Waudby CA, Deckert A, Robertson AL, Christodoulou J, Cabrita LD. Nat Protoc 11 1492-1507 (2016)
  631. Comment Biochemistry: Metal ghosts in the splicing machine. Strobel SA. Nature 503 201-202 (2013)
  632. Characterization of the rplB gene from Streptomyces collinus and its protein product by mass spectrometry. Mikulík K, Man P, Halada P. Biochem. Biophys. Res. Commun. 285 1344-1349 (2001)
  633. Differential effects of replacing Escherichia coli ribosomal protein L27 with its homologue from Aquifex aeolicus. Maguire BA, Manuilov AV, Zimmermann RA. J. Bacteriol. 183 6565-6572 (2001)
  634. Displaying 3D data on RNA secondary structures: coloRNA. LeBarron J, Mitra K, Frank J. J. Struct. Biol. 157 262-270 (2007)
  635. Enzyme transient state kinetics in crystal and solution from the perspective of a time-resolved crystallographer. Schmidt M, Saldin DK. Struct Dyn 1 024701 (2014)
  636. Helix capping in RNA structure. Lee JC, Gutell RR. PLoS ONE 9 e93664 (2014)
  637. Mechanism of 3'-Matured tRNA Discrimination from 3'-Immature tRNA by Class-II CCA-Adding Enzyme. Yamashita S, Tomita K. Structure 24 918-925 (2016)
  638. Molecular Dynamics Investigation of a Mechanism of Allosteric Signal Transmission in Ribosomes. Makarov GI, Golovin AV, Sumbatyan NV, Bogdanov AA. Biochemistry Mosc. 80 1047-1056 (2015)
  639. Comment Molecular biology. RNA enzymes for RNA splicing. Newman A. Nature 413 695-696 (2001)
  640. Mutational characterization and mapping of the 70S ribosome active site. d'Aquino AE, Azim T, Aleksashin NA, Hockenberry AJ, Krüger A, Jewett MC. Nucleic Acids Res 48 2777-2789 (2020)
  641. Osmotic stress response in C. glutamicum: impact of channel- and transporter-mediated potassium accumulation. Ochrombel I, Becker M, Krämer R, Marin K. Arch. Microbiol. 193 787-796 (2011)
  642. RlmCD-mediated U747 methylation promotes efficient G748 methylation by methyltransferase RlmAII in 23S rRNA in Streptococcus pneumoniae; interplay between two rRNA methylations responsible for telithromycin susceptibility. Shoji T, Takaya A, Sato Y, Kimura S, Suzuki T, Yamamoto T. Nucleic Acids Res. 43 8964-8972 (2015)
  643. SARNA-Predict: accuracy improvement of RNA secondary structure prediction using permutation-based simulated annealing. Tsang HH, Wiese KC. IEEE/ACM Trans Comput Biol Bioinform 7 727-740 (2010)
  644. Sequence and generation of mature ribosomal RNA transcripts in Dictyostelium discoideum. Boesler C, Kruse J, Söderbom F, Hammann C. J. Biol. Chem. 286 17693-17703 (2011)
  645. Slow molecular recognition by RNA. Gleitsman KR, Sengupta RN, Herschlag D. RNA 23 1745-1753 (2017)
  646. Structural changes of tRNA and 5S rRNA induced with magnesium and visualized with synchrotron mediated hydroxyl radical cleavage. Barciszewska MZ, Rapp G, Betzel C, Erdmann VA, Barciszewski J. Mol. Biol. Rep. 28 103-110 (2001)
  647. The GC content of LSU rRNA evolves across topological and functional regions of the ribosome in all three domains of life. Mallatt J, Chittenden KD. Mol. Phylogenet. Evol. 72 17-30 (2014)
  648. The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering. Zaccai G, Natali F, Peters J, Řihová M, Zimmerman E, Ollivier J, Combet J, Maurel MC, Bashan A, Yonath A. Sci Rep 6 37138 (2016)
  649. The mechanistic and evolutionary aspects of the 2'- and 3'-OH paradigm in biosynthetic machinery. Safro M, Klipcan L. Biol. Direct 8 17 (2013)
  650. The presence of highly disruptive 16S rRNA mutations in clinical samples indicates a wider role for mutations of the mitochondrial ribosome in human disease. Elson JL, Smith PM, Greaves LC, Lightowlers RN, Chrzanowska-Lightowlers ZM, Taylor RW, Vila-Sanjurjo A. Mitochondrion 25 17-27 (2015)
