1far Citations

The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site.

Proc. Natl. Acad. Sci. U.S.A. 93 8312-7 (1996)
Cited: 91 times
EuropePMC logo PMID: 8710867

Abstract

The Raf-1 protein kinase is the best-characterized downstream effector of activated Ras. Interaction with Ras leads to Raf-1 activation and results in transduction of cell growth and differentiation signals. The details of Raf-1 activation are unclear, but our characterization of a second Ras-binding site in the cysteine-rich domain (CRD) and the involvement of both Ras-binding sites in effective Raf-1-mediated transformation provides insight into the molecular aspects and consequences of Ras-Raf interactions. The Raf-1 CRD is a member of an emerging family of domains, many of which are found within signal transducing proteins. Several contain binding sites for diacylglycerol (or phorbol esters) and phosphatidylserine and are believed to play a role in membrane translocation and enzyme activation. The CRD from Raf-1 does not bind diacylglycerol but interacts with Ras and phosphatidylserine. To investigate the ligand-binding specificities associated with CRDs, we have determined the solution structure of the Raf-1 CRD using heteronuclear multidimensional NMR. We show that there are differences between this structure and the structures of two related domains from protein kinase C (PKC). The differences are confined to regions of the CRDs involved in binding phorbol ester in the PKC domains. Since phosphatidylserine is a common ligand, we expect its binding site to be located in regions where the structures of the Raf-1 and PKC domains are similar. The structure of the Raf-1 CRD represents an example of this family of domains that does not bind diacylglycerol and provides a framework for investigating its interactions with other molecules.

Articles - 1far mentioned but not cited (4)

  1. Treble clef finger--a functionally diverse zinc-binding structural motif. Grishin NV. Nucleic Acids Res. 29 1703-1714 (2001)
  2. Improved prediction of critical residues for protein function based on network and phylogenetic analyses. Thibert B, Bredesen DE, del Rio G. BMC Bioinformatics 6 213 (2005)
  3. From autoinhibition to inhibition in trans: the Raf-1 regulatory domain inhibits Rok-alpha kinase activity. Niault T, Sobczak I, Meissl K, Weitsman G, Piazzolla D, Maurer G, Kern F, Ehrenreiter K, Hamerl M, Moarefi I, Leung T, Carugo O, Ng T, Baccarini M. J. Cell Biol. 187 335-342 (2009)
  4. Efficient identification of critical residues based only on protein structure by network analysis. Cusack MP, Thibert B, Bredesen DE, Del Rio G. PLoS ONE 2 e421 (2007)


Reviews citing this publication (25)