  651. The thorny way to the mechanism of ribosomal peptide-bond formation. Pech M, Nierhaus KH. Chembiochem 13 189-192 (2012)
  652. Twenty Years of Delila and Molecular Information Theory: The Altenberg-Austin Workshop in Theoretical Biology Biological Information, Beyond Metaphor: Causality, Explanation, and Unification Altenberg, Austria, 11-14 July 2002. Schneider TD. Biol Theory 1 250-260 (2006)
  653. Understanding catalysis of phosphate-transfer reactions by the large ribozymes. Lönnberg T. Chemistry 17 7140-7153 (2011)
  654. Why are both ends of the polypeptide chain on the outside of proteins? Hovmöller S, Zhou T. Proteins 55 219-222 (2004)
  655. [Amino acid and peptide derivatives of the tylosin family of macrolide antibiotics modified at the aldehyde group] Sumbatian NV, Kuznetsova IV, Karpenko VV, Fedorova NV, Chertkov VA, Korshunova GA, Bogdanov AA. Bioorg. Khim. 36 265-276 (2010)
  656. A quantitative measure of chirality inside nucleic acid databank. Pietropaolo A, Parrinello M. Chirality 23 534-542 (2011)
  657. A single N1-methyladenosine on the large ribosomal subunit rRNA impacts locally its structure and the translation of key metabolic enzymes. Sharma S, Hartmann JD, Watzinger P, Klepper A, Peifer C, Kötter P, Lafontaine DLJ, Entian KD. Sci Rep 8 11904 (2018)
  658. A stress-induced tyrosine-tRNA depletion response mediates codon-based translational repression and growth suppression. Huh D, Passarelli MC, Gao J, Dusmatova SN, Goin C, Fish L, Pinzaru AM, Molina H, Ren Z, McMillan EA, Asgharian H, Goodarzi H, Tavazoie SF. EMBO J 40 e106696 (2021)
  659. Editorial Back to the future: the ribosome as an antibiotic target. Franceschi F. Future Microbiol 2 571-574 (2007)
  660. Comment Biological catalysis. The hairpin's turn. Strobel SA, Ryder SP. Nature 410 761-763 (2001)
  661. ChannelsDB: database of biomacromolecular tunnels and pores. Pravda L, Sehnal D, Svobodová Vareková R, Navrátilová V, Toušek D, Berka K, Otyepka M, Koca J. Nucleic Acids Res. 46 D399-D405 (2018)
  662. Circular RNAs with hammerhead ribozymes encoded in eukaryotic genomes: The enemy at home. de la Peña M, Cervera A. RNA Biol 14 985-991 (2017)
  663. Co-evolution of the genetic code and ribozyme replication. Stevenson DS. J. Theor. Biol. 217 235-253 (2002)
  664. Conformational flexibility of two RNA trimers explored by computational tools and database search. Fadrná E, Koca J. J. Biomol. Struct. Dyn. 20 715-732 (2003)
  665. Construction of low-resolution x-ray crystallographic electron density maps of the ribosome. Cate JH. Methods 25 303-308 (2001)
  666. Differential transcript accumulation and subcellular localization of Arabidopsis ribosomal proteins. Savada RP, Bonham-Smith PC. Plant Sci. 223 134-145 (2014)
  667. Influence of two bulge loops on the stability of RNA duplexes. Crowther CV, Jones LE, Morelli JN, Mastrogiacomo EM, Porterfield C, Kent JL, Serra MJ. RNA 23 217-228 (2017)
  668. Lower temperature optimum of a smaller, fragmented triphosphorylation ribozyme. Akoopie A, Müller UF. Phys Chem Chem Phys 18 20118-20125 (2016)
  669. Native transfer RNA catalyzes Diels-Alder reaction. Mielcarek M, Barciszewska MZ, Sałanski P, Stobiecki M, Jurczak J, Barciszewski J. Biochem. Biophys. Res. Commun. 294 145-148 (2002)
  670. Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG. Beck HJ, Janssen GR. J. Bacteriol. 199 (2017)
  671. Letter Nucleobase carbonyl groups are poor Mg2+ inner-sphere binders but excellent monovalent ion binders-a critical PDB survey. Leonarski F, D'Ascenzo L, Auffinger P. RNA 25 173-192 (2019)
  672. On the expansion of ribosomal proteins and RNAs in eukaryotes. Parker MS, Sah R, Balasubramaniam A, Sallee FR, Park EA, Parker SL. Amino Acids 46 1589-1604 (2014)
  673. On the structural features of hairpin triloops in rRNA: from nucleotide to global conformational change upon ligand binding. Mitrasinovic PM. J. Struct. Biol. 153 207-222 (2006)
  674. Overexpression, purification, molecular characterization and the effect on tumor growth of ribosomal protein L22 from the Giant Panda (Ailuropoda melanoleuca). Li J, Hou Y, Ding X, Hou W, Song B, Zeng Y. Mol. Biol. Rep. 41 3529-3539 (2014)
  675. PolyAdenine cryogels for fast and effective RNA purification. Köse K, Erol K, Özgür E, Uzun L, Denizli A. Colloids Surf B Biointerfaces 146 678-686 (2016)
  676. Protein synthesis is the most sensitive process when potassium is substituted by sodium in the nutrition of sugar beet (Beta vulgaris). Faust F, Schubert S. Plant Physiol. Biochem. 107 237-247 (2016)
  677. Pt(II) coordination to N1 of 9-methylguanine: why it facilitates binding of additional metal ions to the purine ring. Müller B, Shen WZ, Sanz Miguel PJ, Albertí FM, van der Wijst T, Noguera M, Rodríguez-Santiago L, Sodupe M, Lippert B. Chemistry 17 9970-9983 (2011)
  678. Revisiting regulation of potassium homeostasis in Escherichia coli: the connection to phosphate limitation. Schramke H, Laermann V, Tegetmeyer HE, Brachmann A, Jung K, Altendorf K. Microbiologyopen 6 (2017)
  679. Ribosome engineering reveals the importance of 5S rRNA autonomy for ribosome assembly. Huang S, Aleksashin NA, Loveland AB, Klepacki D, Reier K, Kefi A, Szal T, Remme J, Jaeger L, Vázquez-Laslop N, Korostelev AA, Mankin AS. Nat Commun 11 2900 (2020)
  680. Sequence complementarity at the ribosomal Peptidyl Transferase Centre implies self-replicating origin. Agmon I. FEBS Lett. 591 3252-3258 (2017)
  681. Sequence-dependent RNA helix conformational preferences predictably impact tertiary structure formation. Yesselman JD, Denny SK, Bisaria N, Herschlag D, Greenleaf WJ, Das R. Proc Natl Acad Sci U S A 116 16847-16855 (2019)
  682. Structural and functional characterization of ribosomal protein gene introns in sponges. Perina D, Korolija M, Mikoč A, Roller M, Pleše B, Imešek M, Morrow C, Batel R, Ćetković H. PLoS ONE 7 e42523 (2012)
  683. Study on the chaperone properties of conserved GTPases. Wang X, Xue J, Sun Z, Qin Y, Gong W. Protein Cell 3 44-50 (2012)
  684. The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery. O'Reilly RK, Turberfield AJ, Wilks TR. Acc. Chem. Res. 50 2496-2509 (2017)
  685. The ribosome goes Nobel. Rodnina MV, Wintermeyer W. Trends Biochem. Sci. 35 1-5 (2010)
  686. The shared and specific mechanism of four autoimmune diseases. Luan M, Shang Z, Teng Y, Chen X, Zhang M, Lv H, Zhang R. Oncotarget 8 108355-108374 (2017)
  687. Two-dimensional network stability of nucleobases and amino acids on graphite under ambient conditions: adenine, L-serine and L-tyrosine. Bald I, Weigelt S, Ma X, Xie P, Subramani R, Dong M, Wang C, Mamdouh W, Wang J, Besenbacher F. Phys Chem Chem Phys 12 3616-3621 (2010)
  688. rCAD: A Novel Database Schema for the Comparative Analysis of RNA. Ozer S, Doshi KJ, Xu W, Gutell RR. Proc IEEE Int Conf Escience 2011 15-22 (2011)
  689. Editorial 25 years of catalytic RNA: looking younger than ever! Hammann C, Hartmann RK, Marchfelder A. Biol. Chem. 388 659-660 (2007)
  690. Comment A ghost in the RNA machine. Lehman N. Nat. Chem. Biol. 5 73-74 (2009)
  691. A novel solid phase- and chemical crosslinking-based technology for determining protein localization in biological supramolecules. Horng WC, Yen YH, Chang YC. Proteomics 8 4642-4646 (2008)