  1. Targeting Aberrant RAS/RAF/MEK/ERK Signaling for Cancer Therapy. Degirmenci U, Wang M, Hu J. Cells 9 (2020)
  2. Ras-Mediated Activation of the Raf Family Kinases. Terrell EM, Morrison DK. Cold Spring Harb Perspect Med 9 (2019)
  3. Autoinhibition in Ras effectors Raf, PI3Kα, and RASSF5: a comprehensive review underscoring the challenges in pharmacological intervention. Nussinov R, Zhang M, Tsai CJ, Liao TJ, Fushman D, Jang H. Biophys Rev 10 1263-1282 (2018)
  4. Retinol as electron carrier in redox signaling, a new frontier in vitamin A research. Hammerling U. Hepatobiliary Surg Nutr 5 15-28 (2016)
  5. Regulation of RAF protein kinases in ERK signalling. Lavoie H, Therrien M. Nat. Rev. Mol. Cell Biol. 16 281-298 (2015)
  6. Tumor adaptation and resistance to RAF inhibitors. Lito P, Rosen N, Solit DB. Nat. Med. 19 1401-1409 (2013)
  7. Protein kinase C: the "masters" of calcium and lipid. Lipp P, Reither G. Cold Spring Harb Perspect Biol 3 (2011)
  8. KSR and CNK: two scaffolds regulating RAS-mediated RAF activation. Clapéron A, Therrien M. Oncogene 26 3143-3158 (2007)
  9. Raf kinases: function, regulation and role in human cancer. Leicht DT, Balan V, Kaplun A, Singh-Gupta V, Kaplun L, Dobson M, Tzivion G. Biochim. Biophys. Acta 1773 1196-1212 (2007)
  10. Selective Raf inhibition in cancer therapy. Khazak V, Astsaturov I, Serebriiskii IG, Golemis EA. Expert Opin. Ther. Targets 11 1587-1609 (2007)
  11. Evolution, biochemistry and genetics of protein kinase C in fungi. Schmitz HP, Heinisch JJ. Curr. Genet. 43 245-254 (2003)
  12. Exposure of platelet membrane phosphatidylserine regulates blood coagulation. Lentz BR. Prog. Lipid Res. 42 423-438 (2003)
  13. Pharmacological importance of phospholipase D and phosphatidic acid in the regulation of the mitogen-activated protein kinase cascade. Rizzo M, Romero G. Pharmacol. Ther. 94 35-50 (2002)
  14. Small GTP-binding proteins. Takai Y, Sasaki T, Matozaki T. Physiol. Rev. 81 153-208 (2001)
  15. The Ras-Raf relationship: an unfinished puzzle. Kerkhoff E, Rapp UR. Adv. Enzyme Regul. 41 261-267 (2001)
  16. Ras-A Molecular Switch Involved in Tumor Formation. Wittinghofer A, Waldmann H. Angew. Chem. Int. Ed. Engl. 39 4192-4214 (2000)
  17. Signaling and subcellular targeting by membrane-binding domains. Hurley JH, Misra S. Annu Rev Biophys Biomol Struct 29 49-79 (2000)
  18. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, Chang F, McCubrey JA. Pharmacol. Ther. 88 229-279 (2000)
  19. Amphitropic proteins: regulation by reversible membrane interactions (review). Johnson JE, Cornell RB. Mol. Membr. Biol. 16 217-235 (1999)
  20. Lipid second messengers derived from glycerolipids and sphingolipids, and their role in smooth muscle function. Ohanian J, Liu G, Ohanian V, Heagerty AM. Acta Physiol. Scand. 164 533-548 (1998)
  21. The RAF family: an expanding network of post-translational controls and protein-protein interactions. Yuryev A, Wennogle LP. Cell Res. 8 81-98 (1998)
  22. GEFs, GAPs, GDIs and effectors: taking a closer (3D) look at the regulation of Ras-related GTP-binding proteins. Geyer M, Wittinghofer A. Curr. Opin. Struct. Biol. 7 786-792 (1997)
  23. Protein kinase C and phospholipase C: bilayer interactions and regulation. Hurley JH, Grobler JA. Curr. Opin. Struct. Biol. 7 557-565 (1997)
  24. Regulation of protein kinase C. Newton AC. Curr. Opin. Cell Biol. 9 161-167 (1997)
  25. The complexity of Raf-1 regulation. Morrison DK, Cutler RE. Curr. Opin. Cell Biol. 9 174-179 (1997)

Articles citing this publication (62)