  692. Activity of 3'-thioAMP derivatives as ribosomal P-site substrates. Dorner S, Schmid W, Barta A. Nucleic Acids Res. 33 3065-3071 (2005)
  693. Advanced multi-loop algorithms for RNA secondary structure prediction reveal that the simplest model is best. Ward M, Datta A, Wise M, Mathews DH. Nucleic Acids Res. 45 8541-8550 (2017)
  694. Affinity labelling in situ of the bL12 protein on E. coli 70S ribosomes by means of a tRNA dialdehyde derivative. Hountondji C, Créchet JB, Le Caër JP, Lancelot V, Cognet JAH, Baouz S. J. Biochem. 162 437-448 (2017)
  695. Ala-His mediated peptide bond formation revisited. Larkin DC, Martinis SA, Roberts DJ, Fox GE. Orig Life Evol Biosph 31 511-526 (2001)
  696. News An autocatalytic network for ribozyme self-construction. Seelig B. Nat. Chem. Biol. 4 654-655 (2008)
  697. Characterization of sparsomycin resistance in Streptomyces sparsogenes. Lázaro E, Sanz E, Remacha M, Ballesta JP. Antimicrob. Agents Chemother. 46 2914-2919 (2002)
  698. Construction and screening of a cDNA library from the triactinomyxon spores of Myxobolus cerebralis, the causative agent of salmonid whirling diseases. el-Matbouli M, Soliman H. Parasitology 132 467-477 (2006)
  699. Erythromycin leads to differential protein expression through differences in electrostatic and dispersion interactions with nascent proteins. Nguyen HL, Pham DL, O'Brien EP, Li MS. Sci Rep 8 6460 (2018)
  700. From the RNA world to the DNA-protein world: clues to the origin and early evolution of life in the ribosome. Melendez-Hevia E. J. Biosci. 34 825-827 (2009)
  701. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Tränkner M, Tavakol E, Jákli B. Physiol Plant (2018)
  702. Generation of small molecule-binding RNA arrays and their application to fluorogen-binding RNA aptamers. Henderson CA, Rail CA, Butt LE, Vincent HA, Callaghan AJ. Methods 167 39-53 (2019)
  703. News Hasty decisions on the ribosome. Sherlin LD, Uhlenbeck OC. Nat. Struct. Mol. Biol. 11 206-208 (2004)
  704. Interaction of Chloramphenicol Tripeptide Analogs with Ribosomes. Tereshchenkov AG, Shishkina AV, Tashlitsky VN, Korshunova GA, Bogdanov AA, Sumbatyan NV. Biochemistry (Mosc) 81 392-400 (2016)
  705. Journey of a molecular biologist. Nomura M. Annu. Rev. Biochem. 80 16-40 (2011)
  706. Loss of RPS41 but not its paralog RPS42 results in altered growth, filamentation and transcriptome changes in Candida albicans. Lu H, Yao XW, Whiteway M, Xiong J, Liao ZB, Jiang YY, Cao YY. Fungal Genet. Biol. 80 31-42 (2015)
  707. Magnesium Suppresses Defects in the Formation of 70S Ribosomes as Well as in Sporulation Caused by Lack of Several Individual Ribosomal Proteins. Akanuma G, Yamazaki K, Yagishi Y, Iizuka Y, Ishizuka M, Kawamura F, Kato-Yamada Y. J. Bacteriol. 200 (2018)
  708. Mass fractal dimension of the ribosome and implication of its dynamic characteristics. Lee CY. Phys Rev E Stat Nonlin Soft Matter Phys 73 042901 (2006)
  709. Mechanism of translation based on intersubunit complementarities of ribosomal RNAs and tRNAs. Nagano K, Nagano N. J. Theor. Biol. 245 644-668 (2007)
  710. Mirror-Image 5S Ribonucleoprotein Complexes. Ling JJ, Fan C, Qin H, Wang M, Chen J, Wittung-Stafshede P, Zhu TF. Angew Chem Int Ed Engl 59 3724-3731 (2020)
  711. Mitochondrial release factor in yeast: interplay of functional domains. Kutner J, Towpik J, Ginalski K, Boguta M. Curr. Genet. 53 185-192 (2008)
  712. Modulation of RNA metal binding by flanking bases: 15N NMR evaluation of GC, tandem GU, and tandem GA sites. Wang W, Zhao J, Han Q, Wang G, Yang G, Shallop AJ, Liu J, Gaffney BL, Jones RA. Nucleosides Nucleotides Nucleic Acids 28 424-434 (2009)
  713. Mutational eidence for a functional connection between two domains of 23S rRNA in translation termination. Arkov AL, Hedenstierna KO, Murgola EJ. J. Bacteriol. 184 5052-5057 (2002)
  714. Posttranscriptional Regulation of tnaA by Protein-RNA Interaction Mediated by Ribosomal Protein L4 in Escherichia coli. Singh D, Murashko ON, Lin-Chao S. J Bacteriol 202 (2020)
  715. RNA nanoparticles come of age. Rossi JJ. Acta Biochim. Biophys. Sin. (Shanghai) 43 245-247 (2011)
  716. Resolving the elegant architecture of the ribosome. Puglisi JD. Mol. Cell 36 720-723 (2009)
  717. Reverse genetics-based biochemical studies of the ribosomal exit tunnel constriction region in eukaryotic ribosome stalling: spatial allocation of the regulatory nascent peptide at the constriction. Takamatsu S, Ohashi Y, Onoue N, Tajima Y, Imamichi T, Yonezawa S, Morimoto K, Onouchi H, Yamashita Y, Naito S. Nucleic Acids Res 48 1985-1999 (2020)
  718. Ribonucleic acid (RNA) biosynthesis in human cancer. Hajjawi OS. Cancer Cell Int. 15 22 (2015)
  719. Ribozyme diagnostics comes of age. Rossi JJ. Chem. Biol. 11 894-895 (2004)
  720. Rotational restriction of nascent peptides as an essential element of co-translational protein folding: possible molecular players and structural consequences. Sorokina I, Mushegian A. Biol. Direct 12 14 (2017)
  721. Separation and Paired Proteome Profiling of Plant Chloroplast and Cytoplasmic Ribosomes. Firmino AAP, Gorka M, Graf A, Skirycz A, Martinez-Seidel F, Zander K, Kopka J, Beine-Golovchuk O. Plants (Basel) 9 (2020)
  722. Simplification of Ribosomes in Bacteria with Tiny Genomes. Nikolaeva DD, Gelfand MS, Garushyants SK. Mol Biol Evol 38 58-66 (2021)
  723. Small circRNAs with self-cleaving ribozymes are highly expressed in diverse metazoan transcriptomes. Cervera A, de la Peña M. Nucleic Acids Res 48 5054-5064 (2020)
  724. Structural landscape of base pairs containing post-transcriptional modifications in RNA. Seelam PP, Sharma P, Mitra A. RNA 23 847-859 (2017)
  725. Synthesis and biological evaluation of non-isomerizable analogues of Ala-tRNA(Ala). Mellal D, Fonvielle M, Santarem M, Chemama M, Schneider Y, Iannazzo L, Braud E, Arthur M, Etheve-Quelquejeu M. Org. Biomol. Chem. 11 6161-6169 (2013)
  726. Historical Article The Cech Symposium: a celebration of 25 years of ribozymes, 10 years of TERT, and 60 years of Tom. Vicens Q, Allen MA, Gilbert SD, Reznik B, Gooding AR, Batey RT. RNA 14 397-403 (2008)
  727. The shape of the bacterial ribosome exit tunnel affects cotranslational protein folding. Kudva R, Tian P, Pardo-Avila F, Carroni M, Best RB, Bernstein HD, von Heijne G. Elife 7 (2018)
  728. Tiamulin-Resistant Mutants of the Thermophilic Bacterium Thermus thermophilus. Killeavy EE, Jogl G, Gregory ST. Antibiotics (Basel) 9 (2020)
  729. Translation of non-standard codon nucleotides reveals minimal requirements for codon-anticodon interactions. Hoernes TP, Faserl K, Juen MA, Kremser J, Gasser C, Fuchs E, Shi X, Siewert A, Lindner H, Kreutz C, Micura R, Joseph S, Höbartner C, Westhof E, Hüttenhofer A, Erlacher MD. Nat Commun 9 4865 (2018)
  730. Updates to the RNA mapping database (RMDB), version 2. Yesselman JD, Tian S, Liu X, Shi L, Li JB, Das R. Nucleic Acids Res. 46 D375-D379 (2018)
  731. Visualization of conformational variability in the domains of long single-stranded RNA molecules. Gilmore JL, Yoshida A, Hejna JA, Takeyasu K. Nucleic Acids Res. 45 8493-8507 (2017)
  732. What Does "the RNA World" Mean to "the Origin of Life"? Ma W. Life (Basel) 7 (2017)
  733. Bacillus halodurans OapB forms a high-affinity complex with the P13 region of the noncoding RNA OLE. Widner DL, Harris KA, Corey L, Breaker RR. J Biol Chem 295 9326-9334 (2020)