  1. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R. EMBO J. 18 2137-2148 (1999)
  2. Structural basis of Rab effector specificity: crystal structure of the small G protein Rab3A complexed with the effector domain of rabphilin-3A. Ostermeier C, Brunger AT. Cell 96 363-374 (1999)
  3. Taxonomy and function of C1 protein kinase C homology domains. Hurley JH, Newton AC, Parker PJ, Blumberg PM, Nishizuka Y. Protein Sci 6 477-480 (1997)
  4. Raf family kinases: old dogs have learned new tricks. Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, Kolch W. Genes Cancer 2 232-260 (2011)
  5. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. Zhang BH, Guan KL. EMBO J. 19 5429-5439 (2000)
  6. Erf2, a novel gene product that affects the localization and palmitoylation of Ras2 in Saccharomyces cerevisiae. Bartels DJ, Mitchell DA, Dong X, Deschenes RJ. Mol. Cell. Biol. 19 6775-6787 (1999)
  7. Protein phosphatases 1 and 2A promote Raf-1 activation by regulating 14-3-3 interactions. Jaumot M, Hancock JF. Oncogene 20 3949-3958 (2001)
  8. KSR stimulates Raf-1 activity in a kinase-independent manner. Michaud NR, Therrien M, Cacace A, Edsall LC, Spiegel S, Rubin GM, Morrison DK. Proc. Natl. Acad. Sci. U.S.A. 94 12792-12796 (1997)
  9. Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U. J. Biol. Chem. 277 44327-44331 (2002)
  10. A single residue in the C1 domain sensitizes novel protein kinase C isoforms to cellular diacylglycerol production. Dries DR, Gallegos LL, Newton AC. J Biol Chem 282 826-830 (2007)
  11. Regulation of Raf-1 kinase by TNF via its second messenger ceramide and cross-talk with mitogenic signalling. Müller G, Storz P, Bourteele S, Döppler H, Pfizenmaier K, Mischak H, Philipp A, Kaiser C, Kolch W. EMBO J. 17 732-742 (1998)
  12. Autoregulation of the Raf-1 serine/threonine kinase. Cutler RE, Stephens RM, Saracino MR, Morrison DK. Proc. Natl. Acad. Sci. U.S.A. 95 9214-9219 (1998)
  13. An intact Raf zinc finger is required for optimal binding to processed Ras and for ras-dependent Raf activation in situ. Luo Z, Diaz B, Marshall MS, Avruch J. Mol. Cell. Biol. 17 46-53 (1997)
  14. NMR characterization of full-length farnesylated and non-farnesylated H-Ras and its implications for Raf activation. Thapar R, Williams JG, Campbell SL. J. Mol. Biol. 343 1391-1408 (2004)
  15. Solution structure and functional analysis of the cysteine-rich C1 domain of kinase suppressor of Ras (KSR). Zhou M, Horita DA, Waugh DS, Byrd RA, Morrison DK. J. Mol. Biol. 315 435-446 (2002)
  16. Structural determinants of Ras-Raf interaction analyzed in live cells. Bondeva T, Balla A, Várnai P, Balla T. Mol. Biol. Cell 13 2323-2333 (2002)
  17. The cysteine-rich regions of the regulatory domains of Raf and protein kinase C as retinoid receptors. Hoyos B, Imam A, Chua R, Swenson C, Tong GX, Levi E, Noy N, Hämmerling U. J. Exp. Med. 192 835-845 (2000)
  18. Crucial structural role for the PH and C1 domains of the Vav1 exchange factor. Rapley J, Tybulewicz VL, Rittinger K. EMBO Rep. 9 655-661 (2008)
  19. Interactions of c-Raf-1 with phosphatidylserine and 14-3-3. McPherson RA, Harding A, Roy S, Lane A, Hancock JF. Oncogene 18 3862-3869 (1999)
  20. S338 phosphorylation of Raf-1 is independent of phosphatidylinositol 3-kinase and Pak3. Chiloeches A, Mason CS, Marais R. Mol. Cell. Biol. 21 2423-2434 (2001)
  21. The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases. Okada T, Hu CD, Jin TG, Kariya K, Yamawaki-Kataoka Y, Kataoka T. Mol. Cell. Biol. 19 6057-6064 (1999)
  22. Pharmacology of the receptors for the phorbol ester tumor promoters: multiple receptors with different biochemical properties. Kazanietz MG, Caloca MJ, Eroles P, Fujii T, García-Bermejo ML, Reilly M, Wang H. Biochem. Pharmacol. 60 1417-1424 (2000)
  23. Isoform-specific localization of A-RAF in mitochondria. Yuryev A, Ono M, Goff SA, Macaluso F, Wennogle LP. Mol. Cell. Biol. 20 4870-4878 (2000)