  734. A model for the role of isomerization in nascent peptide movement through the ribosomal tunnel. Agmon IC. FASEB J. 26 2277-2282 (2012)
  735. A small sequence in domain v of the mitochondrial large ribosomal RNA restores Drosophila melanogaster pole cell determination in uv-irradiated embryos. Psaila R, Ponti D, Ponzi M, Gigliani F, Battaglia PA. Cell. Mol. Biol. Lett. 15 365-376 (2010)
  736. Active, Autonomous, and Adaptive Polymeric Particles for Biomedical Applications. Keller S, Toebes BJ, Wilson DA. Biomacromolecules 20 1135-1145 (2019)
  737. Assembly and functionality of the ribosome with tethered subunits. Aleksashin NA, Leppik M, Hockenberry AJ, Klepacki D, Vázquez-Laslop N, Jewett MC, Remme J, Mankin AS. Nat Commun 10 930 (2019)
  738. Assembly of recently translated full-length and C-terminal truncated human gamma-globin chains with a pool of alpha-globin chains to form Hb F in a cell-free system. Adachi K, Zhao Y, Lakka V, Weiss MJ, Surrey S. Arch. Biochem. Biophys. 463 60-67 (2007)
  739. Changes in the level of poly(Phe) synthesis in Escherichia coli ribosomes containing mutants of L4 ribosomal protein from Thermus thermophilus can be explained by structural changes in the peptidyltransferase center: a molecular dynamics simulation analysis. Papadopoulos G, Grudinin S, Kalpaxis DL, Choli-Papadopoulou T. Eur. Biophys. J. 35 675-683 (2006)
  740. Chaperna: linking the ancient RNA and protein worlds. Son A, Horowitz S, Seong BL. RNA Biol 18 16-23 (2021)
  741. Condensing the RNA world Brenner C. Trends Biochem. Sci. 25 485 (2000)
  742. Continuous in vitro evolution of a ribozyme ligase: a model experiment for the evolution of a biomolecule. Ledbetter MP, Hwang TW, Stovall GM, Ellington AD. Biochem Mol Biol Educ 41 433-442 (2013)
  743. DNA Three Way Junction Core Decorated with Amino Acids-Like Residues-Synthesis and Characterization. Addamiano C, Gerland B, Payrastre C, Escudier JM. Molecules 21 (2016)
  744. Differences in the path to exit the ribosome across the three domains of life. Dao Duc K, Batra SS, Bhattacharya N, Cate JHD, Song YS. Nucleic Acids Res. 47 4198-4210 (2019)
  745. News Does RNA secondary structure drive translation or vice versa? Kramer MC, Gregory BD. Nat. Struct. Mol. Biol. 25 641-643 (2018)
  746. E pluribus tres: the 2009 nobel prize in chemistry. Carter CW. Structure 17 1558-1561 (2009)
  747. EF4 reveals the energy barrier for tRNA back-translocation in the peptidyl transferase center. Song G, Qin Y. RNA Biol 13 934-939 (2016)
  748. Enabling technologies in discovery: the 2009 Nobel Prize and its implications in antibiotic design. Wei Y, Daunert S. Anal Bioanal Chem 396 1623-1626 (2010)
  749. Ethylicin Prevents Potato Late Blight by Disrupting Protein Biosynthesis of Phytophthora infestans. Zhang S, Zhang M, Khalid AR, Li L, Chen Y, Dong P, Wang H, Ren M. Pathogens 9 (2020)
  750. Congresses European Symposium of Bio-Organic Chemistry 2003 (ESBOC): the evolution of catalysis. Lindner A, Hollfelder F. Chembiochem 5 241-243 (2004)
  751. Evidence for Hidden Involvement of N3-Protonated Guanine in RNA Structure and Function. Halder A, Vemuri S, Roy R, Katuri J, Bhattacharyya D, Mitra A. ACS Omega 4 699-709 (2019)
  752. Evolutionary convergence in the biosyntheses of the imidazole moieties of histidine and purines. Vázquez-Salazar A, Becerra A, Lazcano A. PLoS ONE 13 e0196349 (2018)
  753. Exploring allosteric communication in multiple states of the bacterial ribosome using residue network analysis. Kürkçüoğlu Ö. Turk. J. Biol. 42 392-404 (2018)
  754. Flexizyme-catalyzed synthesis of 3'-aminoacyl-NH-tRNAs. Katoh T, Suga H. Nucleic Acids Res. 47 e54 (2019)
  755. Genome-wide identification and characterization of long non-coding RNAs during postnatal development of rabbit adipose tissue. Wang GZ, Du K, Hu SQ, Chen SY, Jia XB, Cai MC, Shi Y, Wang J, Lai SJ. Lipids Health Dis 17 271 (2018)
  756. Genomic Variations in Probiotic Lactobacillus plantarum P-8 in the Human and Rat Gut. Song Y, He Q, Zhang J, Qiao J, Xu H, Zhong Z, Zhang W, Sun Z, Yang R, Cui Y, Zhang H. Front Microbiol 9 893 (2018)
  757. Introductory Journal Article Introduction to special issue on RNA. Clote P. J Math Biol 56 3-13 (2008)
  758. Mechanistic role of nucleobases in self-cleavage catalysis of hairpin ribozyme at ambient versus high-pressure conditions. Kumar N, Marx D. Phys Chem Chem Phys 20 20886-20898 (2018)
  759. Introductory Journal Article Mirroring the multifaceted role of RNA and its partners in gene expression. Zavolan M, Gerber AP. FEBS Lett. 592 2825-2827 (2018)
  760. Mixed guanine, adenine base quartets: possible roles of protons and metal ions in their stabilization. Megger DA, Lax PM, Paauwe J, Fonseca Guerra C, Lippert B. J. Biol. Inorg. Chem. 23 41-49 (2018)
  761. Mutations stabilize small subunit ribosomal RNA in desiccation-tolerant cyanobacteria nostoc. Han D, Hu Z. Curr. Microbiol. 54 254-259 (2007)
  762. Nanometer scale pores similar in size to the entrance of the ribosomal exit cavity are a common feature of large RNAs. Rivas M, Tran Q, Fox GE. RNA 19 1349-1354 (2013)
  763. Novel ribozymes: discovery, catalytic mechanisms, and the quest to understand biological function. Weinberg CE, Weinberg Z, Hammann C. Nucleic Acids Res. 47 9480-9494 (2019)
  764. One-Pot Production of RNA in High Yield and Purity Through Cleaving Tandem Transcripts. Feyrer H, Munteanu R, Baronti L, Petzold K. Molecules 25 (2020)
  765. Paralogous ribosomal protein l32-1 and l32-2 in fission yeast may function distinctively in cellular proliferation and quiescence by changing the ratio of rpl32 paralogs. Sun L, Yang X, Chen F, Li R, Li X, Liu Z, Gu Y, Gong X, Liu Z, Wei H, Huang Y, Yuan S. PLoS ONE 8 e60689 (2013)
  766. Partition of tRNAGly isoacceptors between protein and cell-wall peptidoglycan synthesis in Staphylococcus aureus. Rietmeyer L, Fix-Boulier N, Le Fournis C, Iannazzo L, Kitoun C, Patin D, Mengin-Lecreulx D, Ethève-Quelquejeu M, Arthur M, Fonvielle M. Nucleic Acids Res 49 684-699 (2021)
  767. Promiscuous Ribozymes and Their Proposed Role in Prebiotic Evolution. Janzen E, Blanco C, Peng H, Kenchel J, Chen IA. Chem Rev 120 4879-4897 (2020)
  768. Protonation of Nucleobases in Single- and Double-Stranded DNA. González-Olvera JC, Durec M, Marek R, Fiala R, Morales-García MDRJ, González-Jasso E, Pless RC. Chembiochem 19 2088-2098 (2018)
  769. Pseudouridine modifications influence binding of aminoglycosides to helix 69 of bacterial ribosomes. Sakakibara Y, Chow CS. Org. Biomol. Chem. 15 8535-8543 (2017)
  770. RNA sectors and allosteric function within the ribosome. Walker AS, Russ WP, Ranganathan R, Schepartz A. Proc Natl Acad Sci U S A 117 19879-19887 (2020)
  771. Reconstruction and Characterization of Thermally Stable and Catalytically Active Proteins Comprising an Alphabet of ~ 13 Amino Acids. Kimura M, Akanuma S. J Mol Evol 88 372-381 (2020)
  772. Refinement of a low-resolution crystal structure to better understand erythromycin interactions on large ribosomal subunit. Wahab HA, Yam WK, Samian MR, Najimudin N. J. Biomol. Struct. Dyn. 26 131-146 (2008)
  773. Role of hsp20 in the Production of Spores and Insecticidal Crystal Proteins in Bacillus thuringiensis. Xie J, Peng J, Yi Z, Zhao X, Li S, Zhang T, Quan M, Yang S, Lu J, Zhou P, Xia L, Ding X. Front Microbiol 10 2059 (2019)