  24. The origin of C1A-C2 interdomain interactions in protein kinase Calpha. Stahelin RV, Wang J, Blatner NR, Rafter JD, Murray D, Cho W. J Biol Chem 280 36452-36463 (2005)
  25. A novel Rho GTPase-activating-protein interacts with Gem, a member of the Ras superfamily of GTPases. Aresta S, de Tand-Heim MF, Béranger F, de Gunzburg J. Biochem. J. 367 57-65 (2002)
  26. The amino-terminal B-Raf-specific region mediates calcium-dependent homo- and hetero-dimerization of Raf. Terai K, Matsuda M. EMBO J. 25 3556-3564 (2006)
  27. GTP-Ras disrupts the intramolecular complex of C1 and RA domains of Nore1. Harjes E, Harjes S, Wohlgemuth S, Müller KH, Krieger E, Herrmann C, Bayer P. Structure 14 881-888 (2006)
  28. Structural basis of guanine nucleotide exchange mediated by the T-cell essential Vav1. Chrencik JE, Brooun A, Zhang H, Mathews II, Hura GL, Foster SA, Perry JJ, Streiff M, Ramage P, Widmer H, Bokoch GM, Tainer JA, Weckbecker G, Kuhn P. J. Mol. Biol. 380 828-843 (2008)
  29. Differential membrane binding and diacylglycerol recognition by C1 domains of RasGRPs. Johnson JE, Goulding RE, Ding Z, Partovi A, Anthony KV, Beaulieu N, Tazmini G, Cornell RB, Kay RJ. Biochem. J. 406 223-236 (2007)
  30. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Daub M, Jöckel J, Quack T, Weber CK, Schmitz F, Rapp UR, Wittinghofer A, Block C. Mol. Cell. Biol. 18 6698-6710 (1998)
  31. Critical but distinct roles for the pleckstrin homology and cysteine-rich domains as positive modulators of Vav2 signaling and transformation. Booden MA, Campbell SL, Der CJ. Mol. Cell. Biol. 22 2487-2497 (2002)
  32. Nuclear magnetic resonance and molecular dynamics studies on the interactions of the Ras-binding domain of Raf-1 with wild-type and mutant Ras proteins. Terada T, Ito Y, Shirouzu M, Tateno M, Hashimoto K, Kigawa T, Ebisuzaki T, Takio K, Shibata T, Yokoyama S, Smith BO, Laue ED, Cooper JA. J. Mol. Biol. 286 219-232 (1999)
  33. Novel raf kinase protein-protein interactions found by an exhaustive yeast two-hybrid analysis. Yuryev A, Wennogle LP. Genomics 81 112-125 (2003)
  34. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine. Improta-Brears T, Ghosh S, Bell RM. Mol. Cell. Biochem. 198 171-178 (1999)
  35. Baculovirus-mediated expression of Plasmodium falciparum erythrocyte binding antigen 175 polypeptides and their recognition by human antibodies. Daugherty JR, Murphy CI, Doros-Richert LA, Barbosa A, Kashala LO, Ballou WR, Snellings NJ, Ockenhouse CF, Lanar DE. Infect. Immun. 65 3631-3637 (1997)
  36. Activation kinetics of RAF protein in the ternary complex of RAF, RAS-GTP, and kinase on the plasma membrane of living cells: single-molecule imaging analysis. Hibino K, Shibata T, Yanagida T, Sako Y. J. Biol. Chem. 286 36460-36468 (2011)
  37. Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Park E, Rawson S, Li K, Kim BW, Ficarro SB, Pino GG, Sharif H, Marto JA, Jeon H, Eck MJ. Nature 575 545-550 (2019)
  38. Probing the determinants of diacylglycerol binding affinity in the C1B domain of protein kinase Cα. Stewart MD, Morgan B, Massi F, Igumenova TI. J. Mol. Biol. 408 949-970 (2011)
  39. Interactions of protein kinase C-α C1A and C1B domains with membranes: a combined computational and experimental study. Li J, Ziemba BP, Falke JJ, Voth GA. J. Am. Chem. Soc. 136 11757-11766 (2014)
  40. NO-released zinc supports the simultaneous binding of Raf-1 and PKCγ cysteine-rich domains to HINT1 protein at the mu-opioid receptor. Rodríguez-Muñoz M, de la Torre-Madrid E, Sánchez-Blázquez P, Garzón J. Antioxid. Redox Signal. 14 2413-2425 (2011)
  41. 1,2-sn-Diacylglycerol in plant cells: Product, substrate and regulator. Miège C, Maréchal É. Plant Physiol. Biochem. 37 795-808 (1999)
  42. Conformation of the C1 phorbol-ester-binding domain participates in the activating conformational change of protein kinase C. Ho C, Slater SJ, Stagliano BA, Stubbs CD. Biochem. J. 344 Pt 2 451-460 (1999)