  774. RpbL12 Assists Catalysis by Correctly Positioning the Incoming Aminoacyl-tRNA in the A-Site of E. coli 70S Ribosomes. Créchet JB, Agbo'Saga FK, Baouz S, Hountondj C. Open Biochem J 12 113-129 (2018)
  775. SrmB Rescues Trapped Ribosome Assembly Intermediates. Rabuck-Gibbons JN, Popova AM, Greene EM, Cervantes CF, Lyumkis D, Williamson JR. J Mol Biol 432 978-990 (2020)
  776. Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic. Scaiola A, Leibundgut M, Boehringer D, Caspers P, Bur D, Locher HH, Rueedi G, Ritz D. Sci Rep 9 5634 (2019)
  777. Structural insights into unique features of the human mitochondrial ribosome recycling. Koripella RK, Sharma MR, Risteff P, Keshavan P, Agrawal RK. Proc. Natl. Acad. Sci. U.S.A. 116 8283-8288 (2019)
  778. Structural investigations of mode of action of drugs: structure and conformation of a novel peptidyl nucleoside antibiotic chryscandin hydrochloride pentahydrate. Liu M, Arora SK. J. Antibiot. 61 322-325 (2008)
  779. Synthesis, stereochemical characterization, and antimicrobial evaluation of a potentially nonnephrotoxic 3'-C-acethydrazide puromycin analog. Carter J, Weaver BA, Chiacchio MA, Messersmith AR, Lynch WE, Feske BD, Gumina G. Nucleosides Nucleotides Nucleic Acids 36 224-241 (2017)
  780. The Origin of Prebiotic Information System in the Peptide/RNA World: A Simulation Model of the Evolution of Translation and the Genetic Code. Chatterjee S, Yadav S. Life (Basel) 9 (2019)
  781. The conformational space of nascent peptide-accepting 3'-aminoacyl ribonucleos(t)ides: 1H NMR data and ab initio calculations of puromycin and some synthetic analogs. Trung NQ, Strazewski P, Olsson M, Ehrenberg M. Nucleosides Nucleotides Nucleic Acids 20 383-384 (2001)
  782. The effect of adenine protonation on RNA phosphodiester backbone bond cleavage elucidated by deaza-nucleobase modifications and mass spectrometry. Fuchs E, Falschlunger C, Micura R, Breuker K. Nucleic Acids Res. 47 7223-7234 (2019)
  783. The juxtaposition of ribose hydroxyl groups: the root of biological catalysis and the RNA world? Bernhardt HS. Orig Life Evol Biosph 45 15-19 (2015)
  784. The precellular scenario of genovirions. Flügel RM. Virus Genes 40 151-154 (2010)
  785. Thermus thermophilus L4 ribosomal protein: purification and sensitivity alteration against erythromycin of E. coli cells harboring a single amino acid mutant of TthL4 within its extended loop. Leontiadou F, Tsagkalia A, Choli-Papadopoulou T. Amino Acids 33 463-468 (2007)
  786. Translation termination: a ghost ballet? Yarus M. Mol. Cell 8 733-734 (2001)
  787. Transmembrane but not soluble helices fold inside the ribosome tunnel. Bañó-Polo M, Baeza-Delgado C, Tamborero S, Hazel A, Grau B, Nilsson I, Whitley P, Gumbart JC, von Heijne G, Mingarro I. Nat Commun 9 5246 (2018)
  788. Unfolding the genomes' structural secrets. Harris T. Curr. Biol. 11 R680-2 (2001)
  789. [Template location on the human ribosome: environment of the mRNA nucleotide adjacent to the A-site codon on the 3'-side] Demeshkina NA, Stiazhkina VA, Bulygin KN, Repkova MN, Ven'iaminova AG, Karpova GG. Bioorg. Khim. 31 295-302 (2005)


Related citations provided by authors (3)

  1. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution.. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA Science 289 905-20 (2000)
  2. Placement of protein and RNA structures into a 5 A-resolution map of the 50S ribosomal subunit.. Ban N, Nissen P, Hansen J, Capel M, Moore PB, Steitz TA Nature 400 841-7 (1999)
  3. An inhibitor of ribosomal peptidyl transferase using transition-state analogy.. Welch M, Chastang J, Yarus M Biochemistry 34 385-90 (1995)