  43. Mammalian Raf-1 is activated by mutations that restore Raf signaling in Drosophila. Cutler RE, Morrison DK. EMBO J. 16 1953-1960 (1997)
  44. Modular synthesis of biologically active phosphatidic acid probes using click chemistry. Smith MD, Sudhahar CG, Gong D, Stahelin RV, Best MD. Mol Biosyst 5 962-972 (2009)
  45. A-Raf associates with and regulates platelet-derived growth factor receptor signalling. Mahon ES, Hawrysh AD, Chagpar RB, Johnson LM, Anderson DH. Cell. Signal. 17 857-868 (2005)
  46. Redox regulation of cardiac protein kinase C. Korichneva I. Exp Clin Cardiol 10 256-261 (2005)
  47. Structural Basis for the Failure of the C1 Domain of Ras Guanine Nucleotide Releasing Protein 2 (RasGRP2) to Bind Phorbol Ester with High Affinity. Czikora A, Lundberg DJ, Abramovitz A, Lewin NE, Kedei N, Peach ML, Zhou X, Merritt RC, Craft EA, Braun DC, Blumberg PM. J. Biol. Chem. 291 11133-11147 (2016)
  48. Cys(x)His(y)-Zn2+ interactions: possibilities and limitations of a simple pairwise force field. Calimet N, Simonson T. J. Mol. Graph. Model. 24 404-411 (2006)
  49. Role of Raf-1 conserved region 2 in regulation of Ras-dependent Raf-1 activation. Sendoh H, Hu CD, Wu D, Song C, Yamawaki-Kataoka Y, Kotani J, Okada T, Shima F, Kariya K, Kataoka T. Biochem. Biophys. Res. Commun. 271 596-602 (2000)
  50. A "Tug of War" Maintains a Dynamic Protein-Membrane Complex: Molecular Dynamics Simulations of C-Raf RBD-CRD Bound to K-Ras4B at an Anionic Membrane. Li ZL, Prakash P, Buck M. ACS Cent Sci 4 298-305 (2018)
  51. Reconstitution of modular PDK1 functions on trans-splicing of the regulatory PH and catalytic kinase domains. Al-Ali H, Ragan TJ, Gao X, Harris TK. Bioconjug. Chem. 18 1294-1302 (2007)
  52. Diacylglycerol lactones targeting the structural features that distinguish the atypical C1 domains of protein kinase C ζ and ι from typical C1 domains. Pu Y, Kang JH, Sigano DM, Peach ML, Lewin NE, Marquez VE, Blumberg PM. J. Med. Chem. 57 3835-3844 (2014)
  53. Mutations in conserved regions 1, 2, and 3 of Raf-1 that activate transforming activity. Chan EY, Stang SL, Bottorff DA, Stone JC. Mol. Carcinog. 33 189-197 (2002)
  54. Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Travers T, López CA, Van QN, Neale C, Tonelli M, Stephen AG, Gnanakaran S. Sci Rep 8 8461 (2018)
  55. The novel ankyrin-repeat containing kinase ARCK-1 acts as a suppressor of the Spalten signaling pathway during Dictyostelium development. Aubry L, Lee S, Ravanel K, Firtel RA. Dev. Biol. 263 308-322 (2003)
  56. Anionic Lipids Impact RAS-Binding Site Accessibility and Membrane Binding Affinity of CRAF RBD-CRD. Travers T, López CA, Agamasu C, Hettige JJ, Messing S, García AE, Stephen AG, Gnanakaran S. Biophys J 119 525-538 (2020)
  57. KRAS interaction with RAF1 RAS-binding domain and cysteine-rich domain provides insights into RAS-mediated RAF activation. Tran TH, Chan AH, Young LC, Bindu L, Neale C, Messing S, Dharmaiah S, Taylor T, Denson JP, Esposito D, Nissley DV, Stephen AG, McCormick F, Simanshu DK. Nat Commun 12 1176 (2021)
  58. Mechanism of BRAF Activation through Biochemical Characterization of the Recombinant Full-Length Protein. Cope N, Candelora C, Wong K, Kumar S, Nan H, Grasso M, Novak B, Li Y, Marmorstein R, Wang Z. Chembiochem 19 1988-1997 (2018)
  59. Phosphorylation promotes binding affinity of Rap-Raf complex by allosteric modulation of switch loop dynamics. T D, Venkatraman P, Vemparala S. Sci Rep 8 12976 (2018)
  60. Structures of BRAF-MEK1-14-3-3 sheds light on drug discovery. Sun Q, Wang W. Signal Transduct Target Ther 4 59 (2019)
  61. The C1 domain of Vav3, a novel potential therapeutic target. Kelsey JS, Géczy T, Kaler CJ, Blumberg PM. Cell. Signal. 40 133-142 (2017)
  62. Three distinct regions of cRaf kinase domain interact with membrane. Prakash P, Hancock JF, Gorfe AA. Sci Rep 9 2057 (2019